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The importance of peripheral arterial diseases
Broadly defined, peripheral vascular disease refers to disease of the extra-cardiac blood
vessels, including diseases of the arteries, veins and lymphatics. Peripheral arterial disease
(PAD) refers to disease affecting non-coronary arteries, but is most often used to describe
disease of the arteries supplying the limbs. Peripheral arterial disease is most commonly due
to atherosclerosis, but may also be secondary to cardiac or vascular embolism, vasculitis,
hypercoagulopathy, vascular dissection, vascular compression syndromes, and other less
common disorders. In addition, peripheral arterial diseases include those characterized by
fixed or dynamic stenoses, as well as aneurysmal disease such as abdominal aortic aneurysm
(AAA). In this review, we focus on atherosclerotic arterial occlusive disease affecting the
vessels supplying blood flow to the lower extremities (PAD), and discuss our current
understanding and the future directions of PAD genetics.

PAD is a significant public health problem, and a major source of morbidity and mortality
that affects approximately 8 million Americans. PAD contributes to impaired quality of life
(eg. intermittent claudication reducing mobility), morbidity (eg. non-healing ulcers and
ischemic rest pain) and mortality (generally due to its association with coronary and carotid
artery disease). PAD is responsible for approximately half a million hospitalizations and
100,000 angiograms annually 1, 2. Due in part to a general unfamiliarity with these diseases
amongst the primary care community, PAD patients receive suboptimal treatment compared
to patients with coronary artery disease (CAD), being prescribed therapeutic doses of statins,
anti-hypertensive medicines, and antiplatelet agents less commonly than patients with
CAD 3-6. Much remains unknown about the biological origins of this disease and how to
effectively identify and treat affected individuals.
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Using genetics to identify pathophysiological pathways and novel
therapeutic targets

A greater understanding of how genetic variation influences susceptibility to PAD may
inform the development of novel therapeutics. High-throughput, whole-genome
technologies efforts have recently made inroads toward these goals (Table). The advent of
genome-wide association studies (GWAS, discussed below) and cDNA microarrays (which
measure the mRNA expression levels of all coding genes) has allowed for the unbiased
detection of pathways which are differentially activated in affected versus unaffected
individuals. Whereas these are the contemporary tools now driving genetic investigations of
PAD, it is important to first put this recent work into a historical context.

Earlier studies documenting the heritability of PAD
PAD is a complex disorder from a genetic standpoint. Unlike monogenic vascular
syndromes such as Marfan and Loey's Dietz that manifest a Mendelian inheritance pattern14,
atherosclerotic PAD likely results from dozens or hundreds of genes interacting with each
other and the environment to cause disease7. Epidemiological studies suggest that over 50%
of the population burden of PAD is attributable to classical risk factors such as smoking,
diabetes mellitus, dyslipidemia and hypertension15. The remaining risk is thus accounted for
by other unmeasured environmental or genetic components.

Several studies indicate a heritable component to PAD. In a study of patients with premature
PAD (onset before age 50), half of the subjects' asymptomatic siblings had occult lower
extremity atherosclerosis as determined by duplex ultrasonography16. A recent Swedish
twin study17used discharge diagnosis to define PAD, and is likely more representative of
patients with symptomatic claudication or critical limb ischemia. Genetic effects accounted
for 58% (95% CI, 50% to 64%) and non-shared environmental effects for 42% (95% CI,
36% to 50%) of the phenotypic variance among twins in this report. Three studies conducted
to date estimate that 21% of the inter-individual variation in ABI is attributable to inherited
factors. These studies include the National Heart, Lung, and Blood Institute (NHLBI) Twin
Study18, the Genetic Epidemiology Network Arteriopathy Study (GENOA)19, and a study
performed in the Framingham Offspring Cohort20. Many of the participants in these studies
had ABI values in or near the reference range. While sibling studies frequently overestimate
attributable genetic risk because of shared environmental risk factors within families21, these
reports each provided evidence that ABI is at least moderately inheritable, and justify the
search for responsible gene variants. Historical methods included case-control approaches
and linkage analyses.

