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Abstract
Metabolic syndrome is a growing problem globally, and is a contributor to non-communicable
diseases such as type II diabetes and cardiovascular disease. The risk of developing specific
components of the metabolic syndrome such as obesity, hyperlipidemia, hypertension, and
elevated fasting blood sugar has been largely attributed to environmental stressors including poor
nutrition, lack of exercise, and smoking. However, large epidemiologic cohorts and experimental
animal models support the “developmental origins of adult disease” hypothesis, which posits that
a significant portion of the risk for adult metabolic conditions is determined by exposures
occurring in the perinatal period. Maternal obesity and the rate of complications during pregnancy
such as preterm birth, preeclampsia, and gestational diabetes continue to rise. As our ability to
reduce perinatal morbidity and mortality improves the long-term metabolic consequences remain
uncertain, pointing to the need for further research in this area.
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Introduction
Metabolic syndrome is defined as the presence of at least 3 of the following metabolic risk
factors: abdominal obesity, high triglycerides, low high-density lipoprotein cholesterol, high
blood pressure, and elevated fasting blood sugar [1]. Metabolic syndrome is a growing
global health issue and is a risk factor for incident diabetes and cardiovascular disease

© Springer Science+Business Media New York 2013

Correspondence to: Kelli K. Ryckman, kelli-ryckman@uiowa.edu.

Conflict of Interest Kelli K. Ryckman declares that she has no conflict of interest.
Kristi S. Borowski declares that she has no conflict of interest.
Nisha I. Parikh declares that she has no conflict of interest.
Audrey F. Saftlas declares that she has no conflict of interest.

NIH Public Access
Author Manuscript
Curr Cardiovasc Risk Rep. Author manuscript; available in PMC 2014 June 01.

Published in final edited form as:
Curr Cardiovasc Risk Rep. 2013 June ; 7(3): 217–223. doi:10.1007/s12170-013-0308-y.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(CVD). There is a substantial body of evidence demonstrating that environmental exposures
in adolescence and adulthood such as poor nutrition, a sedentary lifestyle, and smoking
contribute significantly to the risk of metabolic syndrome. In addition to childhood and
adulthood environmental exposures, there is growing evidence that in utero exposures also
contribute to metabolic syndrome. Therefore, the identification of metabolic syndrome in
children and young adults may facilitate primary prevention efforts, before the onset of overt
CVD and type 2 diabetes mellitus (T2DM).

“Developmental programming” also referred to as “fetal origins of adult disease” or the
“Barker Hypothesis”, is the basis for the observation that low birth weight is not only
associated with immediate morbidities for the neonate but also leads to later risk for adult
diseases [2–4]. The theory posits that there are critical time periods during fetal and
postnatal development, when an individual is sensitive to environmental stressors. During
these early periods of “plasticity”, changes to an individual’s metabolism can remain
permanent. The adaptations that occur during critical periods of fetal and postnatal
development promote survival in an inadequate environment (ie, poor nutrition or growth
restriction). In these surviving individuals, however, later-in-life exposure to nutritional
abundance and growth can cause metabolic disturbances that promote the development of
diseases such as hypertension, obesity, and diabetes.

Another possible explanation for the associations between in utero exposures and adult
disease is that there are shared genetic risk factors that impact both early and later-life
outcomes. This explanation is well supported by the “fetal insulin hypothesis”, which posits
that the same genetic factors that predispose to decreased fetal insulin secretion in utero may
also affect insulin resistance in adulthood [5]. Evidence from animal models also suggests
that the intrauterine milieu influences not only the development of the fetus but also the
reproductive fitness of that fetus such that subsequent generations may continue to be
affected [6•, 7, 8]. This observation is described as “intergenerational programming.” For
example, female rodents (F0) fed a low protein diet give birth to offspring (F1) with low
birth weight, reduced insulin sensitivity, and high cholesterol [9, 10]. The F1 females also
give birth to offspring (F2) with metabolic conditions, despite being fed a normal diet [9,
10]. The presence of metabolic conditions in the F2 generation indicates that even in the
absence of the original environmental stressor (poor nutrition), these offspring remain
susceptible to metabolic conditions through “intergenerational programming.” One possible
mechanism for the transmission of chronic diseases between generations is epigenetic
changes that are inherited to the subsequent generations; however, more research in this area
is needed.

