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Abstract
Experimentation is ubiquitous in the field of psychology and fundamental to the advancement of
its science, and one of the biggest challenges for researchers is designing experiments that can
conclusively discriminate the theoretical hypotheses or models under investigation. The
recognition of this challenge has led to the development of sophisticated statistical methods that
aid in the design of experiments and that are within the reach of everyday experimental scientists.
This tutorial paper introduces the reader to an implementable experimentation methodology,
dubbed Adaptive Design Optimization, that can help scientists to conduct “smart” experiments
that are maximally informative and highly efficient, which in turn should accelerate scientific
discovery in psychology and beyond.

1 Introduction
Imagine an experiment in which each and every stimulus was custom tailored to be
maximally informative about the question of interest, so that there were no wasted trials,
participants, or redundant data points. Further, what if the choice of design variables in the
experiment (e.g., stimulus properties and combinations, testing schedule, etc.) could evolve
in real-time as data were collected, to take advantage of information about the response the
moment it is acquired (and possibly alter the course of the experiment) rather than waiting
until the experiment is over and then deciding to conduct a follow-up?

The ability to fine-tune an experiment on the fly makes it possible to identify and capitalize
on individual differences as the experiment progresses, presenting each participant with
stimuli that match a particular response pattern or ability level. More concretely, in a
decision making experiment, each participant can be given choice options tailored to her or
his response preferences, rather than giving every participant the same, pre-selected list of
choice options. As another example, in an fMRI experiment investigating the neural basis of
decision making, one could instantly analyze and evaluate each image that was collected and
adjust the next stimulus accordingly, potentially reducing the number of scans while
maximizing the usefulness of each scan.
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The implementation of such idealized experiments sits in stark contrast to the current
practice in much of psychology of using a single design, chosen at the outset, throughout the
course of the experiment. Typically, stimulus creation and selection are guided by heuristic
norms. Strategies to improve the informativeness of an experiment, such as creating all
possible combinations of levels of the independent variables (e.g., three levels of task
difficulty combined with five levels of stimulus duration), actually work against efficiency
because it is rare for all combinations to be equally informative. Making matters worse,
equal numbers of participants are usually allotted to each combination of treatments for
statistical convenience, even the treatments that may not be informative. Noisy data are
often combatted in a brute-force way by simply collecting more of them (this is the essence
of a power analysis). The continued use of these practices is not the most efficient use of
time, money, and participants to collect quality data.

A better, more efficient way to run an experiment would be to dynamically alter the design
in response to observed data. The optimization of experimental designs has a long history in
statistics dating back to the 1950s (e.g., Lindley, 1956; Box and Hill, 1967; Atkinson and
Federov, 1975; Atkinson and Donev, 1992; Berry, 2006). Psychometricians have been doing
this for decades in computerized adaptive testing (e.g., Weiss and Kingsbury, 1984), and
psychophysicists have developed their own adaptive tools (e.g., Cobo-Lewis, 1997;
Kontsevich and Tyler, 1999). The major hurdle in applying adaptive methodologies more
broadly has been computational: Quantitative tools for identifying the optimal experimental
design when testing formal models of cognition have not been available. However, recent
advances in statistical computing (Doucet et al., 2001; Robert and Casella, 2004) have laid
the groundwork for a paradigmatic shift in the science of data collection. The resulting new
methodology, dubbed adaptive design optimization (ADO, Cavagnaro et al., 2010), has the
potential to more broadly benefit experimentation in cognitive science and beyond.

In this tutorial, we introduce the reader to adaptive design optimization. The tutorial is
intended to serve as a practical guide to apply the technique to simple cognitive models. As
such, it assumes a rudimentary level of familiarity with cognitive modeling, such as how to
implement quantitative models in a programming or graphical language, how to use
maximum likelihood estimation to determine parameter values, and how to apply model
selection methods to discriminate models. Readers with little familiarity with these
techniques might find Section 3 difficult to follow, but should otherwise be able to
understand most of the other sections. We begin by reviewing approaches to improve
inference in cognitive modeling. Next we describe the technical details of adaptive design
optimization, covering the computational and implementation details. Finally, we present an
example application of the methodology for designing experiments to discriminate simple
models of memory retention. Readers interested in more technical treatments of the material
should consult (Myung and Pitt, 2009; Cavagnaro et al., 2010).

2 Why Optimize Designs?
2.1 Not All Experimental Designs Are Created Equal

To illustrate the importance of optimizing experimental designs, suppose that a researcher is
interested in empirically discriminating between formal models of memory retention. The
topic of retention has been studied for over a century. Years of research have shown that a
person’s ability to remember information just learned drops quickly for a short time after
learning and then levels off as more and more time elapses. The simplicity of this data
pattern has led to the introduction of numerous models to describe the change over time in
the rate at which information is retained in memory. Through years of experimentation with
humans (and animals), a handful of the models have proven to be superior to the rest of the
field (Wixted and Ebbesen, 1991), although more recent research suggests that they are not
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complete (Oberauer and Lewandowsky, 2008). These models describe the probability p of
correctly recalling a stimulus item as a function of the time t since study. Two particular
models that have received considerable attention are the power model, p = a(t + 1)−b, and the
exponential model, p = ae−bt. Both models predict that memory recall decays gradually as
the lag time between study and test phases increases.

Figure ?? shows predictions of power and exponential models obtained under restricted
ranges of parameter values (i.e., 0.65 < a < 0.85 and 0.75 < b < 0.95 for the power model,
and 0.80 < a < 1.00 and 0.10 < b < 0.20 for exponential model). Suppose that the researcher
conducts an experiment to compare these model predictions by probing memory at different
lag times, which represent values of a design variable in this experiment. Visual inspection
of the figure suggests that lag times between 15 and 20 seconds would be bad designs to use
because in this region predictions from both models are virtually indistinguishable from
each other. In contrast, times between 1 and 5 seconds, where the models are separated the
most, would make good designs for the model discrimination experiment.

In practice, however, the problem of identifying good designs is a lot more complicated than
the idealized example in Figure ??. It is more often the case that the researchers have little
information about the specific ranges or values of model parameters under which
experimental data are likely to be observed. Further, the models under investigation may
have many parameters so visual inspection of their predictions across designs would be
simply impossible. This is where quantitative tools for optimizing designs can help identify
designs that make experiments more efficient and more effective than what is possible with
current practices in experimental psychology. In the remainder of this tutorial, we will
describe how the optimization of designs can be accomplished. For an illustrative
application of the methodology for discriminating the aforementioned models of retention,
the reader may skip ahead to Section 4.

2.2 Optimal Design
In psychological inquiry, the goal of the researcher is often to distinguish between
competing explanations of data (i.e., theory testing) or to estimate characteristics of the
population along certain psychological dimensions, such as the prevalence and severity of
depression. In cognitive modeling, these goals become ones of model discrimination and
parameter estimation, respectively. In both endeavors, the aim is to make the strongest
inference possible given the data in hand. The scientific process is depicted inside in the
rectangle in Figure ??a: first, the values of design variables are chosen in an experiment,
then the experiment is carried out and data are collected, and finally, data modeling methods
(e.g., maximum likelihood estimation, Bayesian estimation) are applied to evaluate model
performance at the end of this process.

Over the last several decades, significant theoretical and computational advances have been
made that have greatly improved the accuracy of inference in model discrimination (e.g.,
Burnham and Anderson, 2010). Model selection methods in current use include the Akaike
Information Criterion (Akaike, 1973), the Bayes factor (Jeffreys, 1961; Kass and Raftery,
1995), and Minimum Description Length (Rissanen, 1978; Grünwald, 2005), to name a few.
In each of these methods, a model’s fit to the data is evaluated in relation to its overall
flexibility in fitting any data pattern, to arrive at a decision regarding which model of two
competing models to choose (Pitt et al., 2002). As depicted in in Figure ??a, data modeling
is applied to the back end of the experiment after data collection is completed.
Consequently, the methods themselves are limited by the quality of the empirical data
collected. Inconclusive data will always be inconclusive, making the task of model selection
difficult no matter what data modeling method is used. A similar problem presents itself in
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estimating model parameters from observed data, regardless of whether maximum
likelihood estimation or Bayesian estimation is used.

