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Abstract
We describe here the PRIMO (PRotein Intermediate Model) force field, a physics-based fully
transferable additive coarse-grained potential energy function that is compatible with an all-atom
force field for multi-scale simulations. The energy function consists of standard molecular
dynamics energy terms plus a hydrogen-bonding potential term and is mainly parameterized based
on the CHARMM22/CMAP force field in a bottom-up fashion. The solvent is treated implicitly
via the generalized Born model. The bonded interactions are either harmonic or distance-based
spline interpolated potentials. These potentials are defined on the basis of all-atom molecular
dynamics (MD) simulations of dipeptides with the CHARMM22/CMAP force field. The non-
bonded parameters are tuned by matching conformational free energies of diverse set of
conformations with that of CHARMM all-atom results. PRIMO is designed to provide a correct
description of conformational distribution of the backbone (ϕ/ψ) and side chains (χ1) for all
amino acids with a CMAP correction term. The CMAP potential in PRIMO is optimized based on
the new CHARMM C36 CMAP. The resulting optimized force field has been applied in MD
simulations of several proteins of 36–155 amino acids and shown that the root-mean-squared-
deviation of the average structure from the corresponding crystallographic structure varies
between 1.80 and 4.03 Å. PRIMO is shown to fold several small peptides to their native-like
structures from extended conformations. These results suggest the applicability of the PRIMO
force field in the study of protein structures in aqueous solution, structure predictions as well as ab
initio folding of small peptides.
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1. Introduction
Computer simulations are indispensable tools in the study of biomolecular systems,
complementing experiments. The latest generation of atomistic force fields combined with
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powerful computing platforms and/or efficient enhanced sampling and methodologies are
resulting in increasingly realistic descriptions of biomolecular dynamics. Most notables are
recent folding studies of small proteins that would have been unthinkable not long ago1,2.
However, although such studies are impressive, atomistic simulations are still several
magnitudes away from being able to effectively cover both, the spatial and temporal scales
of cellular processes. One solution to this problem is the simplification of the model that is
used to describe the biological system. This is typically accomplished by coarse-graining
(CG) to represent a given system with a reduced number of degrees of freedom vs. a
complete all-atom description. The reduction in the degrees of freedom in CG models
translates immediately into less computational demands and offers additional benefits by
allowing longer integration time steps in molecular dynamics (MD) simulations, for
example, and generating accelerated dynamics due to smoother energy landscapes. As a
result, CG models may be able to cover dramatically longer simulation times and length
scales compared to fully atomistic models.

Many CG models of varying complexity have been proposed for proteins3–7 since the
pioneering work of Levitt and Warshel8. At the beginning, most of these models were
developed with specific applications, such as study of structural features of viral capsid9,
structure and dynamics protein membrane systems10, protein structure prediction11,12,
scoring protein decoys13,14, protein-protein docking15, and protein folding studies16–20 in
mind. The resolution of CG models may range from one or a few particles per protein15–20

to near atomistic resolutions11,21,22. A popular CG representation involves one interaction
site per amino acid residue, usually located on the Cα atom23. At such a resolution, detailed
properties of specific proteins are difficult to capture, but such models are well-suited for
studying the kinetics and overall mechanisms of protein folding processes20,24. Most of
these models are highly system-specific, such as widely used Go models23, but there are also
examples of semi-transferable models with limited accuracy12. Recent examples of such
models include the following: Tozzini and McCammon25 have developed a coarse-grained
model to study the dynamics of flap opening in HIV-1 protease. In their model, each amino
acid is represented by a single bead placed on the Cα atom. The force field was
parameterized based on the Boltzmann inversion procedure. On the other hand, Brini and
van der Vegt proposed a free-energy-based coarse-graining procedure, namely conditional
reversible work (CRW)26. Here, the coarse-graining is performed at the pair level, and is
used to describe the interaction free energy between two mapped atom groups (beads)
embedded in their respective chemical environment. CRW-CG potentials are ideally suited
for studies of chemical transferability. In order to study the disordered state of proteins,
Ghavami and co-workers27 have proposed a one-bead-per-amino-acid model. In this model,
residue and sequence specific bending and torsion potentials for the bonded interactions are
extracted from Ramachandran data of the coil regions of proteins in the Protein Data Bank.
This model has been used successfully to predict the scaling relations of denatured proteins.
However, in the absence of electrostatic and hydrophobic interactions in their model, one
cannot study natively unfolded proteins under physiological conditions.

Higher resolution CG models typically involve a few interaction sites for representing the
backbone plus additional sites for the side chains. Such models are used for a broader set of
applications, including mechanistic studies and for protein structure prediction11,12,19. These
higher-resolution models have a greater potential for transferability between different
systems and different environments. The transferability of CG models becomes more likely
with generally applicable, usually physics-based potentials vs. empirical, system-specific
terms. A common recipe used in such models involves two steps: (i) the calculation of
thermodynamic, structural properties of a reference system from an atomistic simulation,
and (ii) fitting of the parameters in suitable potentials to match these properties. Recently,
many such models have been proposed and the most prominent models in this are described
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briefly in the following: In the UNRES model18,28, a polypeptide chain is represented as a
sequence of α-carbon atoms with attached united side chains and united peptide groups,
each of the latter being positioned in the middle between two consecutive Cα atoms. The
potential function of UNRES is parameterized against free energies from atomistic
polypeptide simulations in explicit water using a functional form that resembles atomistic
force fields but with additional terms. Although UNRES mostly relies on physical terms,
UNRES also contains interaction potentials that are derived from a statistical analysis of
structures in the Protein Data Bank (PDB). With UNRES, solvent effects are represented
implicitly. Applications of UNRES to date have been largely limited to de novo protein
folding16 and structure prediction29.

In the MARTINI30–33 model, four heavy atoms are represented on average by a single
interaction center. Ring-like molecules are an exception and mapped at higher resolution (up
to two-to-one). The model considers four main types of interaction sites: polar (P), nonpolar
(N), apolar (C) and charged (Q). The MARTINI model is parameterized by matching the
thermodynamic partitioning free energy of amino acid side chains between the polar and
hydrophobic phases similar to how the recent version of the GROMOS force field was
developed34. The MARTINI model is too coarse-grained to be able to accurate reflect
amino-acid specific secondary structure propensities. Therefore, a weak bias has to be added
to maintain secondary structures according to what is known from native structures. In the
MARTINI model, solvent effects are modeled explicitly with coarse-grained water or lipid
molecules. While this increases the computational complexity over other CG models, it
provides transferability between water and membrane phases. Consequently, the majority of
applications of the MARTINI force field involves membrane-interacting biomolecules, in
particular studies of the self-assembly of transmembrane proteins30 and gating mechanisms
in mechanically-gated32 and voltaged-gated33 membrane ion channels.

The OPEP11,35 (Optimized Potential for Efficient structure Prediction) model is based on a
six-bead model per amino acid where the backbone is modeled in atomistic detail (without
hydrogens) while a single centroid bead represents side chains. The implicit solvent OPEP
function is expressed as a sum of short-range (bond lengths, bond angles, improper torsions
of the side chains and the amide bonds, backbone torsions), van der Waals, and two-body as
well as four-body hydrogen-bonding interactions. The potential function was parameterized
with the main goal of finding the lowest free energy for native structures relative to non-
native decoys. The OPEP force field has been used primarily to study protein stabilities and
the folding of small peptides36 but also to the oligomerization of amyloid peptide37 and the
fast structure prediction of miniproteins38,39.

Another CG model that describes the side chain as a single interaction center was developed
by Irbäck and coworkers21,22. Each residue retains the backbone atoms Cα, C, and N as well
as the O and H of the backbone units. The side chain is represented by a Cβ only and can be
hydrophobic, hydrophilic, or absent (glycine). Bond lengths and bond angles are kept fixed
so that the internal coordinates reduce to the backbone dihedral ϕ and ψ. The energy
function of this model is simply given by the sum of a dihedral term, an excluded-volume
term, a hydrogen-bonding energy, and a potential of interaction between hydrophobic
residues. Because this model was parameterized empirically to reproduce the features of a
specific set of proteins under investigation, its application to other proteins may require a re-
adjustment of the parameters.

The Hall group has developed a four-bead (three backbone beads-N, Cα, C′ and one
minimalist side chain bead Cβ) coarse-grained model, PRIME40,41 that was used in protein
aggregation. Instead of traditional molecular dynamics, PRIME uses discrete molecular
dynamics (DMD), which is applicable to discontinuous potentials such as the hard-sphere
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and square-well potentials. The parameters were obtained by applying a perceptron-learning
algorithm and a modified stochastic learning algorithm that optimizes the energy gap
between 711 knows native states from the PDB and decoy structures generated by gapless
threading. Later, Ding et al.42 extended this model by adding one or two more additional
effective side-chain atoms. For the β-branched amino acids (Thr, Ile, and Val), two γ-beads
representing the two branches after Cβ were introduced while an additional δ-bead was
introduced for bulky amino acids (Arg, Lys, and Trp).

The multi-scale coarse-graining (MS-CG) method43,44 takes a somewhat different approach
by not relying on a pre-defined potential. Instead, atomistic force information from reference
simulations is utilized within a variational framework to systematically develop CG models
from the bottom-up for a particular biomolecular system of interest. The MS-CG approach
can be applied at various resolutions. In principle, the resulting MS-CG potential will be an
accurate representation of the optimal CG potential provided that the basis set for the
variational calculation is complete enough and that the canonical distribution of atomistic
sites is well sampled by the data set45,46. The MS-CG method has been applied to the study
of protein folding and dynamics17,43. However, the level of coarse-graining prevents the
accurate conversion of CG models to atomistic resolution. In addition, the resulting MS-CG
potentials commonly suffer from a lack of transferability.

Other recent CG models include a model by Bereau and Deserno47 for protein folding and
aggregation involves an intermediate representation with four beads per amino acid and
implicit solvent treatment and the PaLaCe (Pasi-Lavery-Ceres) model proposed by Pasi and
co-workers48. The PaLaCe model has been parameterized using Boltzmann inversion of
conformational probability distribution derived from a protein structure data set, and
iteratively refined to reproduce the experimental distribution. PaLaCe uses a two-tier
representation with one to three pseudo-atoms representing each amino acid for the non-
bonded interactions, combined with an atomic-scale peptide backbone48. The PaLaCe model
has been used for energy minimization, normal mode calculations, and molecular or
stochastic dynamics.