In the following review, we examine the evidence from human studies focused on the
relationship between maternal complications of pregnancy and the subsequent risks for
metabolic syndrome later in life for both the affected mothers and their offspring.

Birth Weight, Intrauterine Environment, and Metabolic Syndrome
The associations between birth weight and conditions that comprise “metabolic syndrome”
ie, hypertension, glucose intolerance, and obesity are observed in studies across the world,
and are well supported by large meta-analyses (Table 1). Other conditions in both childhood
and adulthood that are associated with birth weight include bone health, chronic kidney
disease, asthma, type 1 diabetes, cancer, and a host of other conditions [20–28]. While the
focus has largely been on the relationship of low birth weight (LBW) and later-life
metabolic disease, there is strong evidence that the association of birth weight is “U”-
shaped, meaning both high birth weight (macrosomia) and LBW carry significant risk for
later-life conditions [29••].

Ryckman et al. Page 2

Curr Cardiovasc Risk Rep. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While many studies show birth weight is independently associated with risk for later-life
disorders, others suggest it is not the cause but rather a surrogate marker of risk for
adulthood metabolic syndrome [29••]. Specifically, it is argued that over-nutrition and
accelerated “catch-up growth” increase the long-term risks for metabolic syndrome in
individuals born LBW. Infants born LBW can be described as appropriately grown for
gestational age, but born early (preterm delivery at 32 weeks, for example) or as growth
restricted and/or small for gestational age (SGA). SGA is most often defined as a birth
weight below the 10th percentile based on growth curves standardized to gestational age and
infant gender. SGA can represent infants that are constitutionally small due to genetic or
environmental causes or infants that are small due to intrauterine growth restriction (IUGR).
IUGR suggests that there is growth restriction or that the fetus’ growth potential is not being
met. IUGR is often accompanied by oligohydramnios and abnormal umbilical artery
Doppler flow. LBW and SGA likely have distinct etiologies in their contributions to adult
metabolic syndrome.

Maternal conditions such as obesity, gestational diabetes (GDM), and preeclampsia may
contribute to the development of in utero stress that is responsible for adverse birth
outcomes such as LBW or macrosomia; and through developmental programming, these
maternal conditions may also increase susceptibility to adult metabolic disease in the
offspring [30, 31]. While the underlying biological and etiologic mechanisms for these
various hypotheses are poorly understood, it is clear that the predisposition to adult disease
lies in key areas of fetal and postnatal development where there is a complex network of
genetic, epigenetic, metabolic, and environmental influences contributing to future disease
risk.

Maternal Obesity
Obesity is a significant global health problem; with one-third of adults in the United States
classified as overweight (BMI 25–29.9 mg/kg2) and another third classified as obese (BMI
>30 mg/kg2) [32]. Current estimates by the World Health Organization predict that by 2015,
2.3 billion adults will be overweight and 700 million will be obese [32]. Even more
concerning is that childhood obesity is also on the rise with 12.5 million (17 %) children
classified as obese in the United States [33]. In addition to the environment, fetal exposure
to maternal obesity in utero plays a significant role in the risk of childhood obesity [34].
Obesity and T2DM, which often coexist, are common metabolic disorders encountered by
women during their pregnancies, with an estimated one-third of all pregnancies complicated
by maternal obesity [35]. Obese women are at an increased risk for maternal complications
including GDM, preeclampsia, and thromboembolic events [36, 37]; and obstetric
complications such as fetal macrosomia, stillbirth, shoulder dystocia, cesarean delivery, and
preterm delivery [36–38].