Because data modeling methods are not foolproof, attention has begun to focus on the front
end of the data collection enterprise, before an experiment is conducted, developing methods
that optimize the experimental design itself. Design optimization (DO, Myung and Pitt,
2009) is a statistical technique, analogous to model selection methods, that selectively
chooses design variables (e.g., treatment levels and values, presentation schedule) with the
aim of identifying an experimental design that will produce the most informative and useful
experimental outcome (Atkinson and Donev, 1992). Because experiments can be difficult to
design, the consequences of design choices and the quality of the proposed experiment are
not always predictable, even if one is an experienced researcher. DO can remove some of
the uncertainty of the design process by taking advantage of the fact that both the models
and some of the design variables can be quantified mathematically.

How does DO work? To identify an optimal design, one must first define the design space,
which consists of the set of all possible values of design variables that are directly controlled
by the experimenter. The researcher must define this set by considering the properties of the
variables being manipulated. For example, a variable on an interval scale may be
discretized. The coarser the discretization, the fewer the number of designs. Given five
design variables, each with ten levels, there are 100,000 possible designs.

In addition, the model being evaluated must be expressed in formal, mathematical terms,
whether it is a model of visual processing, recognition memory, or decision making. A
mathematical framework provided by Bayesian decision theory (Chaloner and Verdinelli,
1995) offers a principled approach to design optimization. Specifically, each potential
design is viewed as a gamble whose payoff is determined by the outcome of an experiment
conducted with that design. The payoff represents some measure of the goodness or the
utility of the design. Given that there are many possible outcomes that an experiment could
produce, one estimates the expected utility (i.e., predicted utility) of a given design by
computing the average payoffs across all possible outcomes that could be observed in an
experiment carried out with the chosen design. The design with the highest expected utility
is then identified as the optimal design. To conceptualize the problem slightly differently, if
one imagines a distribution representing the utility of all designs, ordered from worst to best,
the goal of DO is to identify the design at the extreme (best) endpoint of the distribution.

2.3 An Adaptive Approach to Experimentation: Adaptive Design Optimization
DO is a one-shot process. An optimal design is identified, applied in an experiment, and
then data modeling methods are used to aid in interpreting the results, as depicted in
Figure ??a,. This inference process can be improved by using what is learned about model
performance in the data modeling stage to optimize the design still further. Essentially, these
two stages are connected as shown in Figure ??b, yielding adaptive design optimization
(ADO).

ADO is an integrative approach to experimentation that leverages, online, the
complementary strengths of design optimization and data modeling. The result is an efficient
and informative method of scientific inference. In ADO, the optimal experimental design is
updated at intervals during the experiment, which we refer to as stages. It can be as frequent
as after every trial or after a number of trials (e.g., a mini experiment). Factors such as the
experimental methodology being used will influence the frequency of updating. As depicted
in Figure ??b, updating involves repeating data modeling and design optimization. More
specifically, within a Bayesian framework, adaptive design optimization is cast as a decision
problem where, at the end of each stage, the most informative design for the next stage (i.e.,
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the design with the highest expected utility) is sought based on the design and outcomes of
the previous stage. This new stage is then carried out with that design, and the resulting data
are analyzed and modeled. This is followed by identifying a new design to be used in the
next stage.1 This iterative process continues until an appropriate stopping criterion is
reached.

Various additional (pragmatic) decisions arise with ADO. In particular, one must decide
how many mini experiments will be carried out, either in succession within a single testing
session (e.g., one hour). A critical factor, which is likely only determined with piloting, is
how many stages are necessary to obtain decisive model discrimination or stable parameter
estimation. It may be that testing would be required across days, but to date we have not
found this to be necessary.

By using all available information about the models and how the participant has responded,
ADO collects data intelligently. It has three attractive properties that make it particularly
well suited for evaluating computational models. These pertain to the informativeness of the
data collected in the experiment, the sensitivity of the method to individual differences, and
the efficiency of data collection. We briefly elaborate on each.

As noted above, design optimization and data modeling are synergistic techniques that are
united in ADO to provide a clear answer to the question of interest. Each mini-experiment is
designed, or each trial chosen, such that the evidence pertaining to the question of interest,
whether it be estimating a participant’s ability level or discriminating between models,
accumulates as rapidly as possible. This is accomplished by using what is learned from each
stage to narrow in on those regions of the design space that will be maximally informative in
some well-defined sense.

The adaptive nature of the methodology, by construction, controls for individual differences
and thus makes it well suited for studying the most common and often largest source of
variance in experiments. When participants are tested individually using ADO, the algorithm
adjusts (i.e., optimizes) the design of the experiment to the performance of that participant,
thereby maximizing the informativeness of the data at an individual participant level.
Response strategies and group differences can be readily identified. This capability also
makes ADO ideal for studies in which few participants can be tested (e.g., rare memory or
language disorders).

Another benefit of using an intelligent data collection scheme is that it speeds up the
experiment, possibly resulting in a substantial savings of time, fewer trials and participants,
and lower cost. This savings can be significant when using expensive technology (e.g.,
fMRI) or numerous support staff (e.g., developmental or clinical research). Similarly, in
experiments using hard-to-recruit populations (children, elderly, mental patients),
application of ADO means fewer participants, all without sacrificing the quality of the data
or the quality of the statistical inference.

The versatility and efficiency of ADO has begun to attract attention in various disciplines. It
has been used recently for designing neurophysiology experiments (Lewi et al., 2009),
adaptive estimation of contrast sensitivity functions of human vision (Kujala and Lukka,
2006; Lesmes et al., 2006, 2010; Vul and Bergsma, 2010), designing systems biology
experiments (Kreutz and Timmer, 2009), detecting exoplanets in astronomy (Loredo, 2004),
conducting sequential clinical trials (e.g., Wathen and Thall, 2008), and adaptive selection of

1Adaptive design optimization is conceptually and theoretically related to active learning in machine learning (Cohn et al., 1994,
1996) and also to policy iteration in dynamic programming (Sutton and Barto, 1998; Powell, 2007).
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stimulus features in human information acquisition experiments (Nelson, 2005; Nelson et
al., 2011). Perhaps the most well-known example of ADO, albeit a very different
implementation of it, is computerized adaptive testing in psychology (e.g., Hambleton et al.,
1991; van der Linden and Glas, 2000). Here, an adaptive sequence of test items, which can
be viewed in essence as experimental designs, is chosen from an item bank taking into
account an examinee’s performance on earlier items so as to accurately infer the examinee’s
ability level with the fewest possible items.

In our lab, we have used ADO to adaptively infer a learner’s representational state in
cognitive development experiments (Tang et al., 2010), to discriminate models of memory
retention (Cavagnaro et al., 2010, 2011), and to optimize risky decision making experiments
(Cavagnaro et al., 2013a,b). These studies have clearly demonstrated the superior efficiency
of ADO to the alternative non-ADO methods, such as random and fixed designs (e.g.,
Cavagnaro et al., 2010, 2013a, Fig. 3 & Fig. 7, respectively).

3 The Nuts and Bolts of Adaptive Design Optimization
In this section we describe the theoretical and computational aspects of ADO in greater
detail. The section is intended for readers who are interested in applying the technique to
their own cognitive modeling. Our goal is to provide readers with the basic essentials of
implementing ADO in their own experiments. Figure ?? show a schematic diagram of the
ADO framework that involves a series of steps. In what follows we discuss each step in turn.

3.1 Preliminaries
Application of ADO requires that each model under consideration be formulated as a
statistical model defined as a parametric family of probability distributions, p(y|θ, d)’s, each
of which specifies the probability of observing an experimental outcome (y) given a
parameter value (θ) and a design value (d). That is, the data vector y is a sample drawn from
the probability distribution (often called the sampling distribution) for given values of the
parameter vector θ and of the design vector d.

To be concrete, consider the exponential model of memory retention, defined by p = ae−bt,
that describes the probability of correct recall of a stimulus item (e.g., word or picture) as a
function of retention interval t and parameter vector θ = (a, b) where 0 < a < 1 and b > 0. In
a typical experiment, there is a study phase in which participants learn a list of words. After
a retention interval, which can range from fractions of a second to minutes, participants are
tested on their memory for the list of words. Data are scored as the number of correctly
recalled items (y) out of a fixed number of independent Bernoulli trials (n), all given at a
single retention interval t. Note that the retention interval is the design variable whose value
is being experimentally manipulated, i.e., d = t.

