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Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the
older population worldwide. While strong genetic risk factors have been associated with AMD
etiology, environmental influences through epigenetic regulation are also likely to play a role.
Recent advances in epigenetic studies have resulted in the development of numerous epigenetic
drugs for the treatment of cancer and inflammation. Here, we review the current literature on the
genetic and epigenetic mechanisms of AMD and suggest that understanding the cooperation of
epigenetic and genetic mechanisms will greatly advance the clinical management of AMD.

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in
the older population worldwide.1 The prevalence of early and late AMD is estimated to be
6.8% and 1.5% in white people aged 40 years and older.2 These rates are largely similar in
Asian countries,3 while the Baltimore Eye Study4 shows that the prevalence of late AMD is
significantly lower in African Americans than in white or Asian populations.

AMD leads to progressive loss of central vision due to geographic atrophy or choroidal
neovascularisation. Gradually progressed visual impairment can also lead to significantly
compromised quality of life and depression. In the early stage, lipofuscin (A2E)
accumulation, decrease of retinal pigment epithelium (RPE) cell number in the macular
region, increased thickness of Bruch's membrane, and drusen formation are the major
hallmarks of AMD pathology. Patients can progress to one or both advanced forms of AMD
at the late stage called geographic atrophy, characterized by RPE atrophy and photoreceptor
degeneration (dry AMD), as well as choroidal neovascularisation (CNV) characterized by
pathological angiogenesis and/or haemorrhage in the choroidal macular regions (wet
AMD).5 Currently, no medical or surgical treatment is available for central geographic
atrophy, while photodynamic therapy (PDT)6 as well as anti-vascular endothelial growth
factor (anti-VEGF) drugs including ranibizumab (Lucentis) and bevacizumab (Avastin)7

have been used to treat choroidal neovascular AMD (CNV). The later two drugs present
similar efficacy in controlling the loss of visual acuity in patients.8
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Genetics of AMD
Combination of multiple genetic and environmental risk factors has been suggested for the
onset of AMD.2 Powerful genetic and genomic approaches have provided important insights
into the pathogenesis of AMD.9, 10 Using family linkage and Genome-wide Association
Study (GWAS), DNA variants in a growing list of immunological genes have been
identified as strong genetic contributors to the etiology of AMD,9 including complement
factor H (CFH) gene,11-15CFB,16 complement 2,16 complement 3,17,18 and complement
factor I (CFI),19 the ARMS2/HTRA1 region,20-25 tissue inhibitor of metalloproteinase 3
(TIMP3),26 HLA,27 and interleukin 8 (IL8).28 In addition to genes involved in immune
responses, apolipoprotein E (APOE),29, 30 cholesteryl ester transfer protein (CETP),26 ATP-
binding cassette sub-family A member 4 (ABCA4),31 and hepatic lipase gene (LIPC)32 have
also been associated with AMD. These studies have strongly suggested that AMD is a
complex disease associated with multiple genetic risk factors regulating immune responses,
oxidative stress, as well as lipid synthesis.

Animal Studies
A great deal has been learned about genetic factors contributing AMD risk. However, the
detailed molecular mechanisms by which genetic and environmental factors lead to AMD
pathology are largely unknown. Multiple animal models, especially mouse models, have
been generated in order to understand the disease mechanism of AMD. Mice with deletions
or mutations of key genetic factors identified by the above mentioned studies, as well as
laser-induced or surgically-induced choroidal neovascularisation (CNV) models mimicking
wet AMD have been developed.33, 34, 35

Recent studies have suggested that both innate and adaptive immune responses play
important roles in AMD pathogenesis. A few transgenic and knockout mouse models of dry
AMD carrying mutations or deletions in immunological genes have been developed.33, 36

For example, Cfh deletion in mouse leads to traceable photoreceptor degeneration and
reduction in visual acuity in two year old mice37; similarly, deletion of Ccl2 or Ccr2 leads to
disregulated macrophage recruitment in the eye and results in geographic atrophy and
progressive retinal degeneration in old mice38, 39; Cx3cr1 deficiency in mouse also leads to
drusen-like lesions associated with microglia accumulation in the subretinal space40;
furthermore, deletion of both Ccl2 and Cx3cr1 in mouse significantly accelerated drusen
formation and onsite of retinal degeneration.41 On the other hand, Takeda et al. shows that
the blockade of the eosinophil/mast cell chemokine receptor CCR3 reduced formation of
choroidal neovascularisation followed by laser injury.42 Taken together, these murine
models have helped our understanding of the individual genes in AMD associated
pathogenesis.