A recent trend has been to develop hybrid models where part of a system is represented in
atomistic detail while other parts are represented at the CG level. Recently, Zacharias49 has
developed a hybrid united atom/coarse-grained model for proteins where the interactions of
protein main chain sites are based on the GROMOS united atom force field. However, non-
bonded interactions between side chains and between side chains and main chain sites are
calculated at the level of a CG model using the knowledge-based ATTRACT potential50.
Rzepiela and co-workers51 have proposed such a mixed model between all-atom and
MARTINI CG force fields where all-atom-CG interactions are replaced by CG interactions
through dummy sites. This avoids the need for re-parameterization of cross-resolution terms
from the CG perspective but it does not fully address the environment seen by the atomistic
part.

In a similar effort, the Schulten group52 has developed PACE (Protein in Atomistic details
coupled with Coarse-grained Environment) where a united-atom protein model is coupled
with MARTINI CG water and/or MARTINI CG lipids. In PACE, cross-resolution
parameters were optimized through the reproduction of experimental thermodynamic
quantities. Moreover, in the context of the hybrid force field, the interactions of atomic sites
in proteins were reparameterized by using different reference data, such as potentials of
mean force (PMF) of polar interactions from atomistic simulations and statistical backbone
potentials from a Protein Data Bank (PDB) coil library52. Atomistic partial charges from all-
atom force fields were then combined with PACE to provide a more realistic description of
interactions between charged groups. PACE has been successfully used to fold a series of
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peptides and proteins, but challenges remain in accurately estimating the stabilities of native
structures53.

Although, there are many CG models now available, transferability between different
systems and to different environments as well as an ability to combine with atomistic force
fields in hybrid AA/CG multi-scale approaches remains a challenge that has not been fully
addressed. We are here proposing a new CG model, PRIMO (Protein Intermediate Model)
which aims to improve transferability and is meant to be more compatible with atomistic
levels of detail. A key feature of PRIMO is a somewhat higher resolution that was chosen
such that fast and accurate reconstruction to all-atom representations becomes possible. This
model and the reconstruction procedure have been described previously54,55. Although
PRIMO reduces the number of interactions three-to four folds over fully atomistic models,
all-atom models can be reconstructed at negligible computational cost to accuracies of 0.1
Å54. This feature is unique among CG models proposed so far and is the basis for tight
integration with atomistic force fields. Furthermore, the PRIMO force field can be
energetically matched to atomistic force fields with the benefits of greater transferability and
better suitability for AA/CG approaches.

In this paper, the force field for PRIMO is presented. The PRIMO energy function consists
of standard molecular dynamics energy terms plus a hydrogen-bonding potential term. We
followed a bottom-up approach similar to those used in the development of classical all-
atom force fields as well as other coarse-grained fore fields, such as MARTINI, UNRES,
and PaLaCe to design the PRIMO force field. One of the advantages of a bottom-up
approach is a modular design of the potential energy function. This allows the breakdown of
the overall interactions into simple physics-based energy functions that were parameterized
separately. In the development of PRIMO, the basic biological building blocks, such as
amino acids, were rigorously parameterized and validated to form the basis for
transferability of the resulting model to any arbitrary protein system. A key feature is the use
of a physical implicit solvent model to maintain transferability to different environments.
The PRIMO force field is primarily parameterized based on the CHARMM22/CMAP56,57

force field with adjustments to incorporate recent updates to the CHARMM force field58,59.
The resulting PRIMO force field targets a wide range of applications ranging from structure
prediction and ab initio folding to mechanistic studies of protein dynamics, in particular in
the context of AA/CG modeling schemes.

The remainder of this article is organized into the following sections: First, we briefly
review the PRIMO CG model and introduce its energy function. Next, the PRIMO force
field parameterization procedure is described. Then, we describe the validation of the force
field by comparing the stability and structural properties of several proteins with those of
all-atom simulations. Finally, we discuss the conformational sampling of alanine-based
polypeptides and folding studies of small peptides with diverse structural motifs.

2. PRIMO Mapping
The PRIMO model, i.e. its mapping from atomistic to coarse-grained sites was described
previously54,55. It is only briefly reviewed here. The CG sites were chosen in such a way
that an analytical reconstruction of all-atom representations from CG models based on
molecular bonding geometries is possible. The CG interaction sites for amino acids are
illustrated in Figure 1. Table S1 (see Supporting Information) lists the mapping between all-
atom and PRIMO CG levels. The backbone is represented with N, Cα, and a combined
carbonyl site (CO) placed at the geometric center of the carbonyl C and O atoms. This
ensures the preservation of backbone hydrogen bonding interactions, which is essential for
an accurate description of the secondary structures of a protein. Non-glycine side chains are
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represented with one to five CG sites (referred to as SCn, where n is the index of the CG
side chain site). The amino acids Ala, Cys, Pro, Ser, and Val have only one SC1 particle; the
amino acids Ile, Leu, and Thr are modeled with SC1 and SC2 sites; the amino acids Asn,
Asp, Gln, Glu, His, Met, and Phe are described by three SC sites; the amino acids Lys, Trp,
and Tyr consist of four SC particles; the Arg side chain possesses five SC interaction sites.
A typical representation of an all-atom protein in PRIMO is shown in Figure S1.

In this work, the following convention is followed to refer to the CG, atomistic or virtual
particles: (i) an upper case alpha-numeric name for CG (e.g., CA1, N1 etc.); (ii) a lower case
combination of alpha-numeric and Greek symbol for all-atom sites (e.g., cα, cδ1 etc.); and
(iii) virtual atoms are represented like all-atom sites, but with a superscript * (e.g., cβ*, cγ*,
cδ1

*).

3. PRIMO Energy Function
The PRIMO interaction potential consists of a standard molecular dynamics force field-like
form with additional spline-based bonded terms to maintain correct bond geometries at the
coarse-grained level, an explicit H-bonding potential, and a combined generalized Born
(GB)/atomic solvation parameters (ASP) implicit solvent model. The details of the PRIMO
energy function are described below.

3.1 Bonded Interactions

(1)

Bonded interactions between PRIMO sites represent both, real covalent bonds, such as
between Cα and N backbone sites, and virtual bonds, such as between N and the combined
backbone carbonyl site CO. The real covalent bonds such as 1–2 (bonds) and 1–3 (angles)
interactions are generally described by standard harmonic potentials. Virtual bonds are
described primarily with distance-based spline-interpolated potentials in order to capture
non-harmonic potential shapes and the presence of multiple minima (see Eq. 2 and 3).

(2)

(3)

For some side chains, these terms were not found to be sufficient to maintain
stereochemically correct geometries. In those cases, the primary PRIMO interaction sites
were augmented by virtual atomic sites that are reconstructed on-the-fly from the PRIMO
sites, thus avoiding additional degrees of freedom. Additional bonded interactions were then
introduced between the virtual sites and the primary PRIMO interaction sites (see Eq. 4 and
5).

(4)

Kar et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

The computational impact of adding virtual atoms is minimal because the reconstruction is
very fast and involves only a few sites. Furthermore, a multiple time step scheme where
virtual sites are not reconstructed at every step is possible. It should also be stressed, that the
role of the virtual sites is only to improve local molecular geometries through bonded
interactions and that these sites do not participate in the calculation of non-bonded
interactions, which is by far the most time consuming component of the PRIMO force field.

To further illustrate how virtual atoms are being used, Figure S2 shows the treatment of
phenylalanine as an example. For this residue, the primary CG sites are located at cε1 (SC2),
cε2 (SC3), and at the midpoint between cβ and cγ (SC1). Based on stereochemistry, the
sampling of the SC1 particle should be restricted to a circle around the cα-cβ bond because
of sp3-hybridization of bonds to cβ. However, the angle terms such as N1-CA1-SC1, CO-
CA1-SC1, and other bonded terms are insufficient to maintain the SC1 particle on such a
circle. As a result, the PRIMO model would result in non-chemical structures when
reconstructed to all-atom detail. An additional issue with phenylalanine is the planarity of
the aromatic ring that is not maintained with just the three primary PRIMO sites. To
alleviate the issue, two virtual atoms, cβ* and cγ*, are introduced that are reconstructed on-
the-fly. The virtual atom cβ* is reconstructed using the “scheme 1” protocol described
previously and the cγ* atom is reconstructed based on “scheme 2” protocol, as discussed in
our previous papers47,48. Using the virtual sites, weak harmonic potentials involving CA1-
cβ*-SC1, cγ*-SC2, and cγ*-SC3 interactions are then added to the existing potential with
the result that the sampling of the SC1, SC2, and SC3 sites is restricted to positions
consistent with the correct stereochemical geometries when reconstructed to full atomistic
detail. Because the bonded terms between PRIMO sites were parameterized based on
potentials of mean force (PMFs) from explicit solvent simulations (see below), there is a
concern that the additional bonded interactions to virtual sites may distort the energy
function. This is discussed in more detail in the next section. A list of all virtual sites, their
reconstruction, and which bonded interactions they are involved in is given in Table S2 in
the Supporting Information.

In all-atom force fields, 1–4 interactions are typically modeled as a combination of Fourier-
series torsional terms and scaled electrostatic and Lennard–Jones interactions. In PRIMO,
the 1–4 interactions are modeled as a combination of Fourier series torsional terms (Etorsion),
distance-based spline-interpolated functions (Espline

1–4), and a reduced Lennard–Jones (LJ)
potential (ELJ

1–4) in order to avoid hard-sphere overlap. A 1–4 electrostatic term is not
included in PRIMO because the reduced charges used for PRIMO sites (see below) do not
provide sufficiently accurate local electrostatic interactions. Instead the spline-based 1–4
interaction potentials are employed in our model to represent effective interactions in
explicit solvent that are extracted from the dipeptide simulations. The functional forms of
these terms are shown in Eq. 6–8.

(6)
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(7)

(8)

In addition to the one-dimensional 1–4 terms, a spline-interpolated two-dimensional cross-
correlation term (ECMAP) based on the CMAP methodology60 is used in PRIMO to couple
the sampling of CO–N–CA–CO and N–CA–CO–N torsions. The advantage of using the
CMAP methodology is that it is possible to nearly exactly reproduce any given target ϕ/ψ-
map as demonstrated in the development of the atomistic CHARMM force fields60. The
general functional form is given in Eq. 9. In PRIMO, it is used for the backbone torsion
angles calculated from the PRIMO sites – which differ slightly from the torsion angles at the
atomistic level.