Under the assumption that the exponential model describes retention performance, the
experimental outcome would follow the binomial probability distribution of the form

(1)

where y = 0, 1, …, n. When retention performance is probed over multiple time points of the
design variable, d = (t1, …, tq ), the data are summarized into a discrete vector y = (y1, …,
yq ) with each yi ∈ {0, …, n}, and the overall probability distribution of the outcome vector
y is then given by
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(2)

ADO is formulated in a Bayesian statistical framework. It is beyond the scope of this tutorial
to review this vast literature, and instead, the reader is directed to consult Bayesian
textbooks (e.g., Robert, 2001; Gelman et al., 2004; Gill, 2007; Kruschke, 2010). The
Bayesian formulation of ADO requires specification of priors for model parameters, denoted
by p(θ). There are a plethora of methods proposed in the Bayesian literature for choosing
appropriate priors, whether they are subjective, objective, or empirical priors (Carlin and
Louis, 2000, for a review). Practically speaking, however, what is important to note is that
ADO results might strongly depend upon the particular form of the prior employed so it
must be chosen with careful thought and proper justification.

As a concrete example, for the above two parameters, a and b, of the exponential model of
retention, one might choose to employ the following prior defined by the product of a Beta
probability density for parameter a and an exponential probability density for parameter b

(3)

for α = 4, β = 2, and λ = 10, for instance. Combining the prior distribution in the above
equation with the probability distribution of the outcome vector in Eq. (2) by Bayes rule
yields the posterior distribution as

(4)

Having specified a model’s probability distribution and the prior and posterior distributions
of model parameters, we now discuss the details of the ADO framework

3.2 Design Optimization
As mentioned earlier, ADO is a sequential process consisting of a series of optimization-
experimentation stages. An optimal design is sought on the basis of the present state of
knowledge, which is coded in the prior. Next, data are collected with the optimal design.
The observed outcomes are then used to update the prior to the posterior, which in turn
becomes the prior on the next iteration of the ADO process. As such, the design is optimized
in each ADO stage, and this design optimization (DO) step involves solving an optimization
problem defined as

(5)

for some real-valued function U (d) that is a metric of goodness or utility of design d.

Formally and without loss of generality, we define the utility function U (d) to be optimized
as
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(6)

where m = {1, 2, …, K} is one of a set of K models being considered, and ym is the outcome
vector resulting from a hypothetical imaginary experiment, in lieu of a real one, conducted
with design d under model m, and θm is a parameter vector of model m (e.g., Chaloner and
Verdinelli, 1995; Myung and Pitt, 2009; Nelson et al., 2011). In the above equation, p(m)
denotes the prior model probability of model m. The “local” utility function, u(d, θm, ym),
measures the utility of an imaginary experiment carried out with design d when the data
generating model is m, the parameters of the model take the value θm, and the outcome ym
is produced.

On the left side of the above equation is what is sometimes referred to as the global utility
function U (d) (so as to distinguish it from the local utility function defined above), and is
defined as the expectation of u(·) averaged over the models, parameters, and observations,
taken with respect to the model prior p(m), the parameter prior p(θm), and the probability
distribution p(ym|θm, d), respectively.

To evaluate the global utility U (d) in Eq. (6), one must provide explicit specifications for
three functions: (1) the model and parameter priors, p(m) and p(θm); (2) the probability
distribution given parameter θm and design d, p(ym|θm, d); and (3) the local utility function
u(d, θm, ym). These are shown on the left side of Figure ??, which is a schematic illustration
of ADO. The first two functions were discussed in the preceding section. We discuss the
specification of the third, the local utility function, next.

3.3 Local Utility Function
From Eq. (5), it can be seen that the global utility being optimized is nothing but an average
value of the local utility over all possible data samples and model parameters, weighted by
the likelihood function and the model and parameter priors. As such, selection of a local
utility function in ADO determines the characteristics of what constitutes an optimal design.
One should therefore choose a local utility function that is appropriate for the specific goal
of the experiment.

Generally speaking, the cognitive modeler conducts an experiment with one of two goals in
mind: parameter estimation or model discrimination. In parameter estimation, given a model
of interest, the goal is to estimate the values of the model’s parameters as accurately as
possible with the fewest experimental observations. On the other hand, in model
discrimination, given a set of multiple candidate models, the goal is to identify the one that
is closest in some defined sense to the underlying data generating model, again using the
fewest number of observations. Below we discuss possible forms of the local utility function
one can use for either goal.

A simple and easy-to-understand local utility function for parameter estimation is of the
following form:

(7)

where k is the number of parameters, and E(θi) and SD(θi) stand for the mean and standard
deviation, respectively, of the posterior distribution of parameter θi, denoted as p(θi|y, d).
Note that by construction, K in Eq. (6) is equal to 1 in parameter estimation so the subscript
m is skipped in Eq. (7). The above local utility function is defined as a sum of “inverse”
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standard deviations of parameters weighted by their means so that the function value does
not depend upon the unit in which each parameter is measured. Note that a larger value of
u(d, θ, y) is translated into less parameter variability overall, which in turn implies a more
accurate estimate of the parameters. One may also consider other variations of the above
form, each suitably chosen taking into account the particular purpose of the experiment at
hand.

Sometimes, the choice of a local utility function can be driven by the principled choice of a
global utility function. Perhaps the most commonly employed global utility function in the
literature is the following, motivated from information theory:

(8)

which is the mutual information between the parameter random variable Θ and the outcome
random variable Y conditional upon design d, i.e., Y |d. The mutual information is defined
in terms of two entropic measures as I(Θ; Y |d) = H(Θ) - H(Θ|Y, d) (Cover and Thomas,

1991). In this equation  is the Shannon entropy (i.e., uncertainty) of
the parameter random variable Θ and H(Θ|Y, d) = −∫p(θ|y, d) log p(θ|y, d) dθ is the
conditional entropy of Θ given the outcome random variable Y and design d (Note that the
expression log throughout this tutorial denotes the natural logarithm of base e.). As such, U
(d) in Eq. (8) measures the reduction in uncertainty about the values of the parameters that
would be provided by the observation of an experimental outcome under design d. In other
words, the optimal design is the one that extracts the maximum information about the
model’s parameters.

The information theoretic global utility function in Eq. (8) follows from setting the local
utility function as

(9)

which is the log ratio of posterior to prior probabilities of parameters. Thus, the local utility
function is set up to favor the design that results in the largest possible increase in certainty
about the model’s parameters upon an observed outcome of the experimental event.

Turning the discussion from parameter estimation to model discrimination, we can also
devise a corresponding pair of information theoretic utility functions for the purpose of
model discrimination. That is, the following global and local utility functions have an
information theoretic interpretation (Cavagnaro et al., 2010, p. 895)

(10)

where I(M; Y |d) is the mutual information between the model random variable M and the
outcome random variable conditional upon design d, Y |d. In the above equation, p(m|y, d)
is the posterior model probability of model m obtained by Bayes rule as p(m|y, d) = p(y|m,
d)p(m)/p(y|d), where p(y|m, d) = ∫p(y|θm, d)p(θm) dθm and p(y|d) = Σm p(y|m, d)p(m). Note
the similarity between these two mutual information measures and those in Eq. (8) and Eq.
(8); the parameter random variable Θ is replaced by the model random variable M. This
switch makes sense when the goal of experimentation is to discriminate among a set of
models, not among possible parameter values of a single model.
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The mutual information I(M; Y |d) is defined as H(M )-H(M |Y, d), where H(M ) is the
entropy of the model random variable M, quantifying the uncertainty about the true, data-
generating model, and H(M |Y, d) is the conditional entropy of M given Y and d. As such,
the global utility function U (d) in Eq. (10) is interpreted as the amount of information about
the true, data-generating model that would be gained upon the observation of an
experimental outcome under design d; thus, the optimal design is the one that extracts the
maximum information about the data-generating model. The corresponding local utility
function u(d, θm, ym) in the same equation is given by the log ratio of posterior to prior
model probabilities. Accordingly, the design with the largest possible increase in certainty
about model m upon the observation of an experimental outcome with design d is valued the
most. Finally, it is worth noting that by applying Bayes rule, one can express the log ratio in

an equivalent form as .