Earlier studies to identify genetic determinants of PAD
Candidate Gene Studies

Using the candidate gene approach, one searches for an association between a specific
variant in a specific gene (eg. a single nucleotide polymorphism, or SNP) and a clinical
phenotype (generally defined by a low ABI in PAD patients). Such polymorphisms may
alter a gene's expression by altering the binding of its required transcription factors,
impairing the stability or intracellular trafficking of its mRNA transcript, or limiting its
ability to be translated into a functional protein. Often, the polymorphism may be linked to
another gene that is responsible for the disease. Collections of cases and controls are
assembled and genotyped for variants in a suspected pathway 22. Driven by our
understanding of atherosclerotic disease, most efforts thus far have focused on genes that are
known or suspected to be related to modulating lipids, blood pressure, vasomotor tone,
inflammation or thrombosis. Association studies have included genes related to coagulation
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and platelet aggregation (prothrombin, Factor V Leiden), leukocyte activation (IL-6, E-
Selectin, ICAM), and endothelial function (NOS3), amongst others (reviewed in 7, 8, 23).

Unfortunately, these studies have shed little light onto the pathophysiology of PAD. Plagued
by small sample sizes and inadequate statistical power, many of the originally positive
studies have not been successfully replicated in independent cohorts, suggesting the original
association was falsely positive 24. Concerns over inadequate matching of racial/ethnic
groups (who are known to have different rates of PAD as well as different allele
frequencies) are justified by the possibility that ‘population stratification’ may lead to
spurious associations 25. Moreover, a significant proportion of the candidate gene studies
reported to date do not conform to Hardy-Weinberg equilibrium (i.e. the genotype was not
distributed across the population as predicted by classical genetics) suggesting systematic
genotyping errors or selection bias 23. Perhaps most concerning, a number of these studies
appear to have been un-blinded, additionally casting doubt on their conclusions.

Taken together, these candidate gene studies are inconclusive. Certain variants that have
been identified appear promising and warrant additional investigation, such as
polymorphisms in the homocysteine pathway regulating enzyme MTHFR26-29, the
inflammatory cytokine IL-6 30, 31, and the vascular adhesion molecule ICAM30, 32. Finally,
a major limitation of candidate gene studies is that they are not likely to uncover novel
mechanisms, as the choice of gene variants is typically determined by previous observations
indicating a putative role for the gene in atherosclerosis.

Linkage Studies
Family-based linkage studies have also been applied to understanding vascular diseases 33.
In this approach, the genome is scanned at a low resolution (every 10 centimorgans) for
markers known as microsatellites that are co-inherited with the phenotype of interest
(typically several million base pairs between tags). Once a marker has been firmly
associated within the affected members of the study families, the surrounding region of the
genome is fine-mapped to identify the causal gene which is ‘linked’ to the microsatellite and
the disease. This method is conceptually superior to the candidate gene approach in that it
does not require an a priori hypothesis about which gene is responsible for the disease and it
scans the entire genome. This approach has been powerful in a number of Mendelian
diseases, both vascular (e.g. NOTCH3 signaling in the autosomal dominant stroke
syndrome, CADASIL34, 35) and otherwise (e.g. sarcomeric proteins in hypertrophic
cardiomyopathy 36).

In the realm of PAD, however, the results have been somewhat disappointing. To date, only
one positive linkage study has been reported. This study of 116 extended Icelandic families
(884 subjects) identified a locus on chromosome 1p31 that was associated with
angiographically or surgically documented PAD 9. This locus, known as PAOD1, had a
logarithm of odds (LOD) score of 3.93 (> 3 is significant). Moreover, this locus was
independent of other vascular risk factors and the association was strengthened when stroke
patients were removed. Together, these findings suggest that the associated gene may
specifically predispose patients to vascular disease in the lower extremity vascular bed.
Unfortunately, the causative gene on Chromosome 1 has not yet been identified and this
association has not been replicated by other investigators. The only other sizable linkage
study performed to date, which utilized only ∼ 1/3 the number of microsatellite makers
studied in the preceding study, failed to definitively identify a significant genomic locus 19.