(9)

3.2 Non-bonded Interactions
Non-bonded (Enb) terms in PRIMO consist of standard LJ terms (ELJ), Coulombic
electrostatic interactions (Eelec), and an explicit angle-and distance-dependent hydrogen
bonding potential (EHBOND) (see Eq. 10)

(10)

The van der Waals interaction between CG particles is described by the Lennard-Jones
potential energy function according to Eq. 11

(11)

where εij indicates the strength of the interaction, σij is the van der Waals interaction
parameter, and rij is the distance between CG beads i and j. To obtain cross-interactions, the
parameters between two pseudo-atoms of different types were determined using the
empirical Lorentz-Berthelot mixing rule: εij = (εiiεjj)1/2 and σij = (σii + σjj)/2. Electrostatic
interactions between charged groups are modeled by the standard Coulombic potential
energy function given by Eq. 12.

(12)

where qi and qj are charges of the charged groups, rij is the pair distance, and ε0 is the
vacuum permittivity.
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In order to complement the weakened electrostatic interactions due to reduced partial
charges, an explicit hydrogen bonding term is employed (Eq. 13).

(13)

where the scaling factors f3, f4, f5, and fn are used to adjust the strength of the interactions
between residues i and i ± 3, i and i ± 4, i and i ± 5, and i and i ± n where n > 5. The
hydrogen bonding potential relies on a spline-interpolated two-dimensional potential of
mean force (PMF) as a function of both hydrogen bonding distance (N-CO) and angle (N-H-
CO). The PMF was generated based on the distribution of N-H-CO angle and N-CO
distance in more than 2000 non-homologous PDB structures. Currently, the hydrogen-
bonding potential is only applied to hydrogen bonds between backbone N and CO sites. The
resulting PMFs for the hydrogen bonding potential corresponding to interactions between
atoms i and i + 3 or i and i + n, where n > 3 are shown in the next section. This term is the
only term in the PRIMO potential that relies on such statistical information. Because of its
empirical nature, a scaling factor is included to adjust its strength relative to the rest of the
force field. The application of Eq. 13 requires reconstruction of the amino hydrogen so that
the hydrogen bond angle can be calculated. As with the other virtual sites, the hydrogen site
is also reconstructed on-the-fly based on the PRIMO backbone sites. The hydrogen bonding
potential and the amino hydrogen reconstruction procedure are described in more detail in
the Supporting Information.

3.3 Solvation in PRIMO
The solvent is treated implicitly in PRIMO using both a generalized Born (GB) model and
atomic solvation terms54 proportional to the atomic solvent-accessible surfaces.

(14)

The GB model captures the majority of the electrostatic solvation free energy but because
the charges on the PRIMO sites are reduced, the atomic solvation term (ASP) is used not
just to capture non-polar effects but also to compensate what is missing in the GB term to
fully describe the electrostatic component.

The electrostatic component (ΔGsolv
GB) of the solvation free energy in the GB formalism is

obtained from Eq. 15.

(15)

where rij is the distance between CG sites i and j, qi is the charge of bead i, εp and εw are the
interior and exterior dielectric constants, respectively. αi is the so-called generalized Born
radius of ith PRIMO site, and F is an adjustable parameter. In its current implementation, the
generalized Born with molecular volume (GBMV)61 formalism is used to calculate the Born
radii because it results in electrostatic solvation free energies that match Poisson theory most
closely62,63. However, it may be possible to replace the GBMV model with other,
computationally more efficient GB implementations.
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The atomic solvation contribution64 (ΔGsolv
asp) to the solvation free energy is modeled

simply as a linear function of the solvent-accessible surface area with varying surface
tension factor as given in Eq. 16

(16)

where Ai are the solvent accessible surface areas (SASA) for each atom and γi are the
coefficients of surface tensions for different atom types. When implicit solvent is used with
atomistic models; the γi coefficients are positive and typically uniform to capture the non-
polar contribution to the solvation free energy. Here, both positive and negative coefficients
are used to capture underestimated electrostatic effects in addition to the non-polar term.

4. Parameter Optimization
The general philosophy of the PRIMO force field parameter optimization is to match the
energetics and conformational sampling with an all-atom force field. The specific targets
chosen here are the CHARMM22/CMAP and CHARMM36 force fields56–59. Furthermore,
we attempted to follow a modular approach where different terms are parameterized
separately and parameters are determined for molecular building blocks and to be used in
larger constructs.

4.1 Training Data Set
A list of systems used in the parameterization of PRIMO force field is given in Table 1.
These systems include dipeptides, alanine-based polypeptides, small proteins, and protein-
protein complexes to cover both, chemical and conformational space relevant for the
modeling of peptides and proteins.

For each training set, decoys were generated through simulations. The decoys corresponding
to dipeptides were generated from 150-ns long MD simulations of each dipeptide in explicit
water65. In total, 300,000 structures for each amino acid were used in our optimization
stages. Decoys corresponding to (AAXAA)4 where X is one of the 20 naturally occurring L-
amino acid residues, consisted of 250 diverse and random structures for each X obtained
from high temperature MD simulations. The training set also included two monomeric
proteins (villin head piece and protein L). For the villin headpiece, 120 structures comprised
of native-like, misfolded, and unfolded conformations were generated through a sampling
with a lattice model and followed by an all-atom reconstruction. The decoys corresponding
to protein L were obtained from an unfolding simulation of the native protein. Finally, seven
protein-protein complexes66 with PDB entries: 1VII, 2PTL, 1GUA, 1HV2, 2C51, 2CIA,
2DLF, 2OEI, 2V8S, and 3BS5 were used to generate 50 decoys each covering bound and
unbound monomers.

4.2 Optimization Procedure
An overview of the optimization procedure is shown in the flowchart in Figure 2. The first
step is the parameterization of the bonded terms. PMFs for bond, angle, and torsion terms
were extracted from explicit solvent CHARMM dipeptide simulations and subsequently
used to either fit a harmonic potential or generate a spline-interpolated potential for non-
harmonic shapes (see Figure 3 and 4 for examples). The inverse-Boltzmann procedure is a
common technique for generating coarse-grained potentials from atomistic data. However,
different from previous approaches, we only use this method here for bonded interactions.
The combination of various effective free energy terms always raises the issue of over-
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counting contributions and proper accounting of entropic effects. Here, we make the
assumption that each of the bonded degrees of freedom are largely decoupled from each
other and that the bonded terms are largely dominated by enthalpic rather than entropic
effects. An additional assumption is that the effective bonded PMFs obtained for dipeptides
in explicit solvent remain valid in longer peptides and condensed phase environments such
as the interior of proteins. This assumption is most likely valid for bonds and angles, at least
within the level of approximation expected for a coarse-grained model, but the treatment of
torsion angle terms may be somewhat problematic in this respect. Therefore, the initial
parameterization based on CHARMM simulation results was followed by further
adjustments to match the results from PRIMO simulations for AXA tripeptides with results
from CHARMM dipeptide simulations.

Bonded terms involving virtual atoms were also parameterized based on a comparison of
simulation results with PRIMO and CHARMM. As an example, Figure 5 shows the initial
distribution of the cα-cβ-cγ angle in the AFA peptide using PRIMO (after reconstruction; in
blue) in comparison with the atomistic results. The harmonic potential involving the virtual
atoms was then adjusted to obtain the improved distribution (in green). The resulting
improved potential does not match perfectly with the corresponding CHARMM result as a
consequence of keeping a relatively weak harmonic potential involving virtual atoms to
avoid distortions of the CG potential otherwise.

Similarly, except for a torsional potential corresponding to the peptide bond CA1-CO-N1-
CA1, which is the same as the CHARMM cα-c-n-cα torsion, all other torsions were
implemented as 1–4 distance based spline terms (see examples in Figure 6). The initial
PMFs obtained from the atomistic MD were smoothened and in a few cases the barrier
heights between two minima were reduced to obtain numerically well-behaved potentials
that allow larger time steps to be used. A detailed discussion of the sampling of internal
degrees of freedom in the reconstructed structures is provided in the result section as well as
Supplementary Information.

The non-bonded parameters (qi, εij, σij, γi) in PRIMO were tuned by matching
conformational energies for decoy sets with the corresponding CHARMM energies. The
initial parameters for all εij values were set to −0.1 kcal/mol (−0.05 kcal/mol for ELJ

1–4).
However, for alanine, the parameters for the backbone N1 and CA1 were chosen based on
CHARMM C19 and CO was set initially at −0.12 kcal/mol. The initial values for σij, were
calculated from constituent atomistic beads based on a grid-based approach. The idea was to
approximate the volume occupied by the constituent atoms with a spherical CG bead of
radius σ, determined by counting points on a radial grid. It is worth mentioning that the van
der Waals potentials parameters in classical all-atom force field are usually extracted from
classical molecular dynamics simulations of simple compounds in order to produce their
vapor- or liquid-phase thermodynamic properties.

The initial guess parameters in the Lennard–Jones term (σij, εij), including reduced values
for 1–4 interactions, were then optimized to reproduce CHARMM all-atom energies for a
series of peptide test sets. However, the initial optimized values of the energy depth εij of LJ
potentials were found to be inadequate for protein-protein interactions. The energy depths
were later scaled to match the binding energy profile for all seven protein-protein
complexes66.

In Figure 7 the van der Waals interactions energies are shown as a function of separation
distance between chains A and B of the protein-protein complex 1GUA. It is evident from
the figure that the initial optimized PRIMO parameters could not reproduce the CHARMM
profile due to weak LJ-depths (εij) compared to CHARMM. Hence, they were scaled by a
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factor of three. The resulting binding energy profile (total energy as well as van der Waals
energy) agrees well with the corresponding CHARMM profile as can be seen from Figure 7.
A detailed discussion of the binding profiles for all seven complexes was provided in our
previous publication66.

Electrostatic interactions involve partial charges for each PRIMO site. Figure 1 depicts the
charges (color-coded) in PRIMO. Initial charges were guessed based on the CHARMM19 or
CHARMM22 force field and subsequently optimized. Total charges per amino acid were
required to have integral charges of −1, 0, and +1 depending on the amino acid type.
Furthermore, the goal was to preserve chemical specificity by placing most of the charge on
polar groups but unlike MARTINI, charges were distributed over several CG particles to
reduce artifacts.