3.4 Bayesian Updating of the Optimal Design
The preceding discussion presents a framework for identifying a single optimal design. It is
straightforward to extend it to the sequential process of ADO. This is done by updating the
model and parameter priors, as depicted in Figure ??. To extend it formally, let us introduce
the subscript symbol s = {1, 2, …} to denote an ADO stage, which could be a single trial or
a sequence of trials comprising a mini-experiment, depending on how finely the
experimenter wishes to tune the design. Suppose that at stage s the optimal design  was
obtained by maximizing U (d) in Eq. (6) on the basis of a set of model and parameter priors,
ps(m) and ps(θm) with m = {1, 2, …, K}, respectively. Suppose further that a mini-
experiment with human participants was subsequently carried out with design , and an
outcome vector zs was observed. The observed data are used to update the model and
parameter priors to the posteriors by Bayes rule (e.g., Gelman et al., 2004; Cavagnaro et al.,
2010) as

(11)

where m = {1, 2, …, K}. In this equation,  denotes the Bayes factor defined as
the ratio of the marginal likelihood of model k to that of model m, specifically,

(12)

The resulting posteriors in Eq. (11) are then used as the “priors” to find an optimal design

 at the next stage of ADO, again using the same equation in (6) but with s = s + 1.

To summarize, each ADO stage involves the execution of the design optimization,
experiment, and Bayesian updating steps in that order, as illustrated in Figure ??. This
adaptive and sequential ADO procedure continues until an appropriate stopping criterion is
met. For example, the process may stop whenever one of the parameter posteriors is deemed
to be “sufficiently peaked” around the mean in parameter estimation, or in model
discrimination, whenever posteriors exceed a pre-set threshold value (e.g., p(m) > 0.95).
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3.5 Computational Methods
To find the optimal design d* in Eq. (5) on each stage of ADO entails searching for a
solution in high dimensional design space. Since the equation cannot be solved analytically,
the search process involves alternating between proposing a candidate solution and
evaluating the objective function for the given solution. The optimization problem is further
exacerbated by the fact that the global utility function, which is defined in terms of a
multiple integral over the data and parameter spaces, has in general no easy-to-evaluate,
closed-form expression, requiring the integral to be evaluated numerically. This is a highly
nontrivial undertaking, computationally speaking. We discuss two numerical methods for
solving the design optimization problem.

3.5.1 Grid Search—Grid search is an intuitive, heuristic optimization method in which the
design space is disretized into a finite number of mutually disjoint partitions of equal
volumes. The global utility function is evaluated for each partition one at a time,
exhaustively, and the partition with the largest global utility value is chosen as the optimal
design.

The global utility is estimated numerically using a Monte Carlo procedure. To show how,
suppose that we wish to evaluate the utility function at design dg. Given a particular design
dg, this is done by first drawing a large number of Monte Carlo triplet samples, (k, θk, yk)’s,
from the model prior, parameter prior, and sampling distribution, respectively, and then
estimating the global utility in Eq. (6) as a sample average of the local utility as

(13)

for large N (e.g., N = 104). In the above equation, k(i) (= {1, 2, …, K}) is the ith model
index sampled from the model prior p(m), θk(i)(i) is the ith sample drawn randomly from the
parameter prior p(θk(i)) of model k(i), yk(i)(i) is the i-th data sample from the probability
distribution p(yk(i)|θk(i)(i), dg ) of model k(i) given parameter θk(i)(i) and design dg.

This way, the approximate numerical estimate in Eq. (13) is evaluated for each design in the
discretized design space. To be concrete, consider a five-dimensional design vector d = (d1,
d2, …, d5), where each di is a point in the [0, 1] interval. The design space can be discretized
into a finite grid consisting of ten equally spaced values for each dimension (e.g., d1 = {0.05,
0.15, …, 0.95}. This yields 105 design points on which the computation in Eq. (13) must be
performed. An algorithmic sketch of the grid search algorithm is shown in Figure ??.

It is important to note that integral forms of the local utility function, such as the form in Eq.
(10), cannot be evaluated directly in general. In such cases, each value of the local utility
function u(dg, θk(i)(i), yk(i)(i)) in Eq. (13) must itself be estimated by another Monte Carlo
method, thereby introducing an additional computational cost.

To summarize, grid search, though simple and intuitive, is an expensive optimization
algorithm to apply, especially for higher dimensional problems. This is because as the
dimensionality of the design increases, the number of discretized points necessary to
evaluate grows exponentially, which is a problem in statistics known the curse of
dimensionality (Bellman, 2003).

3.5.2 Sequential Monte Carlo Search—The grid search based optimization algorithm
discussed in the preceding section requires an exhaustive and systematic search of the design
space for an optimal design, and thus becomes increasingly computationally intractable as
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the dimension of the space grows large. For large design spaces, it is preferable to use an
“intelligent” optimization algorithm that mitigates the curse of dimensionality by exploring
the space selectively and efficiently, focusing the search on the most promising regions that
are likely to contain the optimal solution. In this section we introduce one such method
known as sequential Monte Carlo (SMC) search.

SMC, or particle filtering (Doucet et al., 2001), is a Monte Carlo method for simulating a
high-dimensional probability distribution of arbitrary shape. SMC is a sequential analogue
of the Makov chain Monte Carlo (MCMC) algorithm in statistics (Robert and Casella, 2004)
and consists of multiple MCMC chains, called particles, that are run in parallel with
information exchange taking place among the particles periodically. Further, the interactions
between the individual particles evolve over time in a nature-inspired, genetic algorithmic
process.

SMC can be adapted to solve the design optimization problem in Eqs. (5 – 6), as shown in
Müller et al. (2004) and Amzal et al. (2006). The basic idea of SMC-based design
optimization is to regard the design variable d as a random variable, treat U (d) as a
probability distribution, and then recast the problem of finding the optimal design as a
simulation-based sampling problem with U (d) as the target probability distribution. The
optimal design is then obtained as the design value (d*) that corresponds to the highest peak
of the target probability distribution.

Figure ?? illustrates the SMC-based search method for design optimization. To show how
the method works, let us pretend that the solid curve in the top graph of the figure represents
the probability distribution U (d) plotted against the span of designs d. The plot shows that
the optimal design d* corresponding to the highest peak of U (d) is located at about 150.
Now, suppose that we draw random samples from the distribution. This is where SMC is
necessary. It allows us to generate random samples from virtually any distribution without
having to determine its normalizing constant. Shown also in the top panel is a histogram of
2000 such random samples. Note that the histogram closely approximates the target
distribution, as it should.

We have not yet solved the design optimization problem. Note that with SMC, we only
collect random samples of the design variable, but without their corresponding utility values.
Consequently, the challenge is to identify, from the collected SMC samples, the one with the
highest utility as the optimal design. One simple way to solve this challenge is to have all or
most of the random samples clustered around the optimal design point. This is done by
“sharpening” the distribution U (d) using simulated annealing (Kirkpatrick et al., 1983).
That is, instead of sampling from the distribution U (d), we would sample from an
augmented distribution U (d)J for some positive integer J > 1. The solid curve in the middle
panel of Figure ?? is one such distribution, with J = 5. Notice how much more peaked it is
than the original distribution U (d). Shown under the curve is a histogram of 2000 random
samples drawn from U (d)5, again using SMC. As the logic goes, if we keep raising the
value of J, which is often called the inverse annealing temperature (i.e., J = 1/T ) in the
literature, then for some large J, the corresponding augmented distribution U (d)J would
have just one, most-prominent peak. This is indeed what is shown in the bottom panel of the
figure for J = 35. Note that the only peak of the distribution is above the optimal point d* =
150, and further, that virtually all of the 2,000 samples drawn from the augmented
distribution are now clustered around the optimal design. Once we get to this point, we can
then estimate the optimal design point as a simple average of the sampled design values, for
example.
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In practice, it could be prohibitively difficult to sample directly from U (d) or its augmented
distributions U (d)J in the algorithm described above. This is because the application of
SMC necessarily requires the ability to routinely and quickly calculate the value of U (d) for
any value of the design variable d. The global utility function, however, takes the form of a
multiple integral, which is generally not amenable to direct calculation.