To be effective, linkage studies require extended family pedigrees and genes with large
effect sizes 37. As PAD tends to affect older adults, it is difficult to compile large collections
of affected families. Further, this disease is polygenic and results from a number of factors
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each with a modest effect on risk, rather than one dominant gene that will be easily detected.
Together, it is not surprising that this approach has not been met with more success in PAD.

GWAS Studies
Recent major advances in human genetics promise to overcome each of these deficits 38. In
2001, the Human Genome Project was completed, fully codifying the 3.1 billion nucleotides
that make up our genetic code. Perhaps even more importantly, the International HapMap
project provided a ‘catalog’ of common polymorphisms across the genome in 2004,
allowing us for the first time to study the natural variation that makes each individual
unique. These tools, combined with technological advances that have enabled the relatively
inexpensive genotyping of millions of ‘tag’ SNPs simultaneously, have revolutionized
modern genomics research. Employing the genome-wide association study (GWAS)
approach, researchers can now scan the full genomes of large cohorts of patients to identify
variants that are over-represented in subjects with a given disease compared to unaffected
controls (see review in 38, 39). Unlike the candidate gene approach, the GWAS platform
allows for an agnostic approach where no prior knowledge is required to implicate novel
biological pathways 40. Further, the genome-wide approach allows for the consideration of
polymorphisms in so-called ‘gene-deserts’ that do not encode any of the known ∼20,000
protein coding genes. These areas may contain non-coding elements that can modify gene
expression, such as long-noncoding RNAs.

Unlike conventional linkage analysis using microsatellites, the GWAS technology scans the
genome at much higher resolution and with greater fidelity. Moreover, late-onset diseases
with high mortality rates (such as PAD) can be studied without the need for extended family
pedigrees, and genes with modest effect size (OR of 1.2) can be detected. One drawback is
that this approach requires large numbers of subjects (thousands), and because of multiple
comparisons, the level of significance must be very high for a variant to be reliably
associated with disease. Nevertheless, this approach has already provided revolutionary
insights in several fields, as typified by the implication of the complement pathway in
macular degeneration, autophagy in Crohn's disease, and hedgehog signaling in human
height 41-43.

Since 2006, multiple loci have been definitively associated with cardiovascular disease44.
These lead SNPs have been replicated by several consortia in multiple racial ethnic groups.
The strongest and most consistent association with cardiovascular disorders is with the
intergenic portion of Chromosome 9p21 (p = 1.6 ×10−25) 11, which has been queried in well
over 100,000 patients 45, 46. Variants at this locus have been reported to be responsible for as
much as 21% of one's lifetime risk of myocardial infarction (MI) 47. Importantly, these same
polymorphisms also correlate with risk in the periphery, including aneurysmal disease,
stroke and arterial stiffness 12, 48. The link to peripheral vascular disorders is most robust for
AAA and intracranial aneurysms (accounting for 26% of the attributable risk for these
diseases), and persists even after removing patients with a history of MI. A follow up study
on the representative 9p21 SNP rs1333049supported this association with PAD status as
well as severity of ABI in a cohort of older individuals (mean age 76) 49. The association
persisted after controlling for diabetes, smoking, lipid levels, prior MI and hypertension,
suggesting a novel pathophysiological mechanism at play.

The fact that the 9p21 SNPs correlate with disease status independently of known traditional
risk factors has increased the enthusiasm for understanding the biology mediated by these
SNPs. It is notable that these same SNPs also predict risk of the intracranial non-
atherosclerotic berry aneurysm 12. Taken together, we and others have postulated that 9p21
likely does not alter vessel wall inflammation, thrombosis or lipid accumulation- but rather
regulates the structural integrity of the artery itself. Given the particularly strong link to
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aneurysmal disorders, it is likely that the dominant role of 9p21 variants in vivo will center
around vascular smooth muscle cell physiology and cell-fate decision making 50.