Because of the coarse-grained nature of our model, the partial charges are generally reduced
over all-atom models albeit formal charges are maintained for acidic and basic amino acids.
Because of the reduced charges, all-atom electrostatic interactions are not accounted for
completely so that the PRIMO charges cannot be optimized directly by simply fitting to all-
atom electrostatic energies. The hydrogen bonding potential was introduced to compensate
for insufficient electrostatics due to reduced charges. Partial charges and scaling factors (f3,
f4, f5, and fn in Eq. 13) for the PMF-based hydrogen bonding potential were then optimized
conjointly by fitting total PRIMO internal energies (including bonded and non-bonded
terms) to total CHARMM all-atom energies for a series of test peptides. Later, the scaling
factors for H-bonding potential were further tuned by carrying out MD simulations of villin
and protein L until stable trajectories were obtained for these two proteins. The resulting
optimized values for f3, f4, f5, and fn are 0.35, 0.50, 0.35, and 0.75, respectively. The
resulting PMFs for the hydrogen bonding potential is shown in Figure 8.

The approach taken here differs somewhat from approaches taken in the development of
other CG models. For example, in the case of SCORPION (solvated coarse-grained protein
interaction) model67, the CG point charges were optimized for a given protein to generate a
potential which best fits, in a least-square sense, the vacuum electrostatic potential created
by the partial charges of the all-atom model, on a 3-dimensional grid outside the protein.
Although a separate fitting of the electrostatic term is more rigorous, we did not think that
the reduced resolution of our model would justify such an approach and was more likely to
introduce artifacts because of over- or under-polarization.

Following the initial adjustment of bonded and non-bonded terms, simulations of alanine-
based peptides were generated with PRIMO to compare the sampling of backbone torsion
angles ϕ and ψ with CHARMM. A map-based spline interpolated cross-correlation term
(CMAP) was then introduced in PRIMO to match CHARMM secondary structure
propensities. The spline potential is specified by energies determined on a 2D lattice with a
15° grid spacing. Initially, the CMAP potential was matched to the CHARMM22/CMAP
force field (Fig. 9) but a second map was also generated to match the altered backbone
torsion sampling with the new CHARMM C36 force field59,60. CMAP potentials were also
generated for proline and glycine dipeptides (see Figure 10).

Finally, the implicit solvent model was parameterized. The GBMV model is essentially
parameter-free with respect to using it with different force fields – except for the atomic
radii used to define the molecular surface. Standard Lennard-Jones radii were used for most
atoms but the radii for acidic and charged residues were adjusted slightly to match the
energetics of the atomistic model when implicit solvent is included. In the ASP part of the
solvation term, all of the γi values were considered adjustable parameters. The main
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criterion for fitting the ASP coefficients was a comparison between combined GB and ASP
energies in PRIMO to all-atom implicit solvent free energies.

PRIMO allows the use of blocked termini through N-terminal acetylation (ACE) and C-
terminal N-methyl amide (CT3). The required parameters were not optimized separately, but
rather taken from similar CG types. For example, in the case of ACE, SCT or SNT
corresponds to CH3 with parameters that are similar to SC1A or CA1 (for the dihedral
potential). Similarly, in the case of CT3, COY is used for CO and NT is used for N1 in
PRIMO.

5. Simulation methods
MD simulations with PRIMO were carried out with blocked termini using the force field
described above. A temperature of 300K was maintained with the Langevin thermostat using
a friction coefficient of 10 ps−1. Equations of motion were integrated using the leapfrog
Verlet integrator with a time step of 4 fs. Non-bonded interactions were cut off at 17 Å, with
smooth switching to zero starting at 14 Å. The non-bonded interaction list was maintained
up to 20 Å.

The equilibration protocol for all of the simulations generally consisted of initial
minimization followed by stepwise heating to 300 K. During the heating phase, heavy atoms
were kept fixed with a harmonic constraint, but production simulations were carried out
completely unrestrained. PRIMO simulations were carried out using version c36a4 of the
CHARMM molecular dynamics program package68. All analyses were performed using the
MMTSB (Multi-scale Modeling Tools for Structural Biology) Tool Set69 in conjunction
with CHARMM.

6. Results and Discussions
Results are first described for the training sets and then for a number of test sets where
PRIMO was applied after the parameterization was completed.

6.1 Training Sets

Comparison of sampling of internal degrees of freedom in AXA and CHARMM
dipeptide simulations: The bonded interactions in PRIMO were parameterized based on
PMFs extracted from all-atom MD simulations. However, it is not obvious that this
translates into accurately reproduced interaction profiles between all atomistic sites after
reconstruction from PRIMO. To examine this point, PRIMO simulations of AXA peptides
were compared with dipeptide simulations using CHARMM.

Typical results are shown in Figure 11 where PMF profiles of various internal degrees of
freedom for residue 2 in AAA are compared between CHARMM and PRIMO. Data for
other residues are provided in the Supporting Information. These distributions were
generated after reconstructing the trajectory back to all-atom level of detail. Overall, there is
good agreement but some deviations are apparent. In general, there is a trend of softer
bonded interactions with PRIMO compared to the PMFs from CHARMM. This is likely a
consequence of the smoother energy landscape in the CG model due to fewer degrees of
freedom. For some of the torsion angles the deviations appear to be more significant
although the overall shape is still maintained and only the relative populations between
different states differ, e.g. for the CB-CA-C-O torsion. Because this analysis depends on
reconstructed atoms, it is likely, though, that not just the inherent energetics and dynamics of
the PRIMO model plays a role but also the accuracy of the reconstruction procedure.
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PRIMO versus CHARMM Free Energies for Decoy Sets: Non-bonded parameters in
PRIMO were optimized by matching the free energies from PRIMO to CHARMM implicit
solvent free energies for a series of different decoy sets. The results presented here reflect
the final, optimized parameter set. In many cases, better results could have been obtained for
any individual data set but at the expense of other data sets. Therefore, deviations from the
CHARMM reference indicate the compromises that have been made in the development of
PRIMO.

Table 2 lists the solvation free energies obtained from PRIMO and CHARMM with GBMV
for dipeptides with different side chains. The solvation free energy obtained from PRIMO
generally agrees well with the corresponding CHARMM result indicating that the solvation
of different amino acids is well balanced. However, PRIMO significantly overestimates the
unsigned solvation free energy for the glutamic acid (Glu) and histidine dipeptides.

Figure S6 depicts PRIMO versus CHARMM free energies for (AAXAA)4 decoys along
with respective correlation coefficients. The data shows that the free energies from PRIMO
are highly correlated to CHARMM with a correlation coefficient varying between 0.63 and
0.97. The lowest correlation is obtained for (AAPAA)4 while the highest correlation
corresponds to (AAAAA)4 decoy sets. The low correlation for (AAPAA)4 is a result of a
narrower distribution of conformations because the peptide is more restricted with proline.
The slope ranges between 0.73 and 1.36 indicating that the relative energy differences
between different conformations largely have the correct magnitudes compared to
CHARMM.

In Figure 12 we have compared PRIMO energies with CHARMM for the villin and protein
L decoy sets. Although the absolute energies differ between PRIMO and CHARMM, the
energies are again highly correlated with a correlation coefficient of ~0.90. Furthermore,
relative energies are again well reproduced. A slope of 1.09 is obtained for villin decoys
while a slope of 0.92 is estimated for the protein L decoy sets.

Next, we compared the binding free energies for all protein-protein complexes obtained
from PRIMO and CHARMM (see Table 3). It is evident from the table that an accurate
reproduction of protein-protein interaction energies may present the largest challenge for
PRIMO. PRIMO underestimates the binding free energy for all complexes but 1HV2 and
the deviations are on the order of tens of kcal/mol in some cases. Nevertheless, binding free
energies profiles with PRIMO are overall highly correlated to CHARMM data (see Figure 7)
and the correlation coefficient varies between 0.5 and 1.0. While the lowest (0.5) correlation
coefficient is observed for the 2D1F decoy sets, a perfect correlation (1.0) is obtained for
1HV2. A plausible reason for obtaining right orders of magnitude for 2D1F and 1HV2, but
not 2CIA and 2V8S could be that PRIMO was unable to recognize the correct bound
structure for 2CIA and 2V8S while it could correctly differentiate between unbound and
bound conformations in cases of 2D1F and 1HV2. We intend to further examine these test
cases in future studies to improve the accuracy of PRIMO in reproducing the energetics of
protein-protein interactions.

Although far from perfect, the energetic agreement between PRIMO and CHARMM is
overall remarkable considering the different levels of resolution with a reduction in
interaction sites by a factor of about 3. We are not aware of a similar level of energetic
correspondence between atomistic and coarse-grained models for other CG models that have
been proposed previously.

ϕ/ψ Sampling in AXA Simulations: The conformational preference for different ϕ (C-N-
Cα-C)/ψ (N-Cα-C-N) backbone torsion angles is a key determinant for forming different
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secondary structure elements. For the all-atom representations, the Ramachandran plot (RP)
is used to validate the backbone conformation of a protein model. To validate a protein
model, the protein RP must not display anomalies, such as points in the forbidden regions.
Furthermore, the preference for different secondary structure elements is highly sensitive to
the relative sampling of the corresponding regions in the RP. PRIMO is designed to provide
a correct description of conformational distribution of the backbone (ϕ/ψ) for all amino
acids due to the CMAP correction term. To validate this assertion, the distribution of ϕ/ψ
torsion angles from blocked AXA simulations was studied as a function of the amino acid
type. Blocked AXA tripeptides were chosen because they can serve as prototypes of non-
glycine/non-proline protein backbones with full sampling of the ϕ/ψ conformational space
without the additional complexity of side chain degrees of freedom. Results for selected
amino acids are shown in Figure 13 while data for other amino acids are shown in the
Supporting Information (Figure S7). Feig65 obtained a similar distribution in the case of
dipeptide simulations with the CHARMM22/CMAP force field.