To address this challenge, Müller has proposed an ingenious computational idea that makes
it possible to draw random samples from U (d) in Eq. (6) using SMC, but without having to
evaluate the multiple integral directly (Müller, 1999). The key idea is to define an auxiliary
probability distribution h(·) of the form

(14)

where α (> 0) is the normalizing constant of the auxiliary distribution. Note that for the trick
to work, the local utility function u(d, θm, ym) must be non-negative for all values of d, θm,
and ym so that h(·) becomes a legitimate probability distribution. It is then straightforward to
show that by construction, the global utility function U(d) is nothing but (up to a
proportionality constant) the marginal distribution h(d) that is obtained by marginalizing
h(d, {m}, {ym}, {θm}) with respect to all of its variables, except for the design variable d
(see Cavagnaro et al., 2010, p. 892), in other words, .

Having defined the auxiliary distribution h(·) in Eq. (14), let us return to the SMC based
optimization method. This revised method works much the same way except for one
significant modification: instead of simulating U (d), we simulate the whole auxiliary
distribution h(d, {m}, {ym }, {θm}). This means that using SMC along with simulated
annealing, we first collect a large number (e.g., 105) of random draws {d, {m}, {ym},
{θm}}’s from the auxiliary distribution, and then, from the sample, we empirically estimate
the desired distribution U (d) by keeping only d’s but discarding all the rest (i.e., {m}’s,
{ym}’s, {θm}’s). This way, instead of directly simulating the target distribution U (d), which
is generally not possible, we achieve the same goal indirectly by way of the auxiliary
distribution h(d, ·), which is much easier to simulate. The SMC search algorithm is shown in
Figure ??.2

Before closing this section, we briefly discuss a few technical aspects of implementing the
SMC based design optimization algorithm.

First, regarding the inverse annealing temperature J, generally speaking, the inverse
temperature (J) should be raised rather slowly over a series of SMC iteration steps (e.g.,
Bölte and Thonemann, 1996). For example, one may employ an annealing schedule function
of the form ρ(t) = a log(b * t + c) (a, b, c > 0), where t denotes the SMC iteration number,
and a, b and c are the scaling parameters to be tuned for the given design optimization
problem.

Second, in SMC search, the decision as to when to stop the search process must be made.
This can often be achieved through visual inspection of the current SMC sample of designs.
If almost all of the sampled designs are highly clustered around one another, this may be an
indication that the SMC search process has converged to a solution. Formally, one can base
the decision on some quantitative criterion. For example, one may define a “peakedness”

2The C++ source code that implements the SMC search algorithm is available for download from the web http://faculty.psy.ohio-
state.edu/myung/personal/do.html.
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measure, δ(S), that assesses the extent to which a sample of random draws d’s, denoted by
S, is judged to be drawn from a highly peaked and unimodal probability distribution,
appropriately defined. By construction, one may define δ(S) to be non-negative and real-
valued such that the higher its value, the more peaked the underlying distribution.

For further implementation details of SMC, the interested reader is directed to Andrieu et al.
(2003), an excellent tutorial on SMC in particular and MCMC in general. The reader may
also find it useful to consult Myung and Pitt (2009, Appendix A), which provides greater
detail about the iterative steps of SMC-based design optimization.

3.6 Implementation of ADO-based Experiments
While ADO takes much of the guesswork out of designing an experiment, implementation
of an ADO-based experiment still requires several decisions to be made. One such decision
is the length of each mini-experiment. At one extreme, each mini-experiment could consist
of just one trial. In this case, model and parameter estimates would be updated after each
trial, and the DO step after each trial would consist in finding the design for the next trial. At
the other extreme, the entire experiment could be one mini-experiment. In this case, a set of
jointly optimal stimuli would be found prior to collecting any data, and Bayesian updating
would only be done after all data were collected.

There are several, practical tradeoffs involved in deciding on the length of each mini-
experiment. One on hand, more frequent Bayesian updating means that information gained
from each observation is utilized more quickly and more efficiently. From that standpoint, it
would be best to make each mini-experiment as short as possible. On the other hand, since
each DO step only looks forward as far as the next mini experiment, the shorter each mini-
experiment is, the more myopic the DO step is. For example, if the next mini-experiment
consists of just trial then the DO step considers designs for the next trial independently of
any other future trials that may occur. In contrast, when the next mini-experiment includes
several trials, the DO step considers the designs for those trials simultaneously, and finds
designs that are jointly optimal for the next mini-experiment. One should also consider that
this joint optimization problem is more computationally demanding, and hence slower, than
the single-design optimization problem. This tradeoff is illustrated more concretely in the
next section, with two examples of ADO-based experiments.

Another important decision to make before implementing ADO is which prior distributions
to use. The ideal approach would be to use informative priors that accurately reflect
individual performance. Such priors could potentially be derived from pilot testing, general
consensus in the field, or the results of other experiments in the literature. The prior drives
the selection of stimuli in the initial stages of the experiment, but since the parameter
distributions are updated sequentially, the data will quickly trump all but the most
pathological prior distributions. Therefore, using informative priors is helpful but not
essential to implementing ADO. In the absence of reliable information from which to
construct an informative prior, a vague, noninformative prior that does not give appreciably
different densities to those regions of the parameter space where there is a reasonable fit
may be used instead. In this regard, the reader is directed to Kass and Wasserman (1996)
which provides an excellent review of the state of the art on the construction of
noninformative priors.

One way to assess the adequacy of the prior assumptions is through simulation experiments.
In a simulation experiment with ADO, optimal designs are derived from the global utility
function based parameter estimates as usual, but rather than collecting data from human
subjects at those designs, the data are simulated from one of the models under consideration.
More precisely, the simulation starts with equal model probabilities and some form of prior

Myung et al. Page 14

J Math Psychol. Author manuscript; available in PMC 2014 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parameter estimates (either informative or uninformative), and an optimal design is sought
for the first mini-experiment. After data are generated, model probabilities and parameter
estimates are updated, and the process is repeated. The idea of the simulation is to verify that
ADO can correctly identify the data-generating model in a reasonable amount of time (in
terms of both the number of trials, and computation time). Separate simulations should be
run with each model under consideration as the data-generating model to verify that the true,
data-generating model can always be uncovered. Biases in the priors may then be assessed
by examining the posterior model probabilities. For example, if the posterior probability of
that model rises rather sharply in the initial stages of the experiment even when it is not the
true data-generating model, this might be an indication that the priors are biased toward a
particular model. If the bias is strong enough then it may be impossible to overcome in a
reasonable number of trials. Besides helping to diagnose biases in the priors, such
simulations are also helpful for planning how many trials are likely to be necessary to
achieve the desired level of discrimination among the models under consideration.

One other practical consideration in implementing an ADO-based experiment is how to
program it. Since the ADO algorithm is computationally intensive, speed is paramount.
Therefore, it is recommended to use an efficient, low-level programming language such as C
++. Our lab group found a 10-fold speed increase upon translating the code from Matlab to
C++.3 However, the entire experiment does not need to be programmed in the same
language. We have found it effective to program the graphical user interface (GUI) in a
higher level language such as PERL or Matlab, and have the GUI call on a C++ executable
to do the computational heavy lifting of the DO step and the Bayesian updating. One
advantage of this split is that it is easily adapted to different hardware architectures. For
example, the GUI can be run simultaneously on several client machines, each of which send
their data to a dedicated server, which then sends the optimal designs back to the clients.

4 Illustrative Example
To further illustrate how ADO works, we will demonstrate its implementation in a
simulation experiment intended to discriminate between power and exponential models of
retention. The effectiveness of ADO for discriminating between these models has been
demonstrated in simulation (Cavagnaro et al., 2010) and in experiments with human
participants (Cavagnaro et al., 2009, 2011). The intention of this demonstration is provide an
easy to understand companion to the technical and theoretical details of the previous section.

The power and exponential functions of retention, as given earlier, are p = a(t + 1)−b and p =
ae−bt respectively, where p is the probability of correct recall given the time t between study
and test and a and b are non-negative parameters. The power and exponential models of
retention are defined by equipping these decay functions with the binomial likelihood
function that was defined in Eq. (2).4 Many experiments have been performed to
discriminate between these models, but the results have been ambiguous at best (see Rubin
and Wenzel, 1996, for a thorough review).