While much work has focused on the 9p21 hits described above, it is worth highlighting that
a number of other GWAS polymorphisms have been implicated as significant at the
genome-wide level. As the majority of these localize to genes not previously implicated in
vascular disease, they certainly warrant investigation and should also yield novel biological
targets. For example, one of the most exciting leads comes from a recent GWAS which
found an associated SNP within a cluster of genes that encode nicotinic acetylcholine
(nACh) receptors 13. This variant not only correlated with PAD (10% of the attributable risk
for disease), but also predicted nicotine dependence and number of cigarettes smoked per
day. It may be that the link to PAD occurs indirectly (i.e. by increasing lifetime smoking
burden) or possibly by directly modulating the effect of tobacco on the vasculature. In this
regard, we have shown that nicotine can directly accelerate plaque neovascularization and
atherosclerosis by stimulating vascular nAChreceptors 51, 52.

Whereas the genetic variations discovered by GWAS have been predictive of CAD as well
as PAD, it is likely that genetic variations that are more specific for PAD ultimately will be
uncovered. Indeed, it is already apparent that the conventional risk factors have different
predictive value for PAD, with tobacco exposure and diabetes mellitus being stronger risk
factors for PAD than is dyslipidemia 53, 54. Consistent with these differences in
pathophysiological determinants is the observation of a different proteomic profile in
patients with PAD and CAD (PAD/CAD), than those patients with CAD alone. Specifically,
beta 2 microglobulin, cystatin C and C-reactive protein are each found in higher levels in
PAD/CAD, and can be used together to stratify the risk of PAD in a susceptible
population 55, 56.

Use of genetics in PAD detection and treatment
A greater understanding of the genetic underpinnings of PAD could enhance our capacity to
detect those at risk for disease. PAD is underdiagnosed, and these patients are not receiving
medication known to reduce morbidity and mortality. Only 10-30% of PAD patients
manifest the ‘classic’ symptom of intermittent claudication 3, 57. While the ABI test, which
measures the ratio of blood pressure in the lower and upper extremities, is a simple and
useful office-based technique to detect PAD 58, evidence indicates that this test is
underutilized. In fact, the PARTNERS (Peripheral Arterial Disease Detection, Awareness,
and Treatment in Primary Care) ABI screening study of nearly 7,000 adult general medicine
patients found that over half of those with PAD had been previously undetected 3. Even
when widely implemented, the ABI does not correlate with functional status, and only
poorly with disease progression 59, 60. A blood test that could identify those at greatest risk
for PAD could focus additional screening toward those populations.

Currently, genetic screening to assess the risk or progression of PAD is far from being
realized. However, the possibility of such screening in the future is foreshadowed by recent
advances in cardiac transplantation. In cardiac transplant recipients, the AlloMap test (which
measures the expression of 11 genes in peripheral blood samples) has been shown to
accurately predict allograft rejection 61. This blood test has the potential of replacing the
current screening methodology which is invasive and expensive (ie. frequent
endomyocardial biopsies and echocardiograms). Clearly, standardized, off-the-shelf blood
tests that will obviate the need for technical imaging studies would greatly enhance our
ability to rapidly identify at-risk individuals, initiate therapies early in the course of disease,
and prognosticate with greater accuracy. Given the fact that as many as 60 million
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Americans technically meet the guideline criteria for a screening ABI, it is clear that an
effective PAD panel could focus health care resources on those most at risk 55.

More powerful tools, that will arise from our forthcoming ability to rapidly and cheaply
sequence the entire genome, will certainly provide further insights, point out additional
targets and allow for therapies tailored to an individual's personal genetic makeup. To this
final point, the field of pharmacogenomics, which studies the role of genetic differences in
the response to drug therapy, has been rapidly expanding. A clear example relevant to PAD
comes from the discovery that carriers of the common loss-of-function cytochrome p-450
enzyme polymorphism,CYP2C19, metabolize clopidogrel (the most efficacious antiplatelet
drug in PAD 62) significantly more slowly than unaffected controls (reviewed in 63). These
patients have reduced platelet inhibition on standard clopidogrel doses and experience a
higher risk of major adverse cardiovascular events. As such, the FDA has provided a “black-
box” warning for this agent in so-called “poor-metabolizers”. We do not yet know if higher
doses of clopidogrel will reduce the risk of future event (without increasing bleeding).
However, it is clear that clinicians will soon need to become facile with the concept of
pharmacogenomics when choosing a drug for a particular patient 64. Before long, we
anticipate that a patient's genetic variations will be documented and will factor into drug
selection similarly to other current considerations, such as age, weight and concurrent
medications.

