
Gene Promoter Scan Methodology for Identifying and
Classifying Coregulated Promoters

Igor Zwir, Oscar Harari, and Eduardo A. Groisman
Department of Molecular biology, Howard Hughes Medical Institute, USA

Abstract
A critical challenge of the postgenomic era is to understand how genes are differentially regulated.
Genetic and genomic approaches have been used successfully to assign genes to distinct
regulatory networks in both prokaryotes and eukaryotes. However, little is known about what
determines the differential expression of genes within a particular network, even when it involves
a single transcription factor. The fact that coregulated genes may be differentially expressed
suggests that subtle differences in the shared cis-acting regulatory elements are likely to be
significant. This chapter describes a method, termed gene promoter scan (GPS), that discriminates
among coregulated promoters by simultaneously considering a variety of cis-acting regulatory
features. Application of this method to the PhoP/PhoQ two-component regulatory system of
Escherichia coli and Salmonella enterica uncovered novel members of the PhoP regulon, as well
as regulatory interactions that had not been discovered using previous approaches. The predictions
made by GPS were validated experimentally to establish that the PhoP protein uses multiple
mechanisms to control gene transcription and is a central element in a highly connected network.

Introduction
The two-component system constitutes a major form of bacterial signal transduction.
Typically, a two-component system consists of a sensor kinase that responds to a specific
signal by modifying the phosphorylated state of a cognate response regulator. The majority
of response regulators are DNA-binding proteins that modulate gene transcription. Because
the phosphorylated form of the response regulator binds to target promoters with higher
affinity than the unphosphorylated one, sensor-promoted changes in the phosphorylated state
of a response regulator can have a profound impact in the gene expression profile of an
organism.

Genomic analysis revealed that there is a direct correlation between genome size and the
number of two-component systems present in a given bacterial species. In addition,
organisms that live in varied environments tend to have a larger number of two-component
systems than those that occupy a single environment. For example, the aphid endosymbiont
Buchnera aphidicola has a genome size of approximately 640 kb that does not encode two-
component systems (Shigenobu et al., 2000). In contrast, Escherichia coli has a genome size
of 4.5 Mb encoding 30 such systems (Blattner et al., 1997), and the environmental microbe
and opportunistic pathogen Pseudomonas aeruginosa, with a genome size of 6.3 Mb, harbors
118 two-component system proteins (Stover et al., 2000).

The number of targets that a response regulator controls varies among the different systems
found in a given bacterial species and between homologous systems in related bacterial
species. In E. coli, for example, the response regulator KdpD appears to govern transcription
of a single promoter, whereas the response regulator ArcA modulates expression of >30
operons (Georgellis et al., 1999; Salgado et al., 2004). Because the products encoded by the
multiple targets of regulation of a response regulator such as ArcA are likely required in
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different amounts and/or for different extents of time, the corresponding genes must differ in
their cis-acting promoter sequences responsible for the distinct gene expression patterns of
individual members of a regulon (i.e., a group of genes that is coordinately regulated by a
regulatory protein). The analysis of coregulated genes is complicated by the fact that two-
component systems can control gene expression indirectly by modulating the expression
and/or activity of other two-component systems, transcriptional regulators, and sigma
factors. Moreover, the targets of regulation of orthologous response regulators overlap only
partially in closely related species such as Salmonella and E. coli, suggesting that small
changes in the amino acid sequence of a response regulator and/or in cis-acting promoter
features can have a big impact on gene regulation. Cumulatively, these issues highlight the
need for methods that identify the critical elements of a promoter determining gene
expression and that are not heavily dependent on sequence conservation such as
phylogenetic footprinting methods (Manson McGuire and Church, 2000).

The material required for analyzing the promoter features governing bacterial gene
expression is widely available. It consists of genome sequences (often of multiple isolates of
a given bacterial species), genome-wide transcription data (typically obtained using
microarrays), and biological databases containing examples of previously explored cases.
However, it is not yet possible to scan a bacterial genome sequence and readily predict the
expression behavior of genes belonging to a regulon. In principle, coregulated genes could
be differentiated by incorporating into the analysis quantitative and kinetic measurements of
gene expression (Ronen et al., 2002) and/or considering the participation of other
transcription factors (Bar-Joseph et al., 2003; Beer and Tavazoie, 2004; Conlon et al., 2003).
However, there are constraints in such analyses due to systematic errors in microarray
experiments, the extra work required to obtain kinetic data, and the missing information
about additional signals impacting on gene expression. These constraints hitherto only allow
a relatively crude classification of gene expression patterns into a limited number of classes
(e.g., up-and downregulated genes [Oshima et al., 2002; Tucker et al., 2002]).

This chapter discusses a methodology designed to identify and classify promoters that are
coregulated by a bacterial transcriptional regulator, such as the response regulators of two-
component systems. This methodology, termed gene promoter scan (GPS), groups
promoters sharing distinct sets of promoter features to generate groupings that may reflect
biological properties of a system under investigation such as the time and place that a
promoter is activated or silenced.

We have applied the GPS method to investigate the targets of regulation of the response
regulator PhoP, which together with the sensor kinase PhoQ form a two-component system
that is a major regulator of virulence and of the adaptation to low Mg2+ environments in
several gram-negative species (Groisman, 2001). The PhoQ protein responds to the levels of
extracytoplasmic Mg2+ by modifying the phosphorylated state of the DNA-binding protein
PhoP (Castelli et al., 2000; Chamnongpol et al., 2003; Montagne et al., 2001). The PhoP/
PhoQ system is a particularly interesting case study because (1) it controls the expression of
a large number of genes, amounting to approximately 3% of the genes in the case of
Salmonella (Zwir et al., 2005). (2) Promoters harboring a binding site for the PhoP protein
may differ in the distance and orientation of the PhoP box relative to the RNA polymerase-
binding site, as well as in other promoter features. (3) PhoP also controls gene expression
indirectly by regulating the expressionand/or activity of other two-component systems at the
transcriptional (e.g., RstA/RstB) (Minagawa et al., 2003), posttranscriptional (e.g., SsrB/
SpiR) (Bijlsma and Groisman, 2005), and posttranslational (e.g., PmrA/PmrB) (Kato and
Groisman, 2004) levels. In addition, PhoP regulates the levels of the alternative σ factor
RpoS (Tu et al., 2006) and participates in a feed-forward loop with the regulatory protein
SlyA (Shi et al., 2004) (Fig. 1).
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Challenge of Identifying Promoter Features Governing Gene Transcription
Identification of the promoter features that determine the distinct expression behavior of
coregulated genes is a challenging task because of the difficulty in ascertaining the role that
subtle differences in shared cis-acting regulatory elements of coregulated promoters play in
gene transcription. Therefore, approaches that homogenize features among promoters (e.g.,
relying on consensuses to describe the various promoter features) and even across species
can hamper the discovery of key differences that distinguish promoters coregulated by the
same transcriptional regulator. For example, methods that look for matching of a sequence
to a consensus have been successfully used to identify promoters controlled by particular
transcription factors (Bailey and Elkan, 1995; Martinez-Antonio and Collado-Vides, 2003;
Stormo, 2000). Although these methods often increase specificity, their strict cutoffs
decrease sensitivity (Hertz and Stormo, 1999; Stormo, 2000), which makes it difficult to
detect binding sites with a weak resemblance to a consensus sequence. The complexity of
the analysis is exacerbated by the need to consider other sequence elements relevant to
differential expression patterns, including the class and location of the RNA polymerase, the
presence of binding sites for other transcription factors, and their topological location in the
DNA (Beer and Tavazoie, 2004; Pritsker et al., 2004). Indeed, similar expression patterns
can be generated from different features or a mixture of multiple underlying features, thus
making it more difficult to discern the molecular basis for analogous gene expression.