Models of retention aim to describe retention rates across a continuous time interval (e.g.,
between zero and forty seconds), but due to practical limitations, experimenters can only test
retention at a select handful of specific times. In a typical experiment, data are collected
through a sequence of trials, each of which assesses the retention rate at a single time point,
called the lag time. The lag time, as a design variable in the experiment, is the length of time

3Since the conversion, many of Matlab’s base functions have been vectorized, so the speed-up may be less dramatic now.
4Although more sophisticated models have been shown to give fuller accounts of retention (e.g., Oberauer and Lewandowsky, 2008),
the simplicity of the power and exponential functions along with the difficulty of discriminating between them provides an ideal
setting in which to illustrate ADO.
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between the study phase, in which a participant is given a list of words to memorize, and the
test phase, in which retention is assessed by testing how many words the participant can
correctly recall from the study list. In the retention literature, the number of lag times and
their spacing have varied between experiments. Some have used as few as 3, others as many
as 15. Some have used uniform spacing (e.g., d = {1,2,3,4,5}), but most use something close
to geometry spacing (e.g., d = {1,2,4,8,16}). The use of a geometric spread of retention
intervals is an informed choice that has evolved through many years of first-hand experience
and trial-and-error.

Since the lag times are numerical and they fit directly into the likelihood functions of the
models under investigation, they are an ideal candidate to be optimized by ADO. Unlike
what has been done in the majority of studies in the literature, an experiment using ADO
does not rely on a predetermined spacing of the lag times. Rather, the lag times are derived
on-the-fly, for each participant individually, based on each participant’s performance at the
preceding lag times.

To illustrate, we will walk through a simulation experiment in which ADO is used to select
lag times for discriminating between power and exponential models of retention. The
simulation will consist of ten adaptive stages, each consisting of 30 trials, where each trial
represents an attempt to recall one study item after a specified lag time. The lag will be
selected by ADO, and will be fixed across trials within the same stage. To match the
practical constraints of an actual experiment, only integer-valued lag times between 1 and 40
seconds will be considered. Recall of study items at the lag times selected by ADO will be
simulated by the computer. Specifically, the computer will generate the number of correctly
recalled study items by simulating 30 Bernoulli trials with probability of success p = 0.80(t
+ 1)−0.40. In other words, the data-generating model will be the power model with a = 0.80
and b = 0.40.

The data-generating model is depicted in Figure ??. Since the model is probabilistic, even
with fixed parameters, it is depicted with a heat map in which darker colors indicate regions
of higher probability. For example, the heat map shows that at a lag time of 40 seconds, the
model is most likely to generate 6 or 7 correct responses out of 30 trials, and the model is
extremely unlikely to generate less than 3 or more than 10 correct responses.

Foreknowledge of the data-generating model will not be programmed into the ADO part of
the simulation. Rather, ADO must learn the data-generating model by testing at various lag
times. Thus, ADO will be initialized with uninformative priors that will be updated after
each stage based on the data collected in that stage. If the data clearly discriminate between
the two models then the posterior probability of the power model should rise toward 1.0 as
data are collected, indicating increasing confidence that the data-generating process is a
power model. On the other hand, if the data do not clearly discriminate between the two
models then the model probabilities should both remain near 0.5, indicating continued
uncertainty about which model is generating the data.

The initial predictions of ADO about the data-generating process can be seen in Figure ??.
The figure shows heat maps for both the power model (left) and exponential model (right),
as coded in the following priors: a ~ Beta(2,1), b ~ Beta(1,4) for the former, and a ~
Beta(2,1), b ~ Beta(1,80) for the latter. Since ADO does not know which model is
generating the data, it assigns an initial probability of 0.5 to each one. In addition, since
ADO begins with uninformative priors on parameters, the heat maps show that almost any
retention rate is possible at any lag time. As data are collected in the experiment, the
parameter estimates should become tighter and the corresponding heat maps should start to
look as much like that of the data-generating model as the functional form will allow.
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With the framework of the experiment fully laid out, we are ready to begin the simulation.
To start, ADO searches for an optimal lag time for first stage. Since there are only 40
possible lag times to consider (the integers 1 to 40), the optimal one can be found by directly
evaluating Eq. (10) at each possible lag time.5 Doing so reveals that the lag time with the
highest expected utility is t = 7, so it is adopted as the design for the first stage. At t = 7, the
power model with a = 0.8 and b = 0.4 yields p = 0.348 (i.e., a 34.8% chance of recalling
each study item) so 30 Bernoulli trials are simulated with p = 0.348. This yields the first data
point: n = 12 successes out of 30 trials. Next, this data point is plugged into Eqs (11) and
(12) to yield posterior parameter probabilities and posterior model probabilities,
respectively, which will then be used to find the optimal design for the 30 trials in the
second stage.

Another perspective on this first stage of the ADO experiment can be seen in Figures ??
and ??. In Figure ??, the optimal lag time lag time (t = 7) is highlighted with a blue
rectangle on each of the heat maps. One indication as to why ADO identified this lag time as
optimal for this stage is that t = 7 seems to be where the heat maps of the two models differ
the most: the most likely number of correct responses according to the power model is
between 10 and 15 while the most likely number of correct responses under the exponential
model is between 20 and 25. When data were generated at t = 7, the result was 12 correct
responses, which is more likely under the power model than under the exponential model.
Accordingly, the posterior probability of the power model rises to 0.642, while the posterior
probability of the exponential model drops to 0.358. These probabilities are shown in
Figure ??, which gives a snapshot of the state of the experiment at the start of the second
stage. The white dot in each of the heat maps in Figure ?? depicts the data point from the
first stage, and the heat maps themselves show what ADO believes about the parameters of
each model after updating on that data point. What’s notable is that both heat maps have
converged around the observed data point. Importantly, however, this convergence changes
both models’ predictions across the entire range of lag times. The updated heat maps no
longer differ much at t = 7, but they now differ significantly at t = 1. Not coincidentally,
ADO finds that t = 1 is the optimal lag time for the next stage of the experiment.

The simulation continued for ten ADO stages. In a real experiment, the experimenter could
review a snapshot like Figure ?? after each stage in order to monitor the progress of the
experiment. The experimenter could also add a human element to the design process by
choosing a different design than that recommended by ADO for the next stage. For now, we
will skip to a snapshot of the experiment after all ten stages have been completed. In
Figure ??, the blue dots represent the ten data points that were observed, and the heat maps
represent the best estimates of each model based on those ten data points. It is clear from the
heat maps that the exponential model can not match the observed data pattern well, even at
its best fitting parameters. On the other hand, the power model can fit the data perfectly (as
it should, since it generated the data). Accordingly, the posterior probability of the power
model is greater than 0.999, indicating that the data clearly identify it as the data generating
model. Moreover, the heat map estimate of the power model closely resembles the heat map
of the data-generating model in Figure ??, indicating that the parameters have converged to
the correct values. Figure ?? shows a typical posterior model probability curve obtained
from the ADO simulation experiment.

5For a more complex design space (e.g., sets of 3 jointly optimal lag times) one would need to use a more advanced search algorithm
such as the SMC search described in Section 3.5.2. For example, Cavagnaro et al. (2009) used SMC to find jointly optimal sets of
three lag times in each stage of testing in their implementation of ADO in a retention experiment.
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5 Limitations
While ADO has the potential to significantly improve the efficiency of data collection in
psychological sciences, it is important that the reader is aware of the assumptions and
limitation of the methodology. First of all, not all design variables in an experiment can be
optimized in ADO. They must be quantifiable in such a way that the likelihood function
depends explicitly on the values of the design variables being optimized (Myung and Pitt,
2009, p. 511). Consequently, ADO is not applicable to variables such as type of
experimental task (word reading vs. lexical decision) and nominal variables (e.g., words vs.
pictures). No statistical methodology currently exists that can handle such non-quantitative
design variables.

Another limitation of the ADO methodology is the assumption that one of the models under
consideration is the true, data-generating model. This assumption, obviously, is likely to be
violated in practice, given that our models are merely imperfect representations of the real
process under study.6 Ideally, one would like to optimize an experiment for an infinite array
of models representing a whole spectrum of realities; no implementable methodology
currently exists that can handle the problem of this scope.

The ADO algorithm is myopic in the sense that the optimization at each stage of
experimentation is performed as if the current experiment is the last one to be conducted. In
reality, however, the global optimality of the current designs depend upon the outcomes of
future experiments, as well as those of the previous experiments. This sequential
dependency of optimal designs is not considered in the present ADO algorithm, due to the
huge computational resources needed to take into account the effect. Recent advances in
approximate dynamic programming offers a potentially promising solution to overcome this
challenge (e.g., Powell, 2007).