Maternal obesity exerts a “U” shaped influence on birth weight in that this condition confers
risk for high birth weight as well as LBW, which is partly due to the increased risk for
preterm birth in obese women [39–41]. Macrosomic infants have increased amounts of
adipose tissue and are therefore at heightened risk for childhood obesity and diabetes later in
life [34]. LBW infants have periods of rapid catch-up growth, which is thought to program
them for a higher risk of obesity and metabolic syndrome [42•]. However, a systematic
review by Harder et al. shows that most published studies examining birth weight and
adulthood obesity demonstrate a linear relationship, whereby higher birth weight
predisposes to obesity in adulthood [29••, 43]. No studies report an inverse relationship and
only a small portion (8 %) show a “U” shaped distribution between birth weight and later-
life obesity [29••, 43]. In addition, several studies observe that high maternal pre-pregnancy
BMI and excessive weight gain during pregnancy are better predictors for adulthood
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metabolic syndrome and obesity in the offspring than birth weight (high or low) alone [42•,
44–46].

Gestational Diabetes
GDM, like maternal obesity, is a growing concern within the obstetrics field. It is estimated
that at least 7 % of all pregnancies are complicated with GDM, which is believed to be
underdiagnosed [47]. A recent study of 25,000 non-diabetic pregnancies collected from 9
countries observe that GDM is present in approximately 18 % of the studied pregnancies
when careful diagnostic criteria are employed [48]. Maternal obesity often coexists with
GDM, with up to 25 % of obese women having concurrent GDM [49]. This combination of
maternal disease adds additional risk and complexity to evaluating both the immediate and
long-term outcomes for the mother and offspring.

GDM is a significant problem with lasting long-term metabolic consequences for both the
mother and offspring. Among women diagnosed with GDM, approximately 5 %–10 % are
found to have diabetes (most often type II) immediately after pregnancy [47]. Additionally,
women with GDM are at a 35 %–65 % increased risk of developing diabetes later-in-life,
and their offspring are more likely to develop obesity and T2DM in childhood and
adulthood [47]. Several studies observe that children born to diabetic mothers have a higher
BMI than children born to mothers without GDM; this effect appears to be more pronounced
in older (9–14 years) rather than younger (5–8 years) children [30, 50•, 51]. In a study that
compared children 6–11 years according with maternal GDM status, those born large for
gestational age to mothers with GDM were at higher risk of metabolic syndrome than
infants that were born to mothers who were neither obese or had GDM [40]. Another study
found that children (10–16 years) born to mothers with GDM had higher systolic blood
pressure, BMI, and 2-hour glucose and insulin levels than control children [52]. This risk
appears to carry well into adulthood with findings that young adults (19–27 years) born to
mothers with GDM are at an 8-fold increased risk for T2DM [53].

Preeclampsia
Preeclampsia is a serious multi-system disorder of pregnancy that is defined as hypertension
occurring after the 20th week of pregnancy in the presence of proteinuria. The prevalence of
preeclampsia is between 2 % and 10 % worldwide with ~8.5 million women affected each
year [54, 55]. Preeclampsia results in ~18 % of maternal deaths each year and a significant
portion of fetal morbidity and mortality, which is generally related to iatrogenic delivery
preterm due to severe preeclampsia [55]. The cause of preeclampsia remains uncertain and
the only established cure for preeclampsia is delivery of the fetus. A minority of women (1
out of ~3000 pregnancies per year) with severe preeclampsia will develop eclampsia,
characterized by the occurrence of generalized convulsions or seizures. Severe
preeclampsia, remote from delivery, presents a complicated medical scenario posing
significant risks to both the mother with continuing the pregnancy and the fetus with preterm
delivery. More so, reduced placental blood flow often accompanies preeclampsia and can
result in fetal hypoxia and intrauterine growth restriction (IUGR) [55]. Women who have
had preeclampsia are at a 4-fold increased risk for chronic hypertension and a 2-fold
increased risk for ischaemic heart disease and stroke within 10–15 years after their affected
pregnancy [56].