GPS Methodology as an Integrated Algorithm
The increased availability of biological information, such as genome sequences, microarray
gene expression, as well as text data stored in public databases, and knowledge-discovery
techniques (or data mining) is used to currently generate hypotheses that need to be
evaluated. For example, when groups of coregulated transcripts are identified by clustering
the expression patterns generated by a series of microarray experiments, the promoter
sequences for each transcript in a cluster may be fed to a motif discovery algorithm to find
common elements implicated in transcriptional regulation among coexpressed genes. These
approaches incorporate knowledge in a decision-making cascade that can be summarized as
follows: find genes with similar expression patterns and then see if they have similar
promoters (Holmes and Bruno, 2000).

Most of the available algorithms implemented by the approaches described earlier base their
decision in cutoffs that constrain one analysis stage on the previous one. Therefore, the
analysis is hampered by the need to decide whether to consider first gene expression data or
promoter features. In addition, the analysis is complicated because of the noisy nature of
microarray data, the possibility of cryptic promoter elements contributing to gene
expression, the potential for interaction among regulatory proteins, and the existence of
alternative modes of transcription regulation, which remain poorly understood.

There are simple algorithms that ignore the constraints just listed, which appear to generate
interesting results and be of practical benefits (Tavazoie et al., 1999). However,
identification of the promoter features that determine the distinct expression behavior of
coregulated genes within a regulon requires a more detailed and integrated analysis of the
regulatory features. Why is it useful to have an integrated model? One reason is that cascade
algorithms and integrated algorithms are solving subtly different problems. In contrast to
cascade algorithms, integrated algorithms can be summarized as finding clusters of genes
that have (a) similar expression patterns and (b) similar promoters (Holmes and Bruno,
2000).

The gene promoter scan is a machine learning method (Cheeseman and Oldford, 1994; Cook
et al., 2001; Cooper and Herskovits, 1992) that identifies, differentiates, and groups sets of
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coregulated promoters by simultaneously considering multiple cis-acting regulatory features
and gene expression (Fig. 2). GPS carries out an exhaustive description of cis-acting
regulatory features, including the orientation, location, and number of binding sites for a
regulatory protein, the presence of binding site submotifs, and the class and number of RNA
polymerase sites (Fig. 3).

The GPS method is specifically aimed at handling the variability in sequence, location, and
topology that characterize gene transcription. Instead of using an overall consensus model
for a feature, where potentially relevant differences are often concealed because of intrinsic
averaging operations between promoters and even across species, we decompose a feature
into a family of models or building blocks. This approach maximizes the sensitivity of
detecting those instances that weakly resemble a consensus (e.g., binding site sequences)
without decreasing the specificity. In addition, features are considered using fuzzy
assignments (i.e., not precisely defined) instead of categorical entities (Bezdek, 1998; Gasch
and Eisen, 2002; Ruspini and Zwir, 2002), which allow us to encode how well a particular
sequence matches each of the multiple models for a given promoter feature. Individual
features are then linked into more informative composite models that can be used to explain
the kinetic expression behavior of genes.

It should be noted that GPS treats each of the promoter features with equal weight because it
is not known beforehand which features are important. To circumvent limitations imposed
by relatively few classes of gene expression levels to cis-acting features, the GPS method
treats gene expression data as one feature among many (as opposed to testing it as a
dependent vaiable). The various features are analyzed concurrently and recurrent relations
are recognized to generate profiles, which are groups of promoters having features in
common.GPS uses an unsupervised strategy (i.e., preexisting examples are not required), as
well as multiobjective optimization techniques, which enhance the likelihood of recovering
all optimal feature associations rather than potentially biased subsets (Deb, 2001; Ruspini
and Zwir, 2002). The resulting profiles group promoters thatmay share underlying biological
properties.

Exploring Targets of Regulation of a Response Regulator Using GPS
GPS Built-in Features

The GPS method performs an integrated analysis of promoter regulatory features to identify
profiles, which are sets of promoters described by common sets of features. We initially
focused on six types of features for describing a training set of promoters (Bar-Joseph et al.,
2003; Beer and Tavazoie, 2004; Li et al., 2002; Zwir et al., 2005b): submotifs, which model
the studied transcription factor-binding motifs; orientation, which characterizes the binding
boxes as either in direct or opposite orientation relative to the open reading frame; RNA pol
sites, which characterize the RNA polymerase motif (Cotik et al., 2005), the class of σ70
promoter (Romero Zaliz et al., 2004) that differentiates class I from class II promoters, and
distance distributions (close, medium, and remote) between RNA polymerase and
transcription factor-binding sites in activated and repressed promoters (Salgado et al., 2004);
activated/repressed, where we learn activation and repression distributions by compiling
distances between binding sites for RNA polymerase and a transcription factor; interactions,
where we evaluate motifs for several transcription factor-binding sites and model the
distance distributions between motifs colocated in the same promoter regions; and
expression, which considers gene expression levels.

GPS Initialization Strategy
The GPS method takes a list of candidate genes obtained from the literature, gene expression
experiments (e.g., microarray, ChiP, or RT-PCR), or user-based hypothesis and generates
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initial profiles of each individual type of feature. The generation of initial profiles increases
the sensitivity of a feature without decreasing its specificity (Zwir et al., 2005a). This
distinguishes GPS from methods relying on a single consensus, which often fail to describe
and retrieve potentially interesting candidates that exhibit a weak resemblance to an average
consensus pattern, which may be construed as a gene being indirectly regulated by a
transcription factor (Zwir et al., 2005b).