Perhaps the most challenging problem is extending the ADO framework to a class of
simulation-based models (e.g., Reder et al., 2000; Polyn et al., 2009) that are defined in
terms of a series of steps to be simulated on computer without explicit forms of likelihood
functions –a prerequisite to implement the current ADO algorithm. Given the popularity of
these types of models in cognitive science, ADO will need to be expanded to accommodate
them, perhaps using a likelihood-free inference scheme known as Approximate Bayesian
Computation (e.g., Beaumont et al., 2009; Turner and Van Zandt, 2012).

6 Conclusions
In this article, we provided a tutorial exposition of adaptive design optimization (ADO).
ADO allows users to intelligently choose experimental stimuli on each trial of an experiment
in order to maximize the expected information gain provided by each outcome. We began
the tutorial by contrasting ADO against the traditional, non-adaptive heuristic approach to
experimental design, then presented the nuts and bolts of the practical implementation of
ADO, and finally, illustrated an application of the experimental technique in simulated
experiments to discriminate between two retention models.

Use of ADO requires becoming comfortable with a different style of experimentation.
Although the end goal, whether it be parameter estimation or model discrimination, is the
same as traditional methods, how you get there differs. The traditional method is a group

6A violation of this assumption, however, may not be critical in light of the predictive interpretation of Bayesian inference. That is, it
has been shown that the model with the highest posterior probability is also the one with the smallest accumulative prediction error
even when none of the models under consideration is the data-generating model (Kass and Raftery, 1995; Wagenmakers et al., 2006;
van Erven et al., 2012).
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approach that emphasizes seeing through individual differences to capture the underlying
regularities in behavior. This is achieved by ensuring stable performance (parameters)
through random and repeated presentation of stimuli and testing sufficient participants
(statistical power). Data analysis compares the strength of the regularity against the amount
of noise contributed by participants. There is no escaping individual variability, so ADO
exploits it by presenting a stimulus whose information value is likely to be greatest for that
given participant and trial, as determined by optimization of an objective function. This
means that each participant will likely receive a different subset of the stimuli. In this regard,
the price of using ADO is some loss of control over the experiment; the researcher turns
over stimulus selection to the algorithm, and places faith in it to achieve the desired ends.
The benefit is a level of efficiency that cannot be achieved without the algorithm. In the end,
it is the research question that should drive choice of methodology. ADO has many uses, but
at this point in its evolution, it would be premature to claim it is always superior.

In conclusion, the advancement of science depends upon accurate inference. ADO, though
still in its infancy, is an exciting new tool that holds considerable promise in improving
inference. By combining the predictive precision of the computational models themselves
and the power of state of the art statistical computing techniques, ADO can make
experimentation informative and efficient, thereby making the tool attractive on multiple
fronts. ADO takes full advantage of the design space of an experiment by probing
repeatedly, in each stage, those locations (i.e., designs) that should be maximally
informative about the model(s) under consideration. In time-sensitive and resource-intensive
situations, ADO’s efficiency can reduce the cost of equipment and personnel. This potent
combination of informativeness and efficiency in experimentation should accelerate
scientific discovery in cognitive science and beyond.

Acknowledgments
This research is supported by National Institute of Health Grant R01-MH093838 to J.I.M and M.A.P. The C++
code for the illustrative example is available upon request from authors.

References
Akaike, H. Information theory and an extension of the maximum likelihood principle. In: Petrov, BN.;

Caski, F., editors. Proceedings of the Second International Symposium on Information Theory.
Budapest: Akademiai Kiado; 1973. p. 267-281.

Amzal B, Bois F, Parent E, Robert C. Bayesian-optimal design via interacting particle systems. Journal
of the American Statistical Association. 2006; 101(474):773–785.

Andrieu C, DeFreitas N, Doucet A, Jornan MJ. An introduction to MCMC for machine learning.
Machine Learning. 2003; 50:5–43.

Atkinson, A.; Donev, A. Optimum Experimental Designs. Oxford University Press; 1992.

Atkinson A, Federov V. Optimal design: Experiments for discriminating between several models.
Biometrika. 1975; 62(2):289.

Beaumont MA, Cornuet JM, Marin JM, Robert CP. Adaptive approximate Bayesian computation.
Biometrika. 2009; 52:1–8.

Bellman, RE. Dynamic Programming (reprint edition). Dover Publications; Mineola, NY: 2003.

Berry DA. Bayesian clinical trials. Nature Reviews. 2006; 5:27–36.

Bölte A, Thonemann UW. Optimizing simulated annealing schedule with genertic programming.
European Journal of Operational Research. 1996; 92:402–416.

Box G, Hill W. Discrimination among mechanistic models. Technometrics. 1967; 9:57–71.

Burnham, KP.; Anderson, DR. Model Selection and Multi-Model Inference: A Practical Information-
Theoretic Approach. 2. Springer; New York, NY: 2010.

Myung et al. Page 19

J Math Psychol. Author manuscript; available in PMC 2014 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Carlin, HP.; Louis, TA. Bayes and empirical Bayes methods for data analysis. 2. Chapman & Hall;
2000.

Cavagnaro D, Gonzalez R, Myung J, Pitt M. Optimal decision stimuli for risky choice experiments:
An adaptive approach. Management Science. 2013a; 59(2):358–375.

Cavagnaro D, Pitt M, Gonzalez R, Myung J. Discriminating among probability weighting functions
using adaptive design optimization. Journal of Risk and Uncertainty. 2013b in press.

Cavagnaro D, Pitt M, Myung J. Model discrimination through adaptive experimentation. Psychonomic
Bulletin & Review. 2011; 18(1):204–210. [PubMed: 21327352]

Cavagnaro DR, Myung JI, Pitt MA, Kujala JV. Adaptive design optimization: A mutual information
based approach to model discrimination in cognitive science. Neural Computation. 2010; 22(4):
887–905. [PubMed: 20028226]

Cavagnaro DR, Pitt MA, Myung JI. Adaptive design optimization in experiments with people.
Advances in Neural Information Processing Systems. 2009; 22:234–242.

Chaloner K, Verdinelli I. Bayesian experimental design: A review. Statistical Science. 1995; 10(3):
273–304.

Cobo-Lewis AB. An adaptive psychophysical method for subject classification. Perception &
Psychophysics. 1997; 59:989–1003. [PubMed: 9360473]

Cohn D, Atlas L, Ladner R. Improving generalization with active learning. Machine Learning. 1994;
15(2):201–221.

Cohn D, Ghahramani Z, Jordan M. Active learning with statistical models. Journal of Artificial
Intelligence Research. 1996; 4:129–145.

Cover, T.; Thomas, J. Elements of Information Theory. John Wiley & Sons, Inc; 1991.

Doucet, A.; de Freitas, N.; Gordon, N. Sequential Monte Carlo Methods in Practice. Springer; 2001.

Gelman, A.; Carlin, J.; Stern, H.; Rubin, D. Bayesian Data Analysis. Chapman & Hall; 2004.

Gill, J. Bayesian Methods: A Social and Behavioral Sciences. 2. Chapman and Hall/CRC; New York,
NY: 2007.

Grünwald, PD. A tutorial introduction to the minimum description length principle. In: Grünwald, P.;
Myung, IJ.; Pitt, MA., editors. Advances in Minimum Description Length: Theory and
Applications. The M.I.T. Press; 2005.

Hambleton, RK.; Swaminathan, H.; Rogers, HJ. Fundamentals of Item Response Theory. Sage
Publications; Newbury Park, CA: 1991.

Jeffreys, H. Theory of Probability. Oxford University Press; Oxford, UK: 1961.

Kass RE, Raftery AE. Bayes factors. Journal of the American Statistical Association. 1995; 90:773–
795.

Kass RE, Wasserman L. The selection of prior distributions by formal rules. Journal of the American
Statistical Association. 1996; 91(435):1343–1370.

Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing. Science. 1983; 220:671–680.
[PubMed: 17813860]

Kontsevich LL, Tyler CW. Bayesian daptive estimation of psychometric slope and threshold. Vision
Research. 1999; 39:2729–2737. [PubMed: 10492833]

Kreutz C, Timmer J. Systems biology: Experimental design. FEBS Journal. 2009; 276:923–942.
[PubMed: 19215298]

Kruschke, JK. Doing Bayesian Data Analysis: A Tutorial with R and BUGS. AcademiC Press; New
York, NY: 2010.