In general, as in the previous study65, it appears that in the β basin, most of the amino acids
follow a similar energy landscape with two minima near C5 and PPII that are connected by a
very shallow barrier. The fully extended conformations near C5 are slightly less favorable
compared to PPII conformations. Furthermore, as in the dipeptide simulations65, sampling
of the C7eq conformation near (ϕ = −75, ψ = 75) in the α/β transition region appears to be
too unfavorable, which is especially apparent in aspartic acid, leucine, and proline. In
asparagine, serine, histidine, cytosine, glutamine, and lysine and to a lesser extent in
tryptophan, there is a third minimum in the simulations near (ϕ = −150, ψ = 40). In proline,
although the major minimum at PPII is sampled, the C7eq or αR conformations are not
favorable enough. This finding matches qualitatively the results with CHAMM22/CMAP for
proline dipeptide in explicit solvent65.

For asparagine, the sampling of αL conformations is relatively favorable while it is
relatively unfavorable for threonine, glutamic acid, and methionine, which is again in good
agreement with the dipeptide simulations or PDB distributions65. Aspartic acid
predominantly samples αR (ϕ = −60, ψ = −50) while all other amino acids sample
predominantly a minimum at (ϕ = −100, ψ = 0). A similar trend was observed previously in
the dipeptide simulations65. Finally, we do not see any sampling in C7ax (ϕ = 50, ψ = −130)
region, which is in contrast to what was observed by Feig58 in the dipeptide simulations.

The results in Figure 13 show that the ϕ/ψ preferences vary only to a small degree among
different amino acids, suggesting that amino acid dependent variations in ϕ/ψ preferences
do in fact stem predominantly from interactions due to polypeptide and protein
environments. However, closer inspections reveal some differences among different amino
acids. Next, we characterize these subtle variations in ϕ/ψ preferences among different
residues quantitatively (see Table 4). The relative sampling of the α basin varies between 3
and 16 % and the ratios of αR to α′ are mostly below 1, which indicates that the sampling of
αR is relatively disfavored in the tripeptides, which is in good agreement with the previous
observation made by Feig65 in the dipeptide simulations. However, aspartic acid
predominantly samples the αR basin over α′. Asparagine, aspartic acid, serine, and
threonine in the AXA simulations sample nearly 16% while remaining amino acids spend 3
to 10% of the time in the α basin. The relative sampling of the β basin in the AXA
simulations is measured to be at or below 95% for most of the amino acids but serine,
asparagine, and aspartic acid. Serine spends the lowest time (65%) in the β basin while the
highest sampling (95%) is observed for leucine. The preference for sampling in the α-basin
versus β-basin matches to a large extent with the dipeptide simulations65.
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Samplings on the right-hand side of the RP are important for the formation of turns. The αL
conformations are sampled at widely varying levels in the PRIMO tripeptide simulations.
Aspartic acid and serine in the AXA simulations spend nearly 18% of the time in the αL
basin, while alanine, asparagine, and valine spend 3 to 7% of the time in the αL basin. For
glutamine, histidine, isoleucine, leucine, and lysine, the relative sampling in the αL basin
varies between 1 and 2 % while remaining amino acids essentially never sample αL. It is
worth noting that the relative sampling of αL conformations in PRIMO is in good qualitative
agreement with the PDB distributions65.

Overall, PRIMO samples the major minima in the RP and captures the subtle but significant
residue type-dependent variations in ϕ/ψ preferences at the tripeptide level and qualitatively
agree well with the previous study65.

Conformational Sampling of short peptides: As the CMAP potential in PRIMO is
optimized based on sampling of alanine-based short peptides, we describe here the
conformational sampling of these short peptides and compare with the corresponding
CHARMM results58. The peptides Ala3, Val3, and Gly3 were simulated at 300 K for 500 ns
while replica exchange molecular dynamics (REMD) simulations were conducted for Ala5
and Ala7. For both peptides, 12 replicas were used with a temperature range 270–500 K. For
both cases, exchanges between two consecutive replicas were attempted in every 10 ps,
leading to an acceptance ratio of ~80%. Each replica was simulated for 300 ns.

The ϕ/ψ sampling for Ala3, Ala5, Ala7, Val3, and Gly3 is shown in Figure 14 and compared
to the distribution from explicit solvent, atomistic CHARMM C36 simulations. The
agreement between the results from PRIMO and CHARMM is remarkably good, especially
in the major conformational basins. Similar to CHARMM, the dominant minimum in
alanine- and valine-based peptides lies at PPII (ϕ = −60, ψ = 140) but additional minima at
C5 and αR are only slightly higher in energy. In both force fields, a very shallow energy
barrier connects the two minima near C5 and PPII. Overall, conformations near αR basins
are slightly too favorable in PRIMO over α′(ϕ = −160, ψ = 0) conformations. This
observation is in contrast to what has been observed for most of the PRIMO tripeptide,
indicating that the sampling of αR conformations is relatively disfavored in tripeptides.
However, this agrees with the CHARMM36/CMAP simulations of the same polypeptides.
Therefore, the polypeptide context and, in particular, the ability to form i, i + 4 backbone
hydrogen bonding is essential in stabilizing α-helical secondary structure element. The
sampling of the C7eq conformation near (ϕ = −75, ψ = 75) in the α/β transition region,
however, appears to be less favorable in the case of PRIMO compared to CHARMM, which
is especially apparent in Ala7.

Conformations on the right-hand side of the RP are important for the formation of turns. An
additional minimum at αL is about 2–3 kcal/mol higher than the PPII conformation, which is
again in good agreement with the CHARMM results. In general, an overall increased
preference for αL conformations compared to the CHARMM simulations is observed in
PRIMO. Interestingly, an additional minimum at C7ax is absent in alanine-based polypeptide
that is present in the new CHARMMC36/CMAP. Gly3 exhibits symmetric sampling with
similar minima at αR/αL and PPII/C7ax and agrees remarkably well with the corresponding
CHARMM sampling.

There are subtle differences among Ala3, Ala5, and Ala7 but the overall trend in variations
among different regions of the RP is very similar. The ability of PRIMO to sample different
major minima in the RP for alanine-based polypeptides agrees qualitatively very well with
the CHARMM simulations. Subtle differences between PRIMO and CHARMM may be
expected since the PRIMO simulations are not just based on a reduced representation of the
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peptides but also used implicit solvent whereas the corresponding CHARMM simulations
were conducted in explicit water with an all-atom description of the peptides.

6.2 Test Results
The optimized force field was further applied to a number of test cases to assess the ability
of PRIMO to reproduce structural and dynamic properties in comparison with experimental
data and other simulations using all-atom force fields.

6.2.1 PRIMO-MD Simulations—A major goal of PRIMO is to be able to run stable MD
simulations of arbitrary protein systems. PRIMO was tested on a set of 11 proteins with 36–
155 amino acids (see Table 5). All protein simulations were started from the experimental
structures and simulated with blocked termini for 50 ns. Figure 15 shows the Cα RMSD of
all proteins as a function of simulation time with respect to their experimental structures, and
it is evident from the figure that the most of the proteins reach their stable conformations
within the first 10 ns and the Cα RMSDs are kept within 3.5 Å for most proteins. Since it
may appear that the MD sampling for the two proteins 1VII and 2PTL has not reached
convergence within 50 ns these simulations were extended to 100 ns (see Figure S8). On
average, the RMSDs did not increase significantly during 50–100 ns. Average Cα RMSD
values during the simulation as well as Cα RMSD of the average structure over the entire
trajectory are reported in Table 5. These values are compared with the CHARMM all-atom
simulations of the same set of proteins in explicit water. As is well known, the RMSD of the
average structure is lower than the average instantaneous RMSD values as it corresponds
more closely to the experimental scenario65. Therefore, we will focus the discussion on
those values. For PRIMO, the RMSD varies between 1.80 and 4.03 Å compared to
CHARMM, which varies between 0.79 and 2.74 Å65. The explicit solvent simulations used
for comparison here result from using the CHARMM22/CMAP force field65 but results
from Best et al.58 indicate that similar results are expected for the newer force field
CHARMM/C36. In the PRIMO MD simulations, two proteins have deviations below 2 Å
and four additional proteins are between 2 and 3 Å. Out of the remaining five other proteins,
the RMSD is found to be between 3 and 4 Å for four systems and only one system is just
above 4 Å. The larger RMSD in 2AAS can be attributed to the presence of flexible loop
regions (residues 20–25 and 58–61) that may be sampled more extensively in the CG model
relative to CHARMM since the kinetic time scales between the all-atom and CG models are
expected to differ. Both loops are located at the solvent-exposed surface of the protein, so
they are less stable compared to the secondary structure and the hydrophobic core of the
protein during the simulation. In general, the RMSDs with PRIMO-MD are larger than those
found with all-atom MD simulations, but their values are comparable, and the average Cα
RMSD of 1FKS is even lower. Figure 16 shows a superposition of the average structures
generated from our simulations with the corresponding experimental structure. As can be
seen, the structural variations are generally small and typically involve minor
rearrangements of loops and helices, most notably at the flexible N- or C-termini. Overall,
these results demonstrate that, in general, PRIMO can maintain experimental structures of
proteins well.

We have further calculated the radii of gyration for all proteins obtained from our
simulations and compared it with the experimental values and CHARMM all-atom
simulations. Good agreement is evident from the results shown in Table 5. It should be
noted that the deviations from experiment are comparable to the fluctuations in the radii of
gyration during the simulation. This suggests that PRIMO maintains good packing of the
protein chains at the coarse-grained level.

Kar et al. Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, we also estimated the solvent accessible surface area (SASA) for all proteins, which
is more sensitive to smaller changes of surface-exposed regions. Table S3 (Supplementary
Information) compares the PRIMO results with results from CHARMM as well as
experimental results. The agreement between PRIMO and CHARMM (and the experimental
values) is good for most proteins but in some cases, there are more significant deviations.
The average SASA obtained from PRIMO simulations is always larger than the CHARMM
or the experimental value except for 1VII. The worst case is 2RN2 where the SASA
increases by 1000 Å2. This suggests that although the overall packing appears to be
maintained, since the radii of gyration match well, structural elements near the surface may
exhibit a slight tendency to more exposure in PRIMO.