Input data should be specified according to each type of feature, that is, DNA sequences for
the submotifs and, if available, gene expression levels for the expression (see online manual
at http://gps-tools.wustl.edu). The initial models for each feature can also be provided by the
user. For example, GPS uses position weight matrices generated by the Consensus/Patser
method (Stormo, 2000), but also can accept any other built-in matrix generated from other
methods (Tompa et al., 2005). Indeed, the number of profiles can be a priori specified or
calculated automatically using the Xie-Beni index (Zwir et al., 2005a). Although the
specifications of these initial conditions are crucial for clustering algorithms (Bezdek et al.,
1992), they are not critical for GPS and can be solved later by the dynamic approach
followed by the method (Zwir et al., 2005a).

Two or more promoter regions containing different binding sites for a given transcription
factor are considered as distinct instances, which can be later associated by the method as
more features become incorporated into the analysis. Indeed, GPS considers promoters
independently of phylogenetic conservation. Therefore, after dissecting direct and indirect
regulation, each instance in the database is constrained to a promoter region where a binding
site motif of the studied transcription factor is found. Several features describe promoters
exhibiting a binding site of the studied transcription factor. For example, one or more RNA
polymerase-binding sites can be predicted around that site, which can be class I or II and
located at different distances termed close, medium, or remote. The subjacent models for
these features were learned from experimental examples provided by the RegulonDB
database (Salgado et al., 2004). However, we generated predictions from raw data rather
than using original data present in RegulonDB. Additionally, GPS characterizes binding
sites for a transcription factor as participating in either activation or repression by evaluating
their distance from the RNA polymerase site. In this way, GPS establishes relationships
between the different binding sites and their topology in a promoter region. Finally, because
the expression is considered as one feature among many, promoters can be analyzed in the
absence of expression data.

One of the most salient properties of the strategy followed by GPS to encode features is the
use of metadata. Thus, GPS can encode features as fuzzy data (i.e., not precisely defined)
instead of categorical entities (Bezdek, 1998; Gasch and Eisen, 2002; Ruspini and Zwir,
2002), where a promoter instance can be related to more than one model. This captures the
variability that exists in biological systems and delays the grouping of promoters until more
information (i.e., features) is added. For example, a sequence corresponding to a
transcription factor-binding site can be initially similar to both submotif M1 and submotif
M2. Later, it could be assigned to a profile containing M1 after adding the orientation and
the RNA pol site features. Moreover, new intermediate profiles can be generated by taking
advantage of the implementation of the profiles as dynamic fuzzy clusters (Bezdek, 1998).

The GPS method also uses metadata to analyze composite features. It could be the case, for
example, that two or more features would not be independent of each other. Thus, GPS joins
them by using fuzzy predicates [i.e., such as P(A and B) in a probabilistic interpretation].
Indeed, the distance between binding sites for RNA polymerase and for a transcription
factor is meaningless if one does not consider the occurrences of the sites.
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GPS Grouping Strategy
The GPS method performs an exhaustive combination of the features, which are
dynamically rediscretized at each level of a lattice searching space (Fig. 4). The method
allows reassignations of observations between sibling profiles, thereby solving initial
misspecifications and allowing to identify cohesive sets of promoters in environments with
reduced data sets and high levels of uncertainty. For example, a promoter that initially

resembles both  and  submotifs and is initially assigned to  can later be reassigned

to  in a level 3 profile . This happens because, unlike hierarchical clustering, GPS

allows movement between sibling profiles  and dynamically
reformulates the initial discretization of the profiles (Zwir et al., 2005a) (Fig. 5).

GPS Evaluation Strategy
The profile searching and evaluation process is carried out as a multiobjective optimization
problem (Deb, 2001; Rissanen, 1989; Ruspini and Zwir, 2002), which must consider
conflicting criteria: the extent of the profile, the quality of matching among its members and
the corresponding features, and its diversity (Cook et al., 2001; Ruspini and Zwir, 2002).
This strategy allows the identification of sets of optimal, instead of single or maximum
estimated, profiles as models of alternative hypotheses describing distinct regulatory
scenarios.

GPS Validation Strategy
GPS is an unsupervised method that does not need the specification of output classes, which
is in contrast to supervised approaches (Zwir et al., 2005a). Thus, the discovered profiles can
be used for independently explaining external classes as a process often termed labeling
(Mitchell, 1997). These classes can be introduced as a control in GPS, which automatically
correlates them with the obtained profiles. For example, GPS uses the expression as one
feature among many often derived from a constrained microarray gene expression
experiment that just distinguishes between upand downregulated genes (e.g., mutant vs
wild-type conditions). However, the posterior availability of more discriminating classes,
such as those derived from time-dependent ChiP experiments, can be used as an external
phenomenon to be explained by the learned profiles.

Technical Specifications of GPS
Programming Resources

The GPS system has been implemented to be a platform-independent method, with a
flexible and fast performance. It combines various machine learning techniques,
implemented in cohesive programming languages and frameworks, to satisfy these
nonfunctional requirements. The software consists of a core application, which executes
sequentially as well as in parallel fashion on a cluster of computers, and two remote
interfaces: a light web front end user interface developed in php, which accepts user’s input
and e-mails results, and a web service interface coded in java.

User Interface
Data definition and parameters are specified to the system as a single XML document
(Wang et al., 2005). This standard provides the required flexibility and readability to allow
specification of the database, features, and initial profiles. An XML schema is provided
(http://gps-tools.wustl.edu/gps/gps.xsd) to verify the document and to facilitate its editing.
Apache Tomcat and Apache Axis are used to provide Web service interface, allowing
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application-to-application interaction in a standardized fashion (http://gps-tools.wustl.edu:
8080/gps).

The core system is coded in a java-independent platform. Advanced java virtual machines
with adaptive and just-in-time compilation and other techniques now typically provide
performance up to 50 to 100% the speed of C++ programs (Lindsey et al., 2005). We also
encapsulated the execution of existing position weight matrice software by developing ad-
hoc scripts in perl scripting language.

Parallel Execution
Components that require a large amount of processing power are executed in parallel in a
high-performance computing environment provided by the Condor High throughput
computing workload management system (Basney and Livny, 1999), which administers
batch jobs on clusters of dedicated computing resources.

GPS Input
The GPS method captures the input specifications by an XML file that contains two parts.
The first part corresponds to the specifications of the features, whereas the second
corresponds to the database composed of the promoter values for the features.

Feature Specifications
Here we describe examples of several features. The complete manual is online at http://gps-
tools.wustl.edu.