In addition to mouse models with genetically engineered immunological genes, addition
mouse models with deletion or mutation in genes functioning in RPE physiology, oxidative
stress and lipid metabolism are also developed.33, 36 Deletion/knockdown of oxidative stress
associated gene Sod1 and Sod2, transgenic overexpression of lipid metabolism gene
ApoEε4 and ApoB100, mutation of Cathepsin D (Catd), as well as immunization with
carboxyethylpyrrole (CEP) all lead to varied retinal phenotype similar to dry or wet AMD.36

Importantly, the laser induced CNV model, in which laser burns/damage from a
photocoagulation laser on the murine outer retina and RPE induced subsequent vascular
leakage and choroidal neovascularisation, has been extensively used to study the
development of wet AMD and to test anti-angiogenesis drugs.33, 43

In spite of success in advancing our understanding in the roles of individual genes in AMD
pathogenesis, there are apparent limitation in using these animal models to study disease
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mechanism and treatment of AMD. First of all, the mouse does not have a macula, differs in
lipid transport across the RPE from human, has fewer cones as compared with human, has
generally more double-nucleus RPEs than human, and has a short life expectancy.
Moreover, very few cases of AMD-like phenotype are found in large experimental animals
such as cats or dogs.33 Therefore, careful evaluation will be necessary when discoveries
found in animal models are translated to clinical management of AMD patients.

AMD Twin studies
Twin design is broadly used in studies dissecting the genetic versus environmental
contributions to various complex diseases. Therefore, there have been numerous studies on
AMD that investigated identical or non-identical twin subjects. In 1988, a case of a twin pair
who both had AMD with different disease manifestations was identified.44 Earlier studies
using small patient cohorts indicated a significantly higher concordance rate of AMD in
monozygotic than in dizygotic twins or families45-48 strongly suggesting a genetic
predisposition to AMD. In two recent twin studies, Hammond et al.49 showed that the
concordance for AMD in monozygotic twins was 0.37 compared with 0.19 in dizygotic
twins, while Seddon et al.50 suggested that genetic factors can explain 46% to 71% of the
variation in the overall severity of AMD. However, the latter study also elucidated that for
specific macular drusen and retinal pigment epithelial characteristics, both significant
genetic (0.26-0.71) and unique environmental (0.28-0.64) proportions of variance were
detected.50 In addition, Keilhauer CN et al.51 also suggested that the course and visual
outcome of AMD appear to be influenced by environmental factors rather than genetic
determinants. Interestingly, Gottfredsdottir MS et al.46 reported that the concordance of
AMD was 70.2% between 47 pairs of spouses. Thus, all these twin studies suggested that
both genetic and environmental factors play important roles in AMD etiology.

Considerable effort has been spent to assess the role of several behavioural and nutritional
factors contributing to AMD pathology, using twin studies. Heavier smoking is associated
with higher risk of AMD, especially more advanced stage of AMD and larger drusen size,
while higher intake of fish, omega-3 fatty acid, dietary vitamin D, betaine, and methionine is
associated with earlier stage of AMD and smaller drusen size.52, 53 Further studies are
needed to identify a full spectrum of environmental (epigenetic, as described below) factors
associated with AMD etiology.

Epigenetics and Epigenomics
While identical twins are often concordant for AMD, some twin pairs present a discordant
phenotype. This argues that non-genetic factors also play a potentially crucial role in the
pathogenesis of AMD. Studies investigating inheritable and non-inheritable non-genetic
environmental influences beyond DNA sequence (genetic) changes are defined as
epigenetics.54 A collection of all genome-wide epigenetic changes is referred to as the
epigenome.55 Although most cells, with the exception of B and T cells or cells with somatic
mutations, in an organism share the identical genome, their cellular morphology and
function can be significantly different. In addition, most current therapeutic drugs target to
adjust the epigenome instead of changing the underlining DNA sequences in patients.56, 57

Therefore, much attention has been given to studies of epigenetic regulations in AMD.