PRIMO versus other CG Force Fields: It is instructive to compare the performance of our
PRIMO force field with other recent CG force fields. Using a set of 956 proteins and a two-
bead model, Majek and Elber19 found that 58% of the proteins stayed within 5 Å Cα RMSD
from their native structures during 20 ns at 300 K. Tested on eight proteins with 17–98
amino acids, the three-bead model developed by Basdevant et al.15 yielded Cα RMSDs
varying between 3 and 8 Å from the experimental structures during 200 ns at 300 K. Pasi
and co-workers48 have observed that the equilibrium trajectories remain in the neighborhood
of the native structure, with average RMSD values between 3.9 and 4.6 Å. Gu et al.70 have
recently studied eight out of eleven proteins listed in Table 5 with the MARTINI model for
10 ns. They have observed that the average Cα RMSD for eight proteins varies between 3.39
and 5.03 Å. With PRIMO, we observe a range between 1.80 and 4.03 Å for the same set of
proteins. It should be noted here that the simulation times used in MARTINI were relatively
short compared to PRIMO (10 ns versus 50 ns). Furthermore, information about the
secondary structure had to be used as part of the MARTINI potential, while no such bias
was necessary with the PRIMO CG model.

Recently Chebaro and co-workers36 have shown that OPEP4-MD simulations at 300 K
preserve the experimental rigid conformations of 17 proteins with 37–152 residues with
RMSDs varying between 2.1 Å and 3.6 Å during 30 ns. Because the performance of OPEP4
is similar to what we report here, we also tested PRIMO in MD simulations of the 17
proteins from the OPEP test set. The results are shown in Table S4 (Supplementary
Information). As in the OPEP paper, we only report RMSD values for rigid core Cα atoms.
Overall, the performance of PRIMO is comparable to OPEP4 in simulating folded proteins
in their native environment. In our simulations, they vary between 2.8 to 3.8 Å for 14
proteins and 4.2 to 6.1 Å for three other proteins. The protein 2KTE shows the largest
RMSD of 6.1 Å. The apparently large RMSD with the experimental structure (6.1 Å) is
mainly due to small changes in the relative orientation of some of the α-helices. This
comparison suggests that PRIMO may perform somewhat worse than OPEP4 but it is
possible that the OPEP force field tends to over stabilize native states since it was optimized
primarily based on its ability to discriminate the native structure from non-native structures.
Another plausible reason could be an adequate balance between short-range and long
interactions due to a new formalism for the van der Waals interactions and the inclusion of i,
i + 3 interactions in helical proteins. PRIMO, on the other hand, was parameterized
primarily based on small peptides and aims to balance folded, native and unfolded, non-
native states.

Efficiency of the PRIMO Force Field: One of the main goals of coarse-graining is to
improve the computational efficiency. In order to compare the computational efficiency, the
above-mentioned eleven proteins were simulated for 1 ns with PRIMO, CHARMM/GBMV,
and CHARMM/TIP3P, respectively. In the all-atom simulations, the CHARMM36 force
field was used. All the simulations were performed in serial on an Intel E5-2680 processor
(2.7 GHz). A 2 fs time-step was used for all-atom MD simulations while a time-step of 4 fs
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was used in the case of PRIMO. The simulation time is listed in Table S5 (Supporting
Information). It is evident from the table that the simulation time is proportional to the
system size for each simulation methodology. Compared to AA-MD simulations with
GBMV representation, PRIMO can achieve about 8 to 12 speedup while about 10 to 20
speedup could be achieved with PRIMO compared to all-atom simulations with TIP3P water
molecules. On the other hand, MARTINI can achieve about 75~100 speedup compared to
AA-MD simulations for the same set of proteins70. A main bottleneck in PRIMO is the use
of the GBMV methodology for treating solvent effects. Replacing the GBMV model with
other, computationally more efficient GB implementations may greatly enhance the overall
computational efficiency of PRIMO.

6.2.2 PRIMO-REMD—In the previous section, we have shown that the PRIMO force field
is capable of maintaining the native structures of proteins in MD simulations. Here, we
evaluate the applicability of the force field in folding simulations of peptides, and in
particular to examine whether PRIMO is able to reproduce the correct balance between α-
helical and β-sheet favoring peptides. Folding simulations of five small peptides were
carried out using REMD simulations. A summary of all REMD simulations is provided in
Table 6. As listed in Table 6, the peptides considered here include (1) α-helical peptides
such as (AAQAA)3, AK17, and RNase C–peptide (CPEP); (2) β-hairpin peptides such as
GB1, the N-terminal hairpin in the protein GB1 domain, GB1m2, a mutant variant of the
same peptide, and trpzip2. For each system, the sequence, the number of replicas, the
simulation time per replica, the temperature range, and the time interval used for analysis are
reported in the table. All the simulations were started from an extended linear conformation
and all peptides were studied in their blocked forms. The REMD simulations spanned a
temperature range of 270 to 500 K with exponentially spaced 12 replicas for all. In all cases,
exchanges between two consecutive replicas were attempted every 10 ps, leading to an
acceptance ratio of 40–50%. The first 50 ns of each simulation of β-hairpin forming peptides
were discarded while the initial 30 ns were discarded for the faster-folding helix-forming
peptides.

Folding of Helical Peptides: The first peptide that was studied was (AAQAA)3. This
peptide was also used to tune the CHARMM/C36 force field58,59. Here we have studied this
peptide using our coarse-grained force field in conjunction with the CMAP based on
CHARMM/C22 and CHARMM/C36. The overall fraction of helicity, as measured by
DSSP, at 270 and 300 K was found to be ~39% and ~24%, respectively. This agrees
reasonably well with the experimental estimates of ~47% and ~19%71, respectively. It also
agrees well with a 21% fraction of helicity at 300 K obtained with the CHARMM36/CMAP
force field59. Furthermore, 95% helicity were found with the CHARMM22/CMAP force
field58 whereas PRIMO using a CMAP based on the CHARMM22/CMAP force field
resulted in 81% helicity indicating that PRIMO closely mimics the general characteristics of
the underlying force field. In contrast, the OPEP4 coarse-grained force field underestimates
the overall helix content and yields a helicity of only ~28% at 269 K72.

A noteworthy feature is revealed from Figure 17 where we have shown the overall helical
content of (AAQAA)3 as a function of temperature. It is evident from the figure that the
temperature dependence of the transition–which was not part of the force field optimization–
is also in satisfactory agreement with experiment. The transition is cooperative and occurs
over a small temperature range, as in experiment. A similar trend was also observed for
CHARMM36/CMAP simulations. However, this trend was absent in CHARMM22/CMAP,
PRIMO/C22 and AMBER simulations58. This further demonstrates that PRIMO responds to
changes in the CMAP potential in a similar way as the atomistic force field.
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The helicity as a function of residue is shown in Figure 18. We compare the calculated
residue helicity at 270 K with that derived from NMR chemical shift measurements at 274
K. It is evident from the figure that the average per-residue helical content of the peptide
corresponding to the PRIMO/C22 simulations is much higher than that of experiment. On
the other hand, residue helicity values obtained from PRIMO/C36 are highly correlated to
the experimental data. In particular, we find that the helical contents in the middle of the
helices are slightly higher than the helical contents closer to the termini as seen in
experiment.

Next, we were interested to see whether the optimized parameters can be transferred to other
helical peptides. We therefore also carried out REMD simulations of a helical peptide
[(AAKAA)3GY], known as the AK17 peptide, which has been studied experimentally73.
The total helical content of the AK17 peptide at 300 K was estimated to be ~35.2% with
PRIMO, averaged over the last 80 ns of 100 ns REMD simulations. This observation is
consistent with ~30–35% of the helical content of this peptide by CD measurements73. The
result also compares favorably with simulation results by Han et al.53 who reported the
helical content to be ~41% for this peptide when they performed REMD simulations with
their coarse-grained force field PACE.

Finally, we have studied the peptide CPEP corresponding to the first 13 N-terminal residues
of Ribonuclease A (RNase A), which has a remarkably high α-helical propensity for a
system of such a small size. According to CD measurements74, this peptide contains 50–
60% helix at 276 K and pH 5.25. Based on NMR experiments, Osterhout et al.75 proposed
that the conformational ensemble of RNase A C-peptide includes three principal
conformations: a set of extended conformations, a set of largely helical conformations, and a
set of conformations that contain a salt bridge between the side chains of Glu2 and Arg10.

In our PRIMO-REMD simulations, the helicity was found to be ~60% at 270 K while it is
estimated as ~54% and ~49% at temperatures of 283 and 298 K, respectively. This
observation agrees well with the experimental result74. The distribution of Cα RMSD from
the experimental structure (pdb: 1RNU) shows that the peak of the most frequently visited
conformations of the C-peptide is found to deviate by 2.5 Å at 270 K (Figure 19). Figure 19
furthermore suggests that our REMD simulations largely sample distinct conformations with
Cα RMSDs of 2.5, 4 and 5.5 Å. The conformations generated at 270 K were clustered with a
Cα RMSD cutoff of 4 Å using the K-means algorithm. In total, 12 clusters were identified,
and the top four clusters are shown in Figure 20 along with the experimental structure. The
populations of the four largest clusters are ~25%, ~22%, ~19%, and ~11% and they account
for ~77% of the total populations. The largest cluster corresponds to a largely helical
conformation while the fourth largest cluster corresponds to an extended conformation. A
similar trend was also observed in experiments75. In the other two clusters, the peptides are
also helical but the length of the helices differs from the structure with the largest cluster
population. The melting temperature identified by a peak in the specific heat capacity
profile, is estimated at 447 K, 422 K, and 400 K for (AAQAA)3, AK17, and CPEP,
respectively.

Folding Simulations of β-hairpin: The β-hairpin GB1, derived from residues 41–56 of the
C-terminus of protein G, has been characterized well experimentally75–78. Because of its
fast folding kinetics, GB1 has also been intensively studied in folding simulations52,53,79–83.
GB1 is known to be marginally stable, with a melting temperature of <273 K70. Recent
NMR experiments77 suggest that its folding population is only ~30% at 298 K and its
folding time is 17–20 μs. The stability of GB1 can be increased through mutations in its
loop such as D47P78 or the replacement of DDATKT by NPATGK (GB1m2)76. NMR
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experiments76,77 suggest that GB1m2 has ~74% folded structures at 298 K, and its folding
time decreases to ~5 μs.