Purpose: representing DNA-binding site submotifs

Syntax

<Feature type=“sequence” name=“submotif” >

Indicates that input data can be a DNA sequence or a position weight matrix containing a
motif, and its name, which must be unique.

<Bin name=“M_1” membershipFile=“gps_data/M_1.mat” file Type=“mat” />

Specifies one input bin (i.e., submotif) that was previously clustered and preprocessed as a
position weight matrix and stored in a file termed M_1 with extension “mat” located in a
user-defined directory.

<Bin name=“M_2”>

<InitialMember name=“mgtC_681”/>

<InitialMember name=“mgtC_718”/>

<InitialMember name=“mgtC_925”/>

</Bin>

Specifies a bin containing the name of promoters belonging to a desired submotif, which are
used to automatically calculate the initial matrices if they are not available.

<Bin cluster=“n”>

If a single bin is proposed, GPS automatically clusters the instances into (“n”) bins. If the
number of clusters is null (“”), GPS uses the Xie-Beni index to calculate the initial number
of clusters.
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Description: GPS takes initial lists of candidate promoter sequences for a specific
transcription factor and clusters themusing FuzzyC-Means algorithm into bins. Each of
these bins is further encoded as position weight matrices using the Consensus/Patser
method and used as single-type initial profiles. If the number of clusters is not specified,
GPS uses the Xie-Beni index to provide the corresponding number. Matrices provided
by othermethods (e.g., MEME) can be also directly incorporated as input data. The
initial bins would be dynamically reformulated when new features were aggregated.

Purpose: representing microarray gene expression

Syntax

<Feature type=“expression” name=“Expression” >

Indicates that input data can be a vector of continuous values corresponding to levels of gene
expression resulting fromone or more experiments. The name must be unique.

<Bin name=“E_1” membershipFile=“gps_data/E_1.exp” fileType =“exp” />

Specifies one input expression bin, where columns are distinct experimental or time
conditions that were previously clustered and preprocessed as a prototype (i.e., centroid or
array of real numbers) and stored in a file termed E_1 with extension “exp” located in a
user-defined directory.

<Bin name=“E_2”/>

<InitialMember name=“mgtC_681”/>

<InitialMember name=“mgtC_718”/>

<InitialMember name=“mgtC_925”/>

</Bin>

Specifies a bin containing the name of promoters belonging to a desired expression profile,
which is used to automatically calculate the corresponding initial prototype.

<Bin cluster=“n”>

If a single bin is proposed, GPS automatically clusters the instances into (“n”) profiles. If the
number of clusters is null (“”), GPS uses the Xie-Beni index to calculate the initial number
of profiles.

Description: GPS takes lists of candidate genes, where columns indicate different or
time-dependent experiments. GPS clusters them using Fuzzy C-Means algorithm into
bins. Each of these bins is further encoded as a centroid and used as single-type initial
profiles. If the number of clusters is not specified, GPS uses the Xie-Beni index to
provide the corresponding number. The initial profiles would be dynamically
reformulated when new features were aggregated.

Purpose: representing the orientation or topological order of a regulatory element

Syntax

<Feature type=“value” name=“Orientation” deviation_factor=“0.5”>

Indicates that input data can be a continuous/integer value, which represents continuous or
discrete events, respectively. For example, the orientation of a binding site relative to the
open reading frame (e.g., direct or opposite) or the topological order of a regulatory element
regarding another (e.g., in front of or behind). The prototypes are uniformly discretized
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according to the deviation factor. For example, choosing a partition with three values P0, P1,
and P2, GPS establishes that P1 will be the central value and P0,2 = P1 ± df × stdex.

Description: GPS takes lists of promoters characterized by a discrete or continuous
values (e.g., direct = 0 and indirect=1; repressed = 0, activated = 1, and fuzzy activated
or repressed = 0.5). The method clusters them using Fuzzy C-Means algorithm into
bins. Each of these bins is further encoded as prototypes calculated as specified in the
syntax section.

Purpose: representing fuzzy features

Syntax

<Feature type=“fuzzy” name=“Fuzzy_Motif” input type=“sequence”
interpretation=“possibilistic∣fuzzy”>

Indicates metadata that encode the degree of matching between an instance and several
profiles (i.e., the similarity between instances and the prototypes that represent the profiles).
The input can accept different types of features: “sequence,” “expression,” etc. The
encoding method could be fuzzy or possibilistic (i.e., membership to all profiles do not have
to sum 1).

<Bin name=“MF_1” centroid=“[0.652 0.036 0.160 0.528]”wi=“ 0.5339” (default=1)/>

<Bin name=“MF_2” centroid=“[0.808 0.284 0.348 0.174]” wi=“0.1264”/>

<Bin name=“MF_3” centroid=“[0.433 0.229 0.422 0.625]” wi=“0.1015”/>

The initial profiles (e.g., submotifs) are encoded as vectors of continuous values (centroids)
that represent the averaged similarity of their members to a feature submodel (e.g., the
position weight matrix of submotif M_1). Indeed, the vector contains the similarity values of
the profile members to all other single-type profiles. The wi values correspond to the
amplitude of the fuzzy clusters defined for each centroid.

<Bin name=“MF_4” centroid=”“ wi=“ membershipFile= “gps_data/M_1.mat” …
membershipFile= “gps_data/M_4.mat”/>

If the centroids are not specified, GPS calculates them based on the profiles defined in
membershipFile and adjusts the amplitude of the fuzzy cluster based on the wi parameter.

Description: GPS allows each promoter instance to belong to multiple profiles in
parallel by encoding into a metadata its degree of similarity to all profile prototypes.
Therefore, these membership values can be considered by GPS, instead of original data,
during the learning phase of the method. This codification allows representing different
types of input data (e.g., expression, sequences) into the same framework composed of
numeric vectors. Moreover, this approach allows encoding intermediate classes that
were not initially specified (e.g., the expression class representing the concept “between
high and medium” corresponding to those genes where expression is consistent with
both levels of expression: high and medium).

GPS Output
The output of the program is composed of four main sections: the XML file submitted by
the user, the list of explored profiles, the selected nondominated profiles, and a snapshot
matrix designed to export the results into a typical spreadsheet or into the Spotfire
environment (Wilkins, 2000).
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List of Profiles
This section is identified by the tag “+Profiles:” and enumerates all profiles in the lattice of
potential hypothesis. The name of a profile corresponds to the abbreviated names of the
features contained in that profile (e.g., the profile named orientation_i.expression_ j.motif_k
is composed of the rediscretized version of the original features and i, j, and k correspond to
the initial single-type profiles). Values corresponding to the evaluation of the profiles are
dumped as the probability of intersection (i.e., profile extent evaluated by the probability of
the features intersection [PI]) and similarity degree of matching between promoters and the
prototypes of the profile (SI). Finally, we describe each profile by listing its features, its
prototype or centroid, and the recovered promoters, indicating name, feature values, and
evaluation score.