Currently, molecular epigenetics studies the modifications of DNA and associated chromatin
structures that can be adjusted according to three types of interrelated alterations: DNA
methylation, histone modifications, and genomic imprinting. A number of proteins such as
DNA methyltransferases and demethylases, histone acetyltransferases and deacetylase
function to coordinate the machinery of epigenetic regulation that is ultimately responsible
for the gene expression regulation.
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The most common DNA methylation form is the 5’ methylcytosine. It occurs predominantly
in the symmetric CG context. About 70–80% of CG dinucleotides of the genome is normally
methylated and called CpG. In vertebrates, CpG dinucleotides tend to cluster together and
form CpG islands. Approximately 70% of gene promoters are associated with CpG islands,
indicating the important role of CpG in regulation of vertebrate gene expression. A small
amount of non-CG 5’ methylcytosine occurs in embryonic stem cells and also regulates gene
expression.58 The 5’ methylated cytosine located in promoter regions is generally associated
with gene silencing. However, it can also be found in the gene bodies of actively transcribed
genes in both plant and mammals.59 The mammalian DNA methylation machinery is
composed of several components, including DNA methyltransferase 1 (DNMT1) that
maintains heritable DNA methylation patterns, DNMT3a/3b and their cofactors DNMT3L
that establish de novo DNA methylation marks, and the methyl-CpG binding proteins
(MBDs) and other transcription factors that are involved in ‘reading’ methylation marks.60

Recent studies revealed more forms of DNA methylation in addition to 5’ methylcytosine.61

In mammalian cells, the ten-eleven translocation proteins (TET1, TET2, TET3), a family of
iron-dependant oxygenases, can oxidize the methyl group at position 5 of 5-methylcytosine
to form 5-hydroxymethylcytosine,62, 63 which can be further oxidized by TET1 to generate
5-formylcytosine and 5-carboxylcytosine.64, 65 The oxidation process of 5’ methylcytosine
may serve as the natural way of DNA demethylation because in spite of intense search no
convincing evidence suggested the exist of DNA demethylases.66

In addition to DNA methylation, post-translational covalent modifications of histones play
major roles in epigenetic regulation of various cellular processes, and are often referred to as
the histone code.67 The most abundant modifications on histone tails are acetylations and
methylations, including major active marks H3K56Ac, H4K16Ac, and H3K4me3, as well as
repressive marks H3K27me3 and H3K9me3 et al. Ubiquitination, ADP-ribosylation, and
sumolation of lysines as well as phosphorylation of serines and threonines also exist as
infrequent histone marks.68 The combination of all DNA methylation and histone
modifications decides the chromatin structure and DNA accessibility for factors involved in
transcription regulation, therefore controlling gene activation or repression. Multiple
families of proteins are involved in the addition, removal, and binding of the histone
modifications. In particular, enzymes and proteins mediating histone acetylation and
methylation are extensively studied, including histone acetyltransferases (HAT) and their
inhibitors (HDACs), as well as histone methyltransferases and demethylases.69

Recent studies strongly suggest a crosstalk between DNA methylation and histone
modifications in coordinating the epigenetic regulation of various cellular functions.70 For
example, during early development, binding of RNA polymerase II recruits H3K4
methyltransferases onto the gene promoters with unmethylated CpG islands first. By
interrupting the necessary interaction between DNMT3L and H3 tails, the methylated H3K4
blocks de novo DNA methylation mediated by DNMT3A, DNMT3B, and DNMT3L
complex, resulting in DNA methylation only at the regions of H3K4me desert in the early
embryo.71 Moreover, histone methyltransferase EZH2,72 SUV39H1,73 and SETDB174 are
found directly interacting with DNA methyltransferase DNMT3A and DNA methylation
machinery in addition to transcriptional activators and repressors. Therefore, the
physiological and pathological processes are controlled by cooperation of both DNA
methylation and histone modifications.