The future of PAD genetics
Gene-by-environment interactions

Gene-by-environment (GxE) interactions are hypothesized to play an important role in the
expression of disease, and have spurred investigations into the pathophysiological synergy
of genomic and environmental exposures. Recently, this topic was approached with the first
Environment-Wide Association Study (“EWAS”) which identified the pesticide heptachlor
epoxide as being associated with type II diabetes 65. Application of similar ‘environment-
wide’ scans will likely also be useful in PAD.

Epigenetic factors
Additionally, we will become more sophisticated in our evaluation of noncoding RNAs and
other epigenetic modifications that promote peripheral arterial disease. The microRNAs are
diffusible ∼ 22 nucleotide single-stranded RNAs that target coding mRNA transcripts for
degradation 66. Though discovered less than a decade ago, they are now known to regulate
upwards of 50% of the entire genome. This remarkable pathway, which consists of only ∼
1000 genes, has already been implicated in a number of pathways relevant to PAD including
impaired diabetic neoangiogenesis, smooth muscle remodeling, and circulating endothelial
progenitor cell number 67-70. The advent of microarrays that can analyze the small RNA
subfraction will certainly identify other microRNAs which are relevant to peripheral arterial
disease.

Beyond microRNAs, tools now also exist to measure other epigenetic factors in PAD, such
as histone modification, chromatin remodeling and DNA methylation 71. These processes
induce structural modifications to the DNA molecule, rather than alterations in the DNA
sequence, itself. Changes in DNA methylation or chromatin modifications make a given
gene more or less amenable to transcription, and thus can alter the expression of that gene.
Epigenetic alterations may occur postnatally and reproducibly localize to certain regions of
the chromosome in disease. Detecting these patterns can provide insights that will implicate
causative genes. It is possible that epigenetic ‘signatures’ can even be inherited across
families, and that traits acquired due to environmental exposure can be passed to offspring to
contribute to the familial concentration of disease. While most of the cardiovascular
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epigenetic research completed to date has focused on pathways related generally to
atherosclerosis and vascular biology 72, interesting studies are forthcoming in AAA
disease 73 and should also prove informative in PAD.

Acquired mitochondrial genetic alterations
There is accumulating evidence for a mitochondriopathy in PAD that contributes to the
impairment in functional capacity74. The mitochondriopathy may be due in part to acquired
alterations in mitochondrial DNA (mtDNA). In the patient with PAD, intermittent
claudication is associated with ischemia-reperfusion, a known stimulus for generation of
reactive oxygen species75. Regular bouts of ischemia-reperfusion may damage mtDNA,
which is particularly vulnerable due to its proximity to reactive oxygen species generated by
the electron transport chain (ETC), and because of its lack of protective histones. Indeed, by
comparison to limbs of age-matched subjects without PAD, the skeletal muscle
mitochondria in the most affected limb of patients with PAD have almost 20-fold greater
frequency of the 4977-bpmtDNA deletion76.These mitochondrial genetic abnormalities may
explain in part the mitochondriopathy of PAD. Notably, the only ETC protein activity which
seems unaffected in PAD skeletal muscle is that of complex II, which is encoded by nuclear,
rather than mitochondrial, DNA74. However, similar mtDNA alterations can be seen in the
unaffected limb in patients with unilateral PAD, suggesting that systemic oxidative stress or
other factors may be contributing to the mtDNA abnormalities in PAD77. In any event,
medical therapy to reduce mitochondrial injury or enhance mitochondrial function may
represent an interesting therapeutic avenue in PAD78.