Dominance Relationship
The start of this section is indicated by the “+Dominance tag,” where each profile is
described by name, PI and SI scores, and a tag indicating if it is either dominated or
nondominated. Profiles containing unique promoters are not considered. Dominated profiles
also contain a list of their dominating profiles.

Snapshot Matrix
This section is identified by the “+Matrix tag,” where columns represent profiles and rows
correspond to the profile name, the domination status, the PI and SI values, the number of
promoters recovered by the profile, the number of features that characterize the profile, and,
finally, the membership value of all of the promoters to the profile.

Uncovering Promoter Profiles Regulated by Response Regulator PhoP
Using GPS

We examined the genome-wide transcription profile of wild-type and phoP E. coli strains
experiencing low Mg2+, and identified genes whose expression differed statistically between
the two strains (Li and Wong, 2001; Tusher et al., 2001). We used these genes, as well as
Salmonella enterica promoters suspected to be regulated by PhoP, which were provided
from our own laboratory knowledge and the literature to generate the initial list of promoter
candidates.

We utilized this list to make the initial models of the features, which were used with relaxed
thresholds (Hertz and Stormo, 1999) to describe promoters with weak matching to
consensus. For example, GPS clustered these genes by their expression similarity: E1 and
E2, consisting of upregulated genes, and E3, harboring downregulated genes. Then we
classified all candidates based on the similarity of their expression to that of models built for
each of the three expression groups, permitting individual genes to belong to more than one
group (i.e., E1 and/or E2) (Bezdek, 1998; Gasch and Eisen, 2002). This enabled us to
recover weakly expressed genes that would have otherwise gone undetected using strict
statistical filters (Li and Wong, 2001; Tusher et al., 2001). GPS applied the same strategy to
the other features. For example, the initial submotifs corresponding to the PhoPbinding site
were dissected by GPS, allowing the recovery of PhoP-regulated promoters with weak
matching to the PhoP box consensus, such as the Salmonella pmrD promoter, that could not
be detected using consensus cutoffs (Hertz and Stormo, 1999; Stormo 2000), despite being
regulated and footprinted by the PhoP protein (Kato et al., 2003; Kox et al., 2000).

We used several features for the initial profiles, including discrimination of PhoP box
submotifs (M1–M4), the orientation (O1–O2) and distance of the PhoP box relative to the
RNA polymerase site (P1–P3), the class of σ70 promoter (because σ70 is responsible for the
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transcription of PhoP-regulated genes [Yamamoto et al., 2002]) (P1–P3), the presence of
potential binding sites for 60+ transcription factors (Salgado et al., 2001) (I0–I4), and
whether the position of the PhoP box suggests that a promoter is activated or repressed (A1–
A3). Then, GPS applied its grouping, prototyping, and searching strategy and uncovered
several optimal profiles, which were validated experimentally (Zwir et al., 2005b).

One of the profiles identifies canonical PhoP-regulated promoters. This profile,

, encompasses promoters (e.g., those of the phoP, mgtA,
ybcU, and yhiW genes of E. coli and the slyB gene of Salmonella) that share the same RNA
polymerase sites, expression patterns, PhoP box submotif, and the same pattern for other
transcription factor-binding sites. The profile includes not only the prototypical phoP and
mgtA promoters (Minagawa et al., 2003), but also the promoters of the yhiW gene, which
was not known to be under PhoP control.

Another profile describes promoters with PhoP boxes in the opposite orientation of the

canonical PhoP-regulated promoters. This profile, , (PI = 0.07, SI = 0.17), includes
promoters also with the PhoP box in the opposite orientation (e.g., those of the slyB and
yhiW genes of E. coli and the ybjX, mig-14, virK, mgtC, and pagC genes of Salmonella) but
differs from the former profile in that the PhoP box is located further upstream from the
RNA polymerase site than the typical PhoP-regulated gene. Notably, these promoters could
be assigned to a profile even in the absence of expression data. Despite the unusual
orientation of the PhoP box in these promoters, the identified PhoP boxes are bona fide
PhoPbinding sites (Shi et al., 2004; Shin and Groisman, 2005; Zwir et al., 2005b).
Curiously, it had been suggested that PhoP regulates these genes of Salmonella indirectly
because a PhoP-binding site could not be identified at a location typical of other PhoP-
activated genes (Lejona et al., 2003).

By using gene expression as one feature among many, GPS could distinguish between
promoters of the acid resistance genes (Masuda and Church, 2003; Tucker et al., 2002) that
otherwise would have stayed undifferentiated within the same expression group. These
promoters were found to belong to one of three distinct profiles:

, includes promoters for acid resistance structural genes lacking
a recognizable PhoP box (e.g., those of the dps and gadA genes of E. coli);

, comprises promoters of a different set of structural genes that

include hdeD and hdeAB; and , harbors promoters of the acid
resistance regulatory genes yhiE and yhiW (also termed gadE and gadW, respectively).
Promoters in the latter two profiles harbor PhoP boxes but these profiles differ in the RNA
polymerase sites and their distance to the PhoP box. These findings enabled the prediction
that PhoP uses at least two modes of regulation to control transcription of acid resistance
genes: a feed-forward loop and classical transcriptional cascade (Zwir et al., 2005b).