Epigenetic Mechanism and Therapy of Human Diseases
Properly establishing, maintaining, and regulating the epigenome is essential for
development and normal function of the organism. Importantly, organisms dynamically
adjust their epigenomes in response to environmental influences. A number of epigenetic
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abnormalities have been found to contribute to the development of human diseases.
Increasing understanding of epigenetic regulation of human disease has led to potential
therapies for diseases such as cancer, inflammatory diseases, neuropsychiatric and metabolic
disorders.56, 69

Cancer has been defined as much an epigenetic disease as it is a genetic disease.75 In the
1980s, cancer cells were found to have hypomethylated genomes relative to their normal
counterparts, resulting in genomic instability.76-79 Later, much gene-specific aberrant hyper-
or hypo-methylation was discovered on oncogenes and tumor suppressor genes that served
as either the cause or consequence of tumorgenesis.80, 81 Recently, exploration of the
broader cancer epigenome including the histone modifications revealed new insights into the
complete view of abnormal heritable epigenetic alterations that can lead to the initiation and
progression of cancer.82 These aberrant epigenetics marks found in cancer cells not only
serve as biomarkers for diagnosis and prognosis of many cancers, they can also be targeted
for correction as a new generation of cancer therapies.83 Multiple DNA methyltransferases
inhibitors including 5-azanucleosides, azacitidine and decitabine, as well as histone
deacetylase inhibitors including Vorinostat and Romidepsin have been approved by FDA for
cancer therapy. Many small molecules targeting the HDAC and histone methyltransferases
are under development and clinical test for controlling cancer, although more target specific
suppression will be needed to address the safety concerns associated with these new
therapies.69

A growing body of evidence indicates critical role of epigenetic regulation in the immune
system. Therefore, targeting the epigenetic regulators is currently extensively investigated as
powerful new approaches for treating autoimmune and inflammatory diseases.

Epigenetics in AMD
Despite the significant advances that have been made in understanding the epigenetic
regulation in cancer and inflammation, inheritable and dynamic epigenetic changes
characterizing ocular diseases are largely unknown.84, 85 Recently, studies have started to
reveal the environmental epigenetic factors for AMD, such as smoking and dietary
intake.52, 53, 86, 87 However, the molecular epigenetic mechanism underlying the disease
pathogenesis is not clear.88

Our recent genome-wide DNA methylation analysis identified differences in ~1.5% of the
total CpG sites within 231 gene promoters between 3 pairs of twins with discordant
advanced AMD phenotype. Among these genes, interestingly, we are able to confirm that a
hypomethylated IL17RC promoter is associated with AMD disease. The hypomethylation of
IL17RC promoter results in the elevated expression of the IL-17RC protein on selected cells
in peripheral blood and retinal tissues of AMD patients, suggesting that epigenetic
regulation of inflammatory gene IL17RC may play an important role in AMD.89

The 231 differentially methylated genes identified in discordant AMD twins belong to
different functional categories. Among these categories, “Immunological Disease” is one of
the 5 most significantly enriched one, reconfirming a speculation that AMD is an
immunological disease.89

Intriguingly, none of the 231 genes with differential epigenetic regulation overlap with these
“top hits” identified by Genome-wide Association Studies (GWAS) in the AMD Gene
Consortium,90 providing no direct link between genetic and epigenetic mechanisms in AMD
etiology. It is still unclear how genetic factors, such as CFH and HTRA1/ARMS2 SNPs,
control AMD progress. It is reasonable to hypothesize that genetic factors may function
through epigenetic regulation to manipulate cellular functions that resulted in the
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development of AMD disease. We recently found that an elevated level of interleukin 17
(IL-17) and IL-22 produced by Th17 cells, a subset of CD4+ helper T cells causing tissue
inflammation, in the serum of AMD patients, which could be resulted from disregulated
complement system (potentially CFH).91 Both IL-17 and IL-22 can induce demethylation of
the IL17RC promoter and promote IL17RC expression in peripheral blood and retinal
tissues of AMD patients,89 therefore indicating a potential molecular cascade connecting
genetic risk factor of CFH SNPs with epigenetic disregulation of IL17RC, both found in
AMD patients.

Conclusion
It is clear that both genetic susceptibility and environmental influences control the risk of
AMD. Thus, the incorporation of epigenetic and epigenomic status with genetic study will
provide a basis for better understanding of the complexity of AMD pathogenesis and
accelerate the development of novel therapeutic agents targeting both human genome and
epigenome. With the advent of next generation high-throughput sequencing technologies, it
is now feasible to quickly and robustly map the details of human genome and epigenome in
the clinic.92-94 Therefore, understanding the cooperation of epigenetic and genetic
mechanisms will greatly advance the clinical management of AMD.
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