In addition to increased maternal risk for CVD and metabolic syndrome after a preeclamptic
pregnancy, the offspring also carries additional metabolic risks. A large study of the
Helsinki Birth Cohort population found that offspring born to preeclamptic mothers were at
approximately a 2-fold increased risk for stroke; however, there was no evidence of an
increased risk for coronary heart disease [31]. A systematic review and meta-analysis of
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cardiovascular risk factors in children and young adults born to preeclamptic mothers
revealed that children and young adults aged 4–30 years old born to preeclamptic mothers
have higher systolic (2.39 mm Hg increase) and diastolic (1.35 mm Hg increase) blood
pressures than their counterparts born to non-preeclamptic mothers [57••]. The long-term
clinical significance of this increase is unclear. A modest yet significant increase in BMI
was observed among children born to preeclamptic mothers, even among term, normal
weight infants. Few studies have examined the risks of preeclampsia and adult offspring
cholesterol and glucose metabolism; therefore, no concrete conclusions could be drawn from
the meta-analysis on these factors [57••].

Genetic and Epigenetic Mechanisms
Most of the biology and etiology underlying the connections between the intrauterine
environment, fetal growth, and later-life metabolic disease is unknown; however, emerging
evidence suggests that shared genetic risk factors mediate these effects [58••]. Genome-wide
association studies and large meta-analyses have examined genetic associations with birth
weight and the risk of developing later-life metabolic disorders, such as T2DM [59–64]. A
recent systematic review described significant overlap in genes that are related to both birth
weight and T2DM (Table 2) [58••]. Genotypes in the ADCY5, CDKAL1, and HHEX-IDE
genes are associated with low birth weight as well as later-life high fasting plasma glucose
levels and T2DM [64]. Maternal genetic variants in GCK and TCF7L2 are associated with
high infant birth weight and T2DM [62]. These associations likely arise due to the link
between GCK and TCF7L2 and maternal glucose levels throughout pregnancy. Because
maternal glucose crosses the placenta, increased levels can result in an increase in fetal
insulin secretion, which in turn, can lead to an increase in birth weight [65].

Epigenetic changes, or those that affect gene expression through mechanisms other than
those mediated by the underlying DNA, comprise another mechanism that may mediate the
link between the intrauterine environment and later-life disease [67••]. Specific epigenetic
changes include DNA methylation and histone modifications. A recent study demonstrated
that epigenetic profiles measured at birth are associated with childhood adiposity [68]. This
epigenetic mechanism explained ~25 % of the variation in fat mass. Evidence also suggests
that epigenetic changes occurring during a time of developmental ‘plasticity’, such as during
periods of fetal growth, can be passed on from one generation to the next [69]. Studies are
also demonstrating that maternal nutrition is not only directly important for fetal growth but
also influences adulthood diseases through epigenetic mechanisms [70–72].

Conclusions
The growing body of epidemiologic evidence presented here, and experimental evidence in
animal models reviewed elsewhere [29••], indicates that pregnancy complications and
adverse birth outcomes strongly predispose both mother and offspring of affected
pregnancies to metabolic syndrome, CVD, and T2DM later in life. These reproductive
factors, however, are rarely taken into consideration when evaluating an individual’s risk for
metabolic diseases. Approximately 1 in 12 infants are born LBW each year in the United
States and an even greater proportion is exposed to adverse pregnancy conditions such as
gestational diabetes, preeclampsia, or maternal obesity. As our ability improves to reduce
the immediate morbidity and mortality of these infants, many more persons with low and
high birth weight are surviving to adulthood, and are therefore at an increased risk for later-
life morbidity and mortality. In addition to increasing the offspring’s risk for metabolic
syndrome, pregnancy complications also increase the mother’s risk for developing CVD
later in life. More research is needed to understand the biological etiology underlying these
relationships, including genetic and epigenetic mechanisms. However, with an increasing
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body of evidence indicating that the intrauterine environment influences an offspring’s risk
for metabolic syndrome in adulthood, further clinical consideration is warranted through
increased monitoring, risk stratification, and follow-up of individuals with such adverse
reproductive histories.
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