Conclusions
We have described an unsupervised machine learning method, termed GPS, that
discriminates among coregulated promoters by simultaneously considering both cis-acting
regulatory features and gene expression. The GPS method encodes regulatory features
specifically aimed at handling the variability in sequence, location, and topology that
characterize gene transcription. Then, the method uses an integrated approach for
discovering promoter profiles, thereby uncovering an unsuspected complexity in the
regulatory targets that are under direct and indirect transcriptional control of the regulatory
protein.
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Several characteristics of GPS contribute to its power. First, it considers gene expression as
one feature among many, thereby allowing classification of promoters even in its absence
(Beer and Tavazoie, 2004; Conlon et al., 2003). Particularly, GPS differs from supervised
learning methods (Mitchell, 1997) that group features and observations based on explicitly
defined dependent variables (Beer and Tavazoie, 2004; Conlon et al., 2003; Quinlan, 1993).
Second, GPS performs a local feature selection for each profile because not every feature is
relevant for all profiles (Kohavi and John, 1997), and, a priori, we do not know which
feature is biologically meaningful for a given promoter. This is in contrast to approaches that
filter or reduce features for all possible clusters (Yeung and Ruzzo, 2001). Third, GPS finds
all optimal solutions among multiple criteria (Pareto optimality) (Deb, 2001), which avoids
the biases that might result from using any specific weighing scheme (Rissanen, 1989). This
can detect cohesion within a small number of promoters that would remain undetected by
methods that emphasize the number of promoters in a profile (Agrawal and Shafer, 1996).
Fourth, GPS has a multimodal nature that allows alternative descriptions of a system by
providing several adequate solutions (Deb, 2001; Ruspini and Zwir, 2002), thus recovering
locally optimal solutions, which have been shown to be biologically meaningful (Azevedo et
al., 2005; Cotik et al., 2005). This differentiates GPS from methods that focus on a single
optimum (Gutierrez-Rios et al., 2003; Martinez-Antonio and Collado-Vides, 2003). Finally,
GPS allows promoters to be members of more than one profile by using fuzzy clustering
(Bezdek, 1998; Cordon et al., 2002; Gasch and Eisen, 2002), thus explicitly treating the
profiles as hypotheses, which are tested and refined during the analysis (Mitchell, 1997).
This distinguishes GPS from clustering approaches that prematurely force promoters into
disjointed groups (Qin et al., 2003). In addition, GPS recognizes that not every profile is
meaningful (Bezdek, 1998), which avoids the constraints of methods that force membership
even to uninteresting groups because the sum of membership is required to be one (Cooper
and Herskovits, 1992).

The GPS method can be generalized to a method for grouping, prototyping, and searching in
the lattice space of hypotheses, which can be used in different structural domains. For
example, we have described the analysis of the targets of regulation of the response
regulator PhoP (Zwir et al., 2005b) and it is now being applied to describe other two-
components systems (e.g., PmrA/PmrB) and general regulators (e.g., CRP) in different
genomes (e.g., Yersinia pestis and Vibrio cholerae). Moreover, it is being used to mine the
Gene Ontology database (Ashburner et al., 2000) to discover and annotate profiles across
biological processes, cellular components, and molecular functions and to identify molecular
pathways that provide insight into the host response over time to systemic inflammatory
insults (Calvano et al., 2005).

Acknowledgments
Our research is supported, in part, by grants from the National Institutes of Health to E.A.G., who is an Investigator
of the Howard Hughes Medical Institute. I.Z. is also a member of the Computer Science Department at the
University of Granada, Spain, and is supported, in part, by the Spanish Ministry of Science and Technology under
project BIO2004-0270E and TIN2006-12879.

References
Agrawal R, Shafer JC. Parallel mining of association rules. IEEE Trans Knowledge Data Engineer.

1996; 8:962–969.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS,
Eppig JT, Harris MA, Hill DP, et al. Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium Nat Genet. 2000; 25:25–29.

Zwir et al. Page 12

Methods Enzymol. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Azevedo RB, Lohaus R, Braun V, Gumbel M, Umamaheshwar M, Agapow PM, Houthoofd W, Platzer
U, Borgonie G, Meinzer HP, Leroi AM. The simplicity of metazoan cell lineages. Nature. 2005;
433:152–156. [PubMed: 15650738]

Bailey TL, Elkan C. The value of prior knowledge in discovering motifs with MEME. Proc Int Conf
Intell Syst Mol Biol. 1995; 3:21–29. [PubMed: 7584439]

Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola
TS, Young RA, Gifford DK. Computational discovery of gene modules and regulatory networks.
Nat Biotechnol. 2003; 21:1337–1342. [PubMed: 14555958]

Basney, J.; Livny, M. Deploying a high throughput computing cluster. In: Buyya, R., editor. High
Performance Cluster Computing. Prentice Hall; New York: 1999.

Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell. 2004; 117:185–198. [PubMed:
15084257]

Bezdek, JC. Pattern analysis. In: Pedrycz, W.; Bonissone, PP.; Ruspini, EH., editors. Handbook of
Fuzzy Computation. Institute of Physics; Bristol: 1998. p. F6.1.1-F6.6.20.

Bezdek, JC.; Pal, SK. IEEE Neural Networks Council. Fuzzy Models for Pattern Recognition:
Methods That Search for Structures in Data. IEEE Press; New York: 1992.

Bijlsma JJ, Groisman EA. The PhoP/PhoQ system controls the intramacrophage type three secretion
system of Salmonella enterica. Mol Microbiol. 2005; 57:85–96. [PubMed: 15948951]

Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD,
Rode CK, Mayhew GF, Gregor J, Davis NW, et al. The complete genome sequence of Escherichia
coli K-12. Science. 1997; 277:1453–1474. [PubMed: 9278503]

Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH,
Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, et al. A network-based analysis of
systemic inflammation in humans. Nature. 2005; 437:1032–1037. [PubMed: 16136080]

Castelli ME, Garcia Vescovi E, Soncini FC. The phosphatase activity is the target for Mg2+ regulation
of the sensor protein PhoQ in Salmonella. J Biol Chem. 2000; 275:22948–22954. [PubMed:
10807931]

Chamnongpol S, Cromie M, Groisman EA. Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella
enterica. J Mol Biol. 2003; 325:795–807. [PubMed: 12507481]

Cheeseman, P.; Oldford, RW. Selecting Models from Data: Artificial Intelligence and Statistics IV.
Springer-Verlag; New York: 1994.

Conlon EM, Liu XS, Lieb JD, Liu JS. Integrating regulatory motif discovery and genome-wide
expression analysis. Proc Natl Acad Sci USA. 2003; 100:3339–3344. [PubMed: 12626739]

Cook DJ, Holder LB, Su S, Maglothin R, Jonyer I. Structural mining of molecular biology data. IEEE
Eng Med Biol Mag. 2001; 20:67–74. [PubMed: 11494772]

Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data.
Machine Learn. 1992; 9:309–347.

Cordon O, Herrera F, Zwir I. Linguistic modeling by hierarchical systems of linguistic rules. IEEE
Trans Fuzzy Syst. 2002; 10:2–20.

Cotik V, Zaliz RR, Zwir I. A hybrid promoter analysis methodology for prokaryotic genomes. Fuzzy
Sets Syst. 2005; 152:83–102.

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence logo generator. Genome Res.
2004; 14:1188–1190. [PubMed: 15173120]

Deb, K. Multi-objective Optimization Using Evolutionary Algorithms. Wiley; New York: 2001.

Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy
k-means clustering. Genome Biol. 2002; 3 RESEARCH0059.