Trpzip2 (tryptophan zipper 2) is the smallest (12-residue) peptide adopting a unique β-
fold84. In contrast to GB1, it has an exceptional stability (Tm ~345 K) and fast folding
kinetics (τf ~1.8 μs)85. Numerous force fields have been employed to study the folding of
trpzip2. Using the PACE force field52, Han et al. could fold trpzip2 within 1.6 Å while
Chebaro et al.36 were able to fold this peptide within 2 Å from NMR structure using OPEP4.
Using the MS-CG model, Hills et al.43 have noticed that their trpzip2 simulations starting
from the unfolded state rapidly converged to native-like conformations, exchanging between
three stable native-like conformations with Cα RMSDs of 2.5, 4 and 6 Å from the native
structure, respectively. In the study by Irbäck and Mohanty83, their all-atom force field
could fold the GB1 series correctly but could not fold trpzip2. Finally, using CHARMM22/
CMAP with the GB solvent model, Chen et al.82 found that their REMD simulations were
difficult to converge. This indicates that the folding of trpzip2 is an interesting test of the
ability of a force field to fold a β-sheet structure.

We performed REMD simulations for GB1 and its GB1m2 mutant as well as trpzip2 with
our PRIMO force field. Starting from a linear conformation (> 12 Å Cα RMSD from
native), PRIMO–REMD simulations for GB1, GB1m2 or trpzip2 rapidly converted to stable
native-like conformations. Here, the Tm identified by a peak in the heat capacity profile, is
calculated at 378 and 320 K for GB1m2 and trpzip2, respectively. In Figure 19, the
distributions of Cα RMSDs at 300 K are shown for GB1, GB1m2, and trpzip2. It is evident
that our REMD simulations sample native structures as well as other non-native
conformations. The distributions of Cα RMSD for GB1m2 and trpzip2 show a single peak
that is centered around 3.3 or 2.5 Å while additional peaks are observed in the case of GB1.
The generated conformations at 302 K were clustered with a Cα RMSD cutoff of 4 Å
following the K-means algorithm scheme. A total of 12 clusters were identified, and the top
3 clusters are shown in Figure 20. The Cα RMSDs of the representative structures
corresponding to the largest clusters were estimated to be 3, 3.3, and 2.5 Å with respect to
the experimental structure for GB1, GB1m2, and trpzip2, respectively. This suggests that for
all of the peptides PRIMO generates the most stable structures with native-like folds (Figure
20).

For trpzip2, the populations of the largest three clusters were 40%, 28%, and 11%. The
largest cluster corresponds to a native-like β-hairpin while the third largest cluster
corresponds to an extended structure. Interestingly, the structure corresponding to the second
largest cluster is an α-helix. Han et al.52 have also observed that before the native state is
reached, the peptide experiences non-native β-hairpin and transient helical structures.

The second largest cluster for GB1 corresponds to a twisted β-hairpin while the third largest
cluster corresponds to a marginally stable (~11%) α-helical conformation. The
computational study of GB1 by Levy and co-workers86 yields that the α-helical state makes
up ~8% of the population. Clearly, our result agrees very well with their study. The
populations of the largest clusters for GB1 and GB1m2 are 35% and 60%, respectively. This
is again in good agreement with the folded populations measured to be ~30% and 75%
respectively, at 298 K by NMR experiments76,77. Therefore, PRIMO not only folds wild-
type GB1 and its double mutant variant into their native-like structures but also reproduces
the delicate stability difference between the peptides.

Folding Simulations of WW Domain: The NMR structure of the 37-residue WW domain
is characterized by three β-strands at positions 8–12, 17–22, and 27–29 with flexibility
elsewhere. The WW domain was described as a challenge in protein-folding simulations.
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Freddolino et al.87 conducted 10-μs long all-atom MD simulations using the CHARMM27
force field, which results in only α-helical structures. The CG UNRES force field coupled to
multiplexed REMD simulations produced most native-like β-sheet structures with a RMSD
value of 4.8 Å and a population of 10% at 280 K88. Using REMD-OPEP, Chebaro et al.36

found that the energy landscape is characterized by two three stranded β-sheet structures
(RMSDs of 3.8 and 5.4 Å), each with a population of 35%, and two β-hairpin structures
with a population of 10 and 5%. Recently, Shaw group has folded this protein within 1 Å
RMSD by conducting very long all-atom MD simulations in explicit water using modified
AMBER and CHARMM force fields2,89. Some other groups have also folded this protein
with medium resolution90–93.

In order to evaluate the quality of our coarse-grained force field we conducted a replica
exchange molecular dynamics simulation starting from an extended conformation. We have
used 16 replicas spanning a temperature range of 250–615 K. Each replica was simulated for
200 ns. The distribution of backbone RMSD for the rigid core region (residues 8–30) at 300
K is shown in Figure S9 (Supporting Information). It is evident from the figure that
conformations with an RMSD of 5.9 Å were sampled most frequently followed by
conformations with RMSDs of 7.2, 8.4, and 4.4 Å. The representative structures are shown
in the Supporting Information (Figure S10). The most frequently sampled structure displays
β-strands spanning residues 3–9, 13–16, and 28–33; the second at positions 1–6 and 25–30;
and the third at positions 11–15 and 16–19. The most frequently sampled conformations in
our simulations display three strands but with a non-native register of H-bonds. While these
results are overall encouraging, there is clearly room for improvement and this test case will
motivate future improvements of PRIMO.

7. Conclusion
We are presenting here the physics-based coarse-grained protein model PRIMO that was
developed in a consistent bottom-up approach. It is at relatively high resolution combining
one to several heavy atoms into coarse-grained sites that were chosen so that all-atom
representations can be reconstructed efficiently and accurately. The PRIMO energy function
consists of standard molecular dynamics energy terms plus spline-based bonded terms and
an explicit hydrogen-bonding potential term. The solvent is treated implicitly via a
Generalized Born model in combination with atom-based solvation parameters. In contrast
to other similar models no bias toward known secondary structures or other structural
constraints are necessary to model a given protein system.

The PRIMO force field was primarily parameterized based on the CHARMM 22/CMAP
force field and maintains reasonable energetic equivalency to the all-atom force field. Only
one term in PRIMO, the hydrogen bonding potential, directly encodes information extracted
from known protein structures. All other terms are related directly or indirectly to the
CHARMM force field. CMAP terms in PRIMO were initially parameterized to reproduce
the effective ϕ/ψ distribution in short alanine-based peptides with the CHARMM22/CMAP
force field, but later reparameterized to reflect improved ϕ/ψ distributions with the new
CHARMM36/CMAP. While the present version of PRIMO appears to perform very well,
future work may involve a reparameterization to fully match the CHARMM36 force field,
and reflect in particular the updated side chain torsion terms.

PRIMO is designed as a fully transferable CG force field that can be used in the modeling of
arbitrary peptides and proteins. First tests presented here indicate that PRIMO succeeds in a
variety of contexts ranging from the ab initio folding of a series of peptides to their correct
native states, reproduction of the delicate stability difference among the GB1 series peptides,
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reproduction of the correct balance between α-helix and β-sheet propensities, stable
simulation of native-state proteins.

We envision PRIMO to be especially suitable in the context of AA/CG schemes where part
of a system is represented in full atomistic detail while other parts are represented at a CG
level. The compatibility of PRIMO with all-atom force fields allows the seamless mixing of
both levels of detail and facilitates the otherwise challenging treatment of AA/CG interfaces.
In a first example of such a multi-scale strategy, Predeus et al.59 have recently studied
conformational sampling of peptides in the presence of protein crowders employing three-
component multi-scale modeling scheme in which the peptides of interest were represented
at an atomistic level while the crowder proteins were modeled by PRIMO. The surrounding
aqueous environment was treated via generalized Born based implicit solvent. Other
applications where AA/CG schemes are likely to be interesting are mechanistic studies of
large biomolecular complexes and protein structure refinement. Finally, PRIMO is
implemented in CHARMM c37b and subsequent versions. The force field files are available
from the authors upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
PRIMO model for amino acids. The size of the spheres indicates van der Waals radii. Colors
indicate charges according to color bar given at the bottom.
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Figure 2.
Flowchart depicting the PRIMO force field parameterization scheme.
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Figure 3.
An example of the PRIMO harmonic potential (black) for bonds and angles fit into
corresponding CHARMM explicit dipeptide simulations (red). Left: bonded term between
SC1 and SC2 particles of tyrosine; right: angle term between SC1, SC2, and SC3 particles of
asparagine.
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Figure 4.
Distance spline potentials for bond and angle terms. The spline potential (black) is fitted to
the sampling (red) from CHARMM dipeptide simulations. Top left: for N1, CA1, and SC1D
angle of aspartic acid (N1-SC1D distance); top right: for SC1E-SC2E bond of glutamic acid;
bottom left: CO, CA1, and SC1R angle of arginine (CO-SC1R distance); bottom right: CO,
CA1, and SC1I angle of isoleucine (CO-SC1I distance).
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Figure 5.
Sampling of the angle cα-cβ-cγ for phenylalanine with or without the potential CA1-cβ*-
SC1. Red: sampling from all-atom simulations; green: with virtual site potential; blue:
without virtual site potential.
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Figure 6.
Different types of distance-based 1–4 spline potentials used in PRIMO (black) for torsional
potentials fitted to corresponding CHARMM dipeptide simulations (red). Top left: rotation
about SC1Y-SC2Y bond of tyrosine (CA1-SC3Y distance); top right: rotation about the CO-
CA1 bond of leucine (N of next residue and SC1L distance); bottom left: rotation about the
CA1-SC1T bond of threonine (N1-SC2T distance); bottom right: SC2R-SC3R bond of
arginine (SC1R-SC4R distance).
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Figure 7.
The binding energy profiles for the complex 1GUA obtained from CHARMM (green),
PRIMO (red), and PRIMO with the unscaled LJ well depths (black).
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Figure 8.
PMF for distance- and angle-based hydrogen bonding potential. Left: interaction between
residues i and i + 3, right: interaction between residues i and i + n where n > 3.
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Figure 9.
CHARMM22/CMAP-based (left) and CHARMM36/CMAP-based (right) PRIMO-CMAP
for nonglycine and nonproline residues. Colors indicate relative free energies according to
color bar given on the right.
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Figure 10.
CMAP potential for glycine (left) and proline (right). Colors indicate relative free energies
according to color bar given on the right.
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Figure 11.
Distributions of internal degrees of freedom for AAA. Upper panel: bonds; middle panel:
angles; lower panel: dihedral angles.
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Figure 12.
PRIMO versus CHARMM total energies for villin (left) and protein L (right) decoys with
corresponding linear correlation coefficients r.
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Figure 13.
Potentials of mean force for the sampling of ϕ/ψ backbone torsion angles in selected amino
acid residues from AXA simulations. A color bar indicating energy levels is provided on the
right.
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Figure 14.
Sampling of ϕ/ψ torsion angles in the central residues of Ala3, Ala5, Ala7, Val3, and Gly3
with the PRIMO force field (left column) and the CHARMM36 force field (right column).
Data corresponding to CHARMM simulations were obtained from Ref. 52. Colors indicate
relative free energies according to color bar given on the right of Figure 16.
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Figure 15.
Time evolution of Cα RMSD during PRIMO MD simulations selected proteins from their
respective crystal structure.
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Figure 16.
Superposition of average structure (green) for selected proteins obtained from PRIMO-MD
simulations onto the corresponding crystal structures (red).
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Figure 17.
Helical content of the (AAQAA)3 peptide as a function of temperature calculated from
PRIMO-REMD simulations with CMAPs based on CHARMM22 (green, triangles) and
CHARMM36 force fields (blue, circles) and from experiment (red, line).
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Figure 18.
Simulated vs experimental helicities as a function of residue for (AAQAA)3 with PRIMO/
C22 (green, triangles), PRIMO/C36 (blue, circles), and from experiment (red, squares) at
270 K71.
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Figure 19.
Distribution of Cα RMSD values for C-Peptide or CPEP (magenta), GB1 (green), GB1m2
(blue), and trpzip2 (red) in PRIMO REMD simulations.
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Figure 20.
Representative structures of the most populated clusters of the C-peptide (A), GB1 (B),
GB1m2 (C), and trpzip2 (D) peptides. Experimental structures (‘PDB’) are shown for
comparison. The Cα RMSDs of the representative structures corresponding to the largest
clusters were estimated to be 2.5, 3, 3.3, and 2.5 Å with respect to the experimental structure
for C-peptide, GB1, GB1m2, and trpzip2, respectively.
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Table 1