Comparative genomics
Known differences in susceptibility to hindlimb ischemia between mouse strains are also
now being exploited to advance our understanding of peripheral arterial disease and
angiogenesis. Using an elegant comparative genomics approach, Dokun and colleagues
performed a linkage analysis on mice from 6 genetic backgrounds that had undergone
femoral artery ligation 10. They identified a quantitative trait locus on chromosome 7 that
influences wound healing in situations of tissue hypoxia and critical limb ischemia. Other
investigators have found that this same locus also appears to control over 50% of the
variability in infarct burden in a mouse model of ischemic stroke 79. While the molecular
mechanisms downstream of this region have yet to be defined, this example highlights the
power of leveraging the natural differences that occur due to genetic variation between
inbred animal lineages.

Exomic and whole genome sequencing
The most important advances, however, are likely to occur to as a result of the even more
powerful genetic tools on the horizon. While the GWAS platform has provided new insights
that will reshape our approach to PAD genetics, this tool is not without limitations 38, 80, 81.
High-density genotyping chips now can identify up to 2.5 million individual markers per
subject, but rely on imputation to predict the remaining SNPs in our genome. Rare,
‘personal’ variants (i.e. occurring with a frequency of less than 1% across the population)
are not accurately cataloged for consideration with the GWAS approach. Moreover,
historical GWAS genotyping has had little if any power to detect so-called structural
variants such as insertions, deletions and copy number variants - all of which have been
implicated in vascular disease. The advent of exome and truly full genome sequencing,
where all existing nucleotides are codified, will address these limitations. Companies such
as Complete Genomics and Illumina now provide full genome sequencing services for as
little as a few thousand dollars per patient (depending on order size 82), and can provide this
information in a matter of days (versus the $3 billion and 10 years required to sequence the
first genome in the Human Genome Project). As Moore's Law on the declining cost of
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computing continues to be outstripped by the falling price of sequencing, it will not be long
until standard academic laboratories will have bench-top sequencers capable of scanning
entire genomes for $1000 or less per genome83.

PAD collaborations and advanced informatics
Most importantly, this generation will see the creation of larger and more successful
collaborations focused on the investigation of PAD. With superior phenotypic
characterization and longer term follow-up, these international groups will organize studies
specifically intended for combining datasets and optimizing future meta-analyses 23. Novel
approaches will focus on collecting ‘genetically enriched’ subjects to examine the extremes
of phenotypes. For example, our group has collected subjects with very early onset of
atherosclerotic disease (<45 years old) in the ADVANCE study 84, and others have chosen
to study the opposite end of the spectrum with subjects over 80 who have no medical
comorbidities (the “Wellderly”).

In addition to the creation of consortia for conducting genetic studies of complex diseases
such as PAD, there is considerable interest in leveraging the electronic medical record
(EMR) for high throughput phenotyping to facilitate such studies. The Electronic Medical
Records and Genomics (eMERGE) network (www.gwas.org) was established in 2007 to
develop and implement methods for leveraging biorepositories linked to EMR systems for
large-scale genomic research 85, 86. One of the participating sites in this network, Mayo
Clinic, is conducting a GWAS of PAD that includes 1,648 cases and 1,675 controls87

recruited in the clinical setting and with linkage to the EMR. Mining of structured data from
the EMR as well as natural language processing of unstructured text was used to obtain
relevant covariates. 87

Conclusions
PAD is an important and highly prevalent condition with a heritable component. Vascular
biologists and geneticists have begun to make inroads on this complex disease by applying
increasingly sophisticated genetic approaches (Figure). We look forward to the next decade
of research, as evolving technologies and interdisciplinary collaborations promise to finally
provide insights on this often morbid condition.
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Figure 1.
The Genetics of PAD. Factors associated with risk of peripheral arterial disease include
variation in the genetic code (e.g. single nucleotide polymorphisms or SNPs) and epigenetic
DNA modifications (e.g. cytosine methylation). Post-transcriptional regulation by non-
coding RNAs may also alter expression of gene products relevant to vascular homeostasis.
Finally, recently appreciated mitochondrial DNA variation and complex gene-by-
environment interactions may also be involved in PAD pathogenesis, as discussed in the
text.
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Table

Historical approaches to PAD genetics: The Candidate Gene Approach, Linkage Analysis, and Genome-Wide
Association Studies.