Georgellis D, Kwon O, Lin EC. Amplification of signaling activity of the arc two-component system
of Escherichia coli by anaerobic metabolites: An in vitro study with different protein modules. J
Biol Chem. 1999; 274:35950–35954. [PubMed: 10585483]

Groisman EA. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol. 2001;
183:1835–1842. [PubMed: 11222580]

Zwir et al. Page 13

Methods Enzymol. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gutierrez-Rios RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, Blattner FR, Collado-Vides J.
Regulatory network of Escherichia coli: Consistency between literature knowledge and microarray
profiles. Genome Res. 2003; 13:2435–2443. [PubMed: 14597655]

Hertz GZ, Stormo GD. Identifying DNA and protein patterns with statistically significant alignments
of multiple sequences. Bioinformatics. 1999; 15:563–577. [PubMed: 10487864]

Holmes I, Bruno WJ. Finding regulatory elements using joint likelihoods for sequence and expression
profile data. Proc Int Conf Intell Syst Mol Biol. 2000; 8:202–210. [PubMed: 10977081]

Kato A, Groisman EA. Connecting two-component regulatory systems by a protein that protects a
response regulator from dephosphorylation by its cognate sensor. Genes Dev. 2004; 18:2302–
2313. [PubMed: 15371344]

Kato A, Latifi T, Groisman EA. Closing the loop: The PmrA/PmrB two-component system negatively
controls expression of its posttranscriptional activator PmrD. Proc Natl Acad Sci USA. 2003;
100:4706–4711. [PubMed: 12676988]

Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence. 1997; 97:273–324.

Kox LF, Wosten MM, Groisman EA. A small protein that mediates the activation of a two-component
system by another two-component system. EMBO J. 2000; 19:1861–1872. [PubMed: 10775270]

Lejona S, Aguirre A, Cabeza ML, Garcia Vescovi E, Soncini FC. Molecular characterization of the
Mg2+-responsive PhoP-PhoQ regulon in Salmonella enterica. J Bacteriol. 2003; 185:6287–6294.
[PubMed: 14563863]

Li C, Wong WH. Model-based analysis of oligonucleotide arrays: Expression index computation and
outlier detection. Proc Natl Acad Sci USA. 2001; 98:31–36. [PubMed: 11134512]

Li H, Rhodius V, Gross C, Siggia ED. Identification of the binding sites of regulatory proteins in
bacterial genomes. Proc Natl Acad Sci USA. 2002; 99:11772–11777. [PubMed: 12181488]

Lindsey, CS.; Tolliver, JS.; Lindblad, T. JavaTech: An Introduction to Scientific and Technical
Computing with Java. Cambridge University Press; New York: 2005.

Manson McGuire A, Church GM. Predicting regulons and their cis-regulatory motifs by comparative
genomics. Nucleic Acids Res. 2000; 28:4523–4530. [PubMed: 11071941]

Martinez-Antonio A, Collado-Vides J. Identifying global regulators in transcriptional regulatory
networks in bacteria. Curr Opin Microbiol. 2003; 6:482–489. [PubMed: 14572541]

Masuda N, Church GM. Regulatory network of acid resistance genes in Escherichia coli. Mol
Microbiol. 2003; 48:699–712. [PubMed: 12694615]

Minagawa S, Ogasawara H, Kato A, Yamamoto K, Eguchi Y, Oshima T, Mori H, Ishihama A, Utsumi
R. Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J
Bacteriol. 2003; 185:3696–3702. [PubMed: 12813061]

Mitchell, TM. Machine Learning. McGraw-Hill; New York: 1997.

Montagne M, Martel A, Le Moual H. Characterization of the catalytic activities of the PhoQ histidine
protein kinase of Salmonella enterica serovar Typhimurium. J Bacteriol. 2001; 183:1787–1791.
[PubMed: 11160113]

Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T. Transcriptome
analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol.
2002; 46:281–291. [PubMed: 12366850]

Pritsker M, Liu YC, Beer MA, Tavazoie S. Whole-genome discovery of transcription factor binding
sites by network-level conservation. Genome Res. 2004; 14:99–108. [PubMed: 14672978]

Qin ZS, McCue LA, Thompson W, Mayerhofer L, Lawrence CE, Liu JS. Identification of co-regulated
genes through Bayesian clustering of predicted regulatory binding sites. Nat Biotechnol. 2003;
21:435–439. [PubMed: 12627170]

Quinlan, JR. C4.5: Programs for Machine Learning. Morgan Kaufmann; San Mateo, CA: 1993.

Rissanen, J. Stochastic Complexity in Statistical Inquiry. World Scientific; Singapore: 1989.

Romero Zaliz, R.; Zwir, I.; Ruspini, EH. Generalized analysis of promoters: A method for DNA
sequence description. In: Coello Coello, CA.; Lamont, GB., editors. Applications of Multi-
Objective Evolutionary Algorithms. World Scientific; Singapore: 2004. p. 427-450.

Zwir et al. Page 14

Methods Enzymol. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: Parameterizing a
gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci USA. 2002;
99:10555–10560. [PubMed: 12145321]

Ruspini, EH.; Zwir, I. Automated generation of qualitative representations of complex objects by
hybrid soft-computing methods. In: Pal, SK.; Pal, A., editors. Pattern Recognition: From Classical
to Modern Approaches. World Scientific; New Jersey: 2002. p. 454-474.

Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M,
Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C, Collado-Vides J.
RegulonDB (version 4. 0): Transcriptional regulation, operon organization and growth conditions
in Escherichia coli K-12. Nucleic Acids Res. 2004; 32:D303–D306. [PubMed: 14681419]

Salgado H, Santos-Zavaleta A, Gama-Castro S, Millan-Zarate D, Diaz-Peredo E, Sanchez-Solano F,
Perez-Rueda E, Bonavides-Martinez C, Collado-Vides J. RegulonDB (version 3. 2):
Transcriptional regulation and operon organization in Escherichia coli K-12. Nucleic Acids Res.
2001; 29:72–74. [PubMed: 11125053]

Shi Y, Latifi T, Cromie MJ, Groisman EA. Transcriptional control of the antimicrobial peptide
resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J Biol Chem. 2004;
279:38618–38625. [PubMed: 15208313]

Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular
bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000; 407:81–86. [PubMed: 10993077]

Shin D, Groisman EA. Signal-dependent binding of the response regulators PhoP and PmrA to their
target promoters in vivo. J Biol Chem. 2005; 280:4089–4094. [PubMed: 15569664]

Stormo GD. DNA binding sites: Representation and discovery. Bioinformatics. 2000; 16:16–23.
[PubMed: 10812473]

Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle
WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, et al. Complete genome sequence of
Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 2000; 406:959–964. [PubMed:
10984043]

Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic
network architecture. Nat Genet. 1999; 22:281–285. [PubMed: 10391217]

Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent
WJ, Makeev VJ, Mironov AA, et al. Assessing computational tools for the discovery of
transcription factor binding sites. Nat Biotechnol. 2005; 23:137–144. [PubMed: 15637633]

Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. The PhoP/PhoQ two-component system
stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proc Natl Acad Sci USA.
2006; 103:13503–13508. [PubMed: 16938894]

Tucker DL, Tucker N, Conway T. Gene expression profiling of the pH response in Escherichia coli. J
Bacteriol. 2002; 184:6551–6558. [PubMed: 12426343]

Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation
response. Proc Natl Acad Sci USA. 2001; 98:5116–5121. [PubMed: 11309499]

Wang X, Gorlitsky R, Almeida JS. From XML to RDF: How semantic web technologies will change
the design of ‘omic’ standards. Nat Biotechnol. 2005; 23:1099–1103. [PubMed: 16151403]

Wilkins CL. Data mining with Spotfire Pro 4. 0. Anal Chem. 2000; 72:550a.

Yamamoto K, Ogasawara H, Fujita N, Utsumi R, Ishihama A. Novel mode of transcription regulation
of divergently overlapping promoters by PhoP, the regulator of two-component system sensing
external magnesium availability. Mol Microbiol. 2002; 45:423–438. [PubMed: 12123454]

Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data.
Bioinformatics. 2001; 17:763–774. [PubMed: 11590094]

Zwir I, Huang H, Groisman EA. Analysis of differentially-regulated genes within a regulatory network
by GPS genome navigation. Bioinformatics. 2005a; 21:4073–4083. [PubMed: 16159917]

Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare JM, Huang H, Groisman EA. Dissecting
the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci
USA. 2005b; 102:2862–2867. [PubMed: 15703297]

Zwir et al. Page 15

Methods Enzymol. Author manuscript; available in PMC 2013 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
The PhoP/PhoQ system uses a variety of mechanisms to control the expression of a large
number of genes in a direct or indirect fashion. (A) The PhoP protein recognizes a direct
hexanucleotide repeat separated by five nucleotides, which has been termed the PhoP box,
activating the mgtA promoter of Salmonella. (B) The PhoP/PhoQ uses a transcriptional
cascade mediated by the SsrB/SpiR two-component system to regulate the spiC promoter.
(C) The PhoP/PhoQ system works cooperatively with the RcsB/RcsC system to activate the
ugd promoter. (D) The PhoP/PhoQ system utilizes a feed-forward loop mediated by the
SlyA protein to activate the ugtL promoter in Salmonella. (E) The PhoP/PhoQ system
controls the pbgP promoter at the posttranslational level, where the PhoP-dependent PmrD
protein activates the regulatory protein PmrA.
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Fig. 2.
The GPS method. GPS is a machine learning technique that models promoter features as
well as relations between them, uses them to describe promoters, combines such
characterized promoters into groups termed profiles, evaluates the resulting profiles to select
the most significant ones, and performs genome-wide predictions based on such profiles. To
accomplish this task, GPS carries out three basic operations: grouping observations from the
data set; prototyping such groups into their most representative elements (centroid); and
searching in the set of optimal solutions (i.e., Pareto optimal frontier) to retrieve the most
relevant profiles, which are used to describe and identify new objects by similarity with the
prototypes.
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Fig. 3.
Schematics of PhoP-regulated promoters harboring different features analyzed by GPS. GPS
performs an integrated analysis of promoter regulatory features, initially focusing on six
types of features for describing a training set of promoters: submotifs, which model the
studied transcription factor-binding motifs; RNA pol sites, which characterize the RNA
polymerase motif, the class of σ70 promoter that differentiates class I from class II
promoters, and the distance distributions (close, medium, and remote) between RNA
polymerase and transcription factor-binding sites in activated and repressed promoters;
activated/repressed, where we learn activation and repression distributions by compiling
distances between binding sites for RNA polymerase and a transcription factor; interactions,
where we evaluate motifs for several transcription factor-binding sites and model the
distance distributions between motifs colocated in the same promoter regions; and
expression, which considers gene expression levels.
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Fig. 4.

Using GPS to build promoter profiles. GPS generation of the profile  is shown here. It
partially corresponds to the highlighted substructure of the lattice shown in Fig. 5. GPS
starts by using information from databases and microarray data to construct a family of
models for each feature (e.g., expression levels E1 to E3, PhoP box submotif M1 to M4, as
well as other features [not shown]). The promoters are described using the modeled features,
the degree of matching between features and promoters being encoded as a vector of
independent values, where 1 (red color) corresponds to maximum matching and 0 (green
color) corresponds to the absence of the feature. For each feature, the promoters are then
grouped into subsets that share similar patterns using fuzzy clustering. Each subset shown in
the initial panel is prototyped by locating the centroid that best represents the group to

generate the initial, level 1 profiles (e.g.,  and ). The centroids are encoded as a
vector and also visualized by graphical plots for the “expression” and the “interactions”
features and by a sequence logo (Crooks et al., 2004) for the “submotifs” feature. These

level 1 profiles are combined to generate level 2 profiles (e.g.,  and ) by the
intersection of the ancestor profiles and then prototyped. (Blue circles represent profiles
containing other subsets of promoters. The absence of a circle signifies that no promoters are
classified into these profiles.) Further navigation through the featurespace lattice generates

the level 3 profiles (for example, ) after incorporating the “interactions” feature
(Fig. 5). Note that the vectors of the daughter profiles are built anew from the constituent
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promoters and are slightly different than those of their ancestors because of the refinement
that takes place during the profile learning process.
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Fig. 5.
GPS navigates through the feature-space lattice, generating and evaluating profiles. For
analysis of promoters regulated by the PhoP protein, we identified up to five models for
each type of feature, which are used to describe the promoters. Then, GPS generates
profiles, which are groups of promoters sharing common sets of features. (Subscripts denote
the different profiles for each feature, whereas superscripts denote the level in the lattice of

the profile.) For example,  is a particular expression profile that differs from  and .
These level 1 profiles of each feature are combined to identify level 2 profiles; similarly,
level 2 profiles are combined to create level 3 profiles. In addition, because of the fuzzy
formulation of the clustering, any promoter that was initially assigned to a specific profile

 can participate in profile of level t (i.e., indicated as a double-headed arrow). Thus,
observations can migrate from parental to offspring clusters (i.e., hierarchical clustering) and
among sibling clusters (i.e., optimization clustering). Here we show a small part of the
complete lattice, where the part that is highlighted in red is also described in Fig. 4.
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