List of all decoy sets used in the parameterization of PRIMO interaction potential

# Decoy Set Description Content/Source Reference

1a Dipeptides All amino-acids 300,000 structures per residue, obtained from
explicit solvent MD simulation of dipeptides.

65

1b Dipeptides All amino acids A subset of 200 random structures of the above
decoy set.

2 Alanine based polypeptides (AAXAA)4 where X is any residue 250 structures from high temperature MD N/A

3 Proteins Villin headpiece (PDB: 1VII) 120 near-native, misfolded, and unfolded structures
from lattice sampling

65
Protein L (PDB: 2PTL) 216 folded and unfolded conformations from MD

simulations.

4 Protein-proteins Seven protein-protein complexes
(PDB: 1GUA, 1HV2, 2C5I, 2CIA,
2DLF 2OEI, 2V8S, 3BS5)

50 decoys per each complex, containing bound and
unbound structures

66
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Table 2

Comparison of solvation free energies for dipeptides obtained from PRIMO and CHARMM with GBMV
simulations. The correlation coefficient varies between 0.3 and 0.6.

AA ΔGCHARMM (kcal/mol) ΔGPRIMO (kcal/mol) ΔΔG(a) (kcal/mol)

Ala 17.2 16.5 −0.7

Arg −54.4 −57.4 −3.0

Asn 6.9 10.3 3.4

Asp −55.3 −55.3 0.0

Cys 15.4 17.2 1.8

Gln 7.2 8.7 1.5

Glu −56.9 −69.2 −12.3

Gly 14.8 17.1 2.3

Hsd 5.3 11.0 5.7

Hse 6.0 11.0 5.0

Ile 18.6 18.0 −0.6

Leu 17.8 17.2 −0.6

Lys −63.9 −64.0 −0.1

Met 17.4 16.7 −0.7

Phe 16.6 17.4 0.8

Pro 18.6 19.4 0.8

Ser 11.7 11.9 0.2

Thr 14.0 11.9 −2.1

Trp 14.0 13.4 −0.6

Tyr 11.5 11.5 0.0

Val 17.5 16.9 −0.6

(a)
ΔΔG = ΔGPRIMO − ΔGCHARMM
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Table 3

Binding free energies for protein-protein complexes obtained with PRIMO and CHARMM with GBMV
representation.

Protein Correlation ΔGCHARMM (kcal/mol) ΔGPRIMO (kcal/mol) ΔΔG(a) (kcal/mol)

1GUA 0.6 71.9 4.7 −67.2

1HV2 1.0 4.4 9.2 4.8

2C5I 0.8 9.0 2.4 −6.6

2CIA 0.6 21.8 0.1 −21.7

2D1F 0.8 6.1 6.0 −0.1

2OEI 0.8 27.5 0.5 −27.0

2V8S 0.8 7.9 0.1 −7.8

3BS5 0.5 39.0 1.8 −37.2

(a)
ΔΔG = ΔGPRIMO − ΔGCHARMM
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Table 4

Relative sampling (in %) of different regions in the Ramachandran plot for each amino acid in AXA.

Amino acids α(αR/α′) β αL

Ala 6 (0.51) 90 3.2

Arg 7 (0.20) 92 0.5

Asn 16 (0.29) 76 7.0

Asp 12 (17.94) 70 18.1

Cys 8 (0.24) 91 0.4

Gln 10 (0.13) 88 1.0

Glu 9 (0.57) 91 0.1

His 10 (0.20) 88 1.4

Ile 10 (0.17) 88 1.3

Leu 3 (0.74) 95 2.2

Lys 8 (0.17) 91 1.0

Met 8 (0.18) 92 0.3

Phe 9 (0.21) 90 0.6

Ser 14 (0.03) 65 17.4

Thr 16 (0.12) 83 0.9

Trp 6 (0.36) 94 0.2

Tyr 8 (0.18) 92 0.4

Val 5 (0.69) 91 4.2

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kar et al. Page 51

Ta
bl

e 
5

R
oo

t m
ea

n 
sq

ua
re

 d
ev

ia
tio

ns
 f

ro
m

 e
xp

er
im

en
ta

l s
tr

uc
tu

re
s 

in
 P

R
IM

O
-M

D
 s

im
ul

at
io

ns
 c

om
pa

re
d 

w
ith

 a
ll-

at
om

 s
im

ul
at

io
ns

. S
ta

nd
ar

d 
de

vi
at

io
ns

 a
re

pr
ov

id
ed

 in
 p

ar
en

th
es

es
.

P
D

B
R

es
av

g.
 C

α
 R

M
SD

 (
P

R
IM

O
)

(Å
)

C
α
 R

M
SD

 o
f 

av
g.

 s
tr

uc
tu

re
(P

R
IM

O
) 

(Å
)

av
g.

 C
α
 R

M
SD

 (
C

H
A

R
M

M
)

(Å
)

C
α
 R

M
SD

 o
f 

av
g.

 s
tr

uc
tu

re
(C

H
A

R
M

M
) 

(Å
)

R
gP

R
IM

O
 (

Å
)

R
gC

H
A

R
M

M
R

gex
p  

(Å
)

1V
II

36
3.

3 
(0

.6
)

2.
9

2.
4 

(0
.4

)
2.

3
9.

4 
(0

.2
)

9.
4 

(0
.2

)
9.

4

3G
B

1
56

2.
6 

(0
.5

)
2.

3
1.

1 
(0

.2
)

0.
8

10
.9

 (
0.

1)
10

.4
 (

0.
1)

10
.9

1B
D

D
60

2.
2 

(0
.3

)
1.

8
2.

0 
(0

.2
)

1.
6

9.
9 

(0
.1

)
9.

4 
(0

.1
)

9.
7

1D
3Z

76
3.

3 
(0

.5
)

3.
1

1.
4 

(0
.2

)
1.

3
11

.9
 (

0.
2)

11
.5

 (
0.

1)
12

.0

2P
T

L
78

2.
5 

(0
.5

)
1.

9
1.

6 
(0

.3
)

1.
3

11
.6

 (
0.

1)
11

.3
 (

0.
1)

11
.5

1B
T

A
89

2.
6 

(0
.3

)
2.

2
1.

3 
(0

.2
)

1.
2

12
.1

 (
0.

1)
12

.0
 (

0.
1)

11
.8

1F
K

S
10

7
3.

5 
(0

.6
)

3.
0

3.
6 

(0
.7

)
2.

7
13

.1
 (

0.
4)

13
.3

 (
0.

2)
13

.7

1A
2P

11
0

3.
9 

(0
.3

)
3.

8
1.

5 
(0

.3
)

1.
2

14
.0

 (
0.

2)
13

.6
 (

0.
1)

13
.6

2A
A

S
12

4
4.

4 
(0

.6
)

4.
0

2.
5 

(0
.4

)
2.

0
14

.9
 (

0.
2)

14
.5

 (
0.

2)
14

.2

1C
Y

E
12

9
2.

6 
(0

.3
)

2.
4

1.
4 

(0
.2

)
1.

2
13

.4
 (

0.
1)

13
.4

 (
0.

1)
13

.3

2R
N

2
15

5
4.

4 
(0

.6
)

3.
8

2.
0 

(0
.2

)
1.

6
15

.9
 (

0.
2)

15
.3

 (
0.

1)
15

.6

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Kar et al. Page 52

Ta
bl

e 
6

O
ve

rv
ie

w
 o

f 
PR

IM
O

-R
E

M
D

 p
ep

tid
e 

fo
ld

in
g 

si
m

ul
at

io
ns

.

sy
st

em
se

qu
en

ce
ti

m
e 

(n
s)

# 
re

pl
ic

as
T

 r
an

ge
 (

K
)

ti
m

e 
fo

r 
an

al
ys

is
 (

ns
)

A
Q

A
(A

A
Q

A
A

) 3
10

0
12

27
0–

50
0

30
–1

00

A
K

17
(A

A
K

A
A

) 3
G

Y
10

0
12

27
0–

50
0

30
–1

00

G
B

1
G

E
W

T
Y

D
D

A
T

K
T

FT
V

T
E

20
0

12
27

0–
50

0
50

–2
00

G
B

1m
2

G
E

W
T

Y
N

PA
T

G
K

FT
V

T
E

20
0

12
27

0–
50

0
50

–2
00

tr
pz

ip
2

SW
T

W
E

N
G

K
W

T
W

K
15

0
12

27
0–

50
0

50
–1

50

C
–p

ep
tid

e
K

E
T

A
A

A
K

FE
R

Q
H

M
10

0
12

27
0–

50
0

30
–1

00

J Chem Theory Comput. Author manuscript; available in PMC 2014 August 13.