Kujala J, Lukka T. Bayesian adaptive estimation: The next dimension. Journal of Mathematical
Psychology. 2006; 50(4):369–389.

Lesmes L, Jeon ST, Lu ZL, Dosher B. Bayesian adaptive estimation of threshold versus contrast
external noise functions: The quick T vC method. Vision Research. 2006; 46:3160–3176.
[PubMed: 16782167]

Lesmes L, Lu ZL, Baek J, Dosher B. Bayesian adaptive estimation of the contrast sensitivity function:
The quick SCF method. Journal of Vision. 2010; 10:1–21. [PubMed: 20377294]

Lewi J, Butera R, Paninski L. Sequential optimal design of neurophysiology experiments. Neural
Computation. 2009; 21:619–687. [PubMed: 18928364]

Myung et al. Page 20

J Math Psychol. Author manuscript; available in PMC 2014 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lindley D. On a measure of the information provided by an experiment. Annals of Mathematical
Statistics. 1956; 27(4):986–1005.

Loredo, TJ. Bayesian adaptive exploration. In: Erickson, GJ.; Zhai, Y., editors. Bayesian Inference and
Maximum Entropy Methods in Science and Engineering: 23rd International Workshop on
Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Vol. 707.
American Institute of Physics; 2004. p. 330-346.

Müller, P. Simulation-based optimal design. In: Berger, JO.; Dawid, AP.; Smith, AFM., editors.
Bayesian Statistics. Vol. 6. Oxford, UK: Oxford University Press; 1999. p. 459-474.

Müller P, Sanso B, De Iorio M. Optimal Bayesian design by inhomogeneous Markov chain simulation.
Journal of the American Statistical Association. 2004; 99(467):788–798.

Myung JI, Pitt MA. Optimal experimental design for model discrimination. Psychological Review.
2009; 58:499–518. [PubMed: 19618983]

Nelson J. Finding useful questions: On Bayesian diagnosticity, probability, impact, and information
gain. Psychological Review. 2005; 112(4):979–999. [PubMed: 16262476]

Nelson J, McKenzie CRM, Cottrell GW, Sejnowski TJ. Experience matters: Information acquisition
optimizes probability gain. Psychological Science. 2011; 21(7):960–969. [PubMed: 20525915]

Oberauer K, Lewandowsky S. Forgetting in immediate serial recall: Decay, temporal distinctiveness,
or interference? Psychological Review. 2008; 115(3):544–576. [PubMed: 18729591]

Pitt MA, Myung IJ, Zhang S. Toward a method of selecting among computational models of
cognition. Psychological Review. 2002; 190(3):472–491. [PubMed: 12088241]

Polyn SM, Norman KA, Kahana MJ. A context maintenance and retrieval model of organizational
processes in free recall. Psychological Review. 2009; 116:129–156. [PubMed: 19159151]

Powell, WB. Approximate Dynamic Programming: Solving the Curses of Dimensionality. John Wiley
& Sons; Hoboken, New Jersey: 2007.

Reder LM, Nhouyvanisvong A, Schunn CD, Avyers MS, Angstadt P, Hiraki K. A mechanistic account
of the mirror effect for word frequency: A computational model of remember-know judgments in a
continuous recognition paradigm. Journal of Experimental Psychology: Learning, Memory and
Cognition. 2000; 26:294–320.

Rissanen J. Modeling by shortest data description. Automatica. 1978; 14:461–471.

Robert, CP. The Bayesian Choice: From Decision-Theoretic Foundations to Computational
Implementation. 2. Springer; New York, NY: 2001.

Robert, CP.; Casella, G. Monte Carlo Statistical Methods. 2. Springer; New York, NY: 2004.

Rubin D, Wenzel A. One hundred years of forgetting: A quantitative description of retention.
Psychological Review. 1996; 103(4):734–760.

Sutton, RS.; Barto, AG. Reinforcement Learning: An Introduction. MIT Press; Cambridge,
Massachusetts: 1998.

Tang, Y.; Young, C.; Myung, JI.; Pitt, MA.; Opfer, J. Optimal inference and feedback for
representational change. In: Ohlsson, S.; Catrambone, R., editors. Proceedings of the 32nd Annual
Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society; 2010. p.
2572-2577.

Turner B, Van Zandt T. A tutorial on approximate bayesian computation. Journal of Mathematical
Psychology. 2012; 56(2):69–85.

van der Linden, WJ.; Glas, CAW. Computerized Adaptive Testing. Kluwer Academic Publishers;
Boston, MA: 2000.

van Erven T, Grünwald PD, de Rooji S. Catching up faster by switching sooner: A predictive approach
to adaptive estimation with an application to the AIC-BIC Dilemma. Journal of the Royal
Statistical Society, Series B. 2012; 74:361–397.

Vul E, Bergsma J, MacLeod IA. Functional adaptive sequential testing. Seeing and Perceiving. 2010;
23:483–513. [PubMed: 21466137]

Wagenmakers EJ, Grünwald PD, Steyvers M. Accumulative prediction error and the selection of time
series models. Journal of Mathematical Psychology. 2006; 50:149–166.

Wathen JK, Thall PF. Bayesian adaptive model selection for optimizing group sequential clinical
trials. Statistics in Medicine. 2008; 27:5586–5604. [PubMed: 18752257]

Myung et al. Page 21

J Math Psychol. Author manuscript; available in PMC 2014 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Weiss DJ, Kingsbury GG. Application of computerized adaptive testing to educational problems.
Journal of Educational Measurement. 1984; 21:361–375.

Wixted J, Ebbesen E. On the form of forgetting. Psychological Science. 1991; 2(6):409–415.

Myung et al. Page 22

J Math Psychol. Author manuscript; available in PMC 2014 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• Introduces the reader to adaptive design optimization (ADO)

• ADO is a Bayesian framework for optimizing experimental designs

• Provides the conceptual, theoretical, and computational foundations of ADO

• Serves as practical guide to applying ADO to simple cognitive models.
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Figure 1.
Sample power (POW) and exponential (EXP) functions, generated from a narrow range of
model parameters (see text). The time intervals between 1 and 5 seconds, where the models
are the most discriminable, are indicated by the blue circles. In contrast, the green elliptic
circles indicate the time intervals (i.e., 15 – 20 seconds) that offer the least discriminability.
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Figure 2.
Schematic illustration of the traditional experimentation versus adaptive experimentation
paradigm. (a) The vertical arrow on the left represents optimization of the values of design
variables before data collection. The vertical arrow on the right represents the analysis and
modeling of the data collected, using model selection or parameter estimation methods, for
example. (b) In the adaptive experimentation paradigm, the three parts of experimentation
(design optimization, experiment, and data modeling) are closely integrated to form a cycle
of inference steps in which the output from one part is fed as an input to the next part.
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Figure 3.
Schematic illustration of the steps involved in adaptive design optimization (ADO).
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Figure 4.
The grid search algorithm.
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Figure 5.
Illustration of sequential Monte Carlo search design optimization with simulated annealing.
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Figure 6.
The SMC search algorithm.
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Figure 7.
Heat map of the data-generating model in the ADO simulation. Darker colors indicate
regions of higher probability.
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Figure 8.
Heat maps of the Power model (left) and Exponential model (right) representing ADO’s
prior estimates of each model. Darker colors indicate regions of higher probability. The lag
time of t = 7 (blue rectangle) is chosen for testing in the first stage because it is the place
where the two models differ the most, based on the priors.
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Figure 9.
Heat maps of the Power model (left) and Exponential model (right) representing ADO’s
estimates of each model after the first stage of testing (prior to the second stage). Estimates
have converged around the observed data point (white dot in each heat map). ADO selects t
= 1 (blue rectangle) for testing in Stage 2 because it is the place where the two models differ
the most, based on these updated estimates.

Myung et al. Page 32

J Math Psychol. Author manuscript; available in PMC 2014 June 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Heat maps of the Power model (left) and Exponential model (right) representing ADO’s
estimates of each model after the ten stages of testing. Both models try to fit the observed
data points (white dots) as well as possible, but the exponential model cannot do so as well
as the power model. The difference is so extreme that the power model is over 1000 times
more likely to generate this pattern of data than the exponential model.
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Figure 11.
Posterior model probability curve from a sample run of the ADO simulation experiment.
The data were generated from the power model with parameters a = 0.80 and b = 0.40. See
the text for additional details of the simulation.
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