Candidate Gene Approach Linkage Analysis Genome Wide Association Study (GWAS)

Description Typically a case-control approach
which searches for a statistical
association between a specific
genetic variant (i.e. a SNP) and a
disease of interes

A family-based approach where the
genome is scanned for pre-specified
DNA markers that are known to be
highly variable (i.e. microsatellites).
Regions that are found more
commonly in the diseased members
of the family are said to be ‘linked’ to
the causative gene, which is then
pursued with fine mapping
-Also known as ‘positional cloning’

A novel approach where single nucleotide
polymorphisms (SNPs) are genotyped across
the entire genome in subjects with and
without a given disease. SNPs which differ
in frequency between cases compared to
controls are ‘associated’ with disease

Strengths Can detect genes with small
effect sizes

Useful for ‘complex’ or
polygenic conditions (such as
PAD)

Does not require extended
families, thus simplifying the
recruitment of large numbers
of cases and controls

Requires no prior knowledge of
the causative genes

Is particularly useful for single-
gene, Mendelian disorders

Can be executed with a
relatively small number of
well-pedigreed families

Scans the entire genome

Like linkage studies, is ‘agnostic’ and
does not rely on assumptions about
relevant disease

Detects common variants with small
effect sizes

Is useful for non-Mendeliancomplex
conditions

Scans the ‘entire’ genome

Does not require the collection of
extended families afflicted with the
disease of interest

Has much higher resolution than
linkage analysis

Weaknesses Relies on our pre-existing
knowledge about which genes
and pathways are relevant to a
disease (i.e. is a ‘best-guess’
approach)

Does not have the potential to
identify novel pathways

Frequently is underpowered
(especially in the context of a
low pre-test probability) and
confounded by natural
differences amongst various
racial ethnic groups (i.e.
population stratification)

Must be confirmed by
independent investigators to
be considered valid

Can only detect alleles with
large effect sizes (i.e. is not
likely to be useful in
multifactorial conditions such
as PAD)

Requires families with affected
individuals across multiple
generations (i.e. is more
difficult to perform in late onset
and highly morbid conditions
such as PAD)

To date, mostly disease susceptibility
SNPs have been identified; less
success with ‘structural’ variation (i.e.
copy number variants, insertions,
deletions, etc.)

Requires relatively large sample sizes
which can be confounded by
incomplete phenotyping of patients
(i.e. patients who have subclinical
atherosclerosis may be erroneously
identified as normals).

Typically not powered to detect
associations for rare variants (i.e.
polymorphisms with allele frequencies
<1%)

Examples
related to
PAD

∼ 20 identified to date, reviewed
in 7, 8

Thrombosis related

• Factor II, V, VII;
Fibrinogen;
MTHFR; P2Y12
platelet receptor

Atherosclerosis related

• Interleukin-6;
Angiotensin
converting
enzyme; CCR5
and CX3CR1
chemokine

Rare examples in the literature
including:

Human

• PAOD -
Chromosome 1p31
- causative gene
remains
unidentified 9

Mouse

• LSq-1- Mouse
chromosome 7 -
identified with
comparative
genomics approach

∼ 30 replicated associations identified
to date for CAD/PAD?11

• 9p21.3 locus correlates
with PAD, CAD and AAA
– likely related to
CDKN2A, CDKN2Band
ANRILexpression 12

• 15q24 locus correlates
with smoking burden and
PAD – likely related to
nicotinic Ach receptor
biology 13

Circulation. Author manuscript; available in PMC 2013 August 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leeper et al. Page 17

Candidate Gene Approach Linkage Analysis Genome Wide Association Study (GWAS)

receptors;
ICAM-1; eNOS;
etc

- causative gene
remains
unidentified 10
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