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Abstract

Sepsis and septic shock are associated with high mortality rates and the majority of sepsis patients die due to complications
of multiple organ failure (MOF). The cyclic GMP (cGMP) producing enzyme soluble guanylate cyclase (sGC) is crucially
involved in the regulation of (micro)vascular homeostasis, cardiac function and, consequently, organ function. However, it
can become inactivated when exposed to reactive oxygen species (ROS). The resulting heme-free sGC can be reactivated by
the heme- and nitric oxide (NO)-independent sGC activator BAY 58-2667 (Cinaciguat). We report that late (+8 h) post-
treatment with BAY 58-2667 in a mouse model can protect against lethal endotoxic shock. Protection was associated with
reduced hypothermia, circulating IL-6 levels, cardiomyocyte apoptosis, and mortality. In contrast to BAY 58-2667, the sGC
stimulator BAY 41-2272 and the phosphodiesterase 5 inhibitor Sildenafil did not have any beneficial effect on survival,
emphasizing the importance of the selectivity of BAY 58-2667 for diseased vessels and tissues. Hemodynamic parameters
(blood pressure and heart rate) were decreased, and linear and nonlinear indices of blood pressure variability, reflective for
(un)coupling of the communication between the autonomic nervous system and the heart, were improved after late
protective treatment with BAY 58-2667. In conclusion, our results demonstrate the pivotal role of the NO/sGC axis in
endotoxic shock. Stabilization of sGC function with BAY 58-2667 can prevent mortality when given in the correct treatment
window, which probably depends on the dynamics of the heme-free sGC pool, in turn influenced by oxidative stress. We
speculate that, considering the central role of sGC signaling in many pathways required for maintenance of
(micro)circulatory homeostasis, BAY 58-2667 supports organ function by recoupling inter-organ communication pathways.
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Introduction

Sepsis and septic shock are associated with mortality rates of up

to 50–70% [1]. Further still, their incidence is increasing and

septic shock recently became the number one cause of death in

intensive care units worldwide [2], despite numerous anti-

inflammatory (or ‘‘anti-mediator’’) therapeutic strategies that were

tested during the last few decades [3,4]. The only mediator-

targeted drug that was ever FDA approved specifically for the

treatment of severe sepsis (Drotrecogin alfa), was recently

withdrawn from the market [5]. Whatever the precipitating factor,

septic shock is characterized by cardiovascular collapse, refractory

hypotension, tissue ischemia, and cytopathic hypoxia, which can

progress to multiple organ failure (MOF) and death. Because all -

of the many- roads lead to MOF, regardless of the inflammatory

trigger, shifting the search for therapeutics further downstream

and later to the common pathway of organ failure might prove to

be more beneficial.

Furthermore, Godin and Buchman put forward the idea that the

ability of organs to adapt to changing environmental conditions is

dependent on the interconnections between them [6,7]. They

postulated that the information and variability within those

connections provide more information on the overall state of the

system than the absolute values of individual variables at discrete

time points. Thus, the systemic inflammatory response syndrome

(SIRS) not only has a direct impact on cells and tissues but also on

the inter-organ communication network, consisting of neural,

humoral and cytokine components. Uncoupling of that network
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can single out organs from feedback control loops and facilitate

MOF, i.e. uncoupling is a consequence of SIRS and the cause of

MOF. In order to quantify the dynamic state of a complex

organism, a reliable read-out is needed, such as the variability

contained within a heart rate (HR) or blood pressure (BP) signal.

HR and BP variability (HRV and BPV, respectively) are defined

as the variation of the period between consecutive beat or diastolic

intervals, respectively, which are representative for the extrinsic

central nervous regulation of the intrinsic pacemaker activity of the

heart and can as such be used to monitor the sympathovagal

balance of the autonomic nervous system (ANS). It has been well

established that indices of HRV and BPV are altered in critically

ill patients [8], thus assessment of these parameters could be useful

as markers for disease progression, timing, dosing and follow-up of

treatment, as well as patient stratification tools.

Soluble guanylate cyclase (sGC) is a heterodimeric enzyme,

primarily found in the a1b1 and, to a lesser extent, the a2b1

isoform. Upon binding of NO to the heme prosthetic group of the

enzyme, cyclic GMP (cGMP) production is increased about 200-

fold. cGMP, in turn, interacts with cGMP-activated protein

kinases, cyclic nucleotide-gated channels and phosphodiesterases

(PDEs), and is involved in the regulation of various physiological

functions, including vasodilation, platelet aggregation, and neuro-

transmission [9,10]. Previously, we showed that the hypoxia

selective NO donor nitrite (NO2
2) can protect against toxicity in

shock via sGC-dependent signaling, which may include hypoxic

vasodilation necessary to maintain microcirculation and organ

function, and cardioprotection [11]. Furthermore, a study in

sGCa1 knockout mice showed that cGMP generated by sGCa1b1

protects against cardiac dysfunction and mortality in murine

inflammatory shock models [12]. In light of these findings, we

decided to test the heme- and hence NO-independent sGC

activator BAY 58-2667 (Cinaciguat) and the heme-dependent sGC

stimulator BAY 41-2272 in a murine model of inflammatory shock

(Fig. 1). ROS interact at various levels with the NO/sGC/cGMP

pathway: at the level of sGC, they can oxidize the ferrous iron

(Fe2+) in the heme prosthetic group, which can lead to release of

the heme, thereby rendering the enzyme inactive and prone to

ubiquitin-mediated proteolytic degradation [13]. BAY 58-2667

competes for the heme-binding motif of heme-free sGC (also

known as apo-sGC), and as such protects the enzyme from

proteolytic breakdown and reactivates cGMP production in the

absence of NO [14]. Consequently, BAY 58-2667 is assumed to be

specific for tissues that are suffering from hypoxia, cytopathic

hypoxia and/or oxidative stress, and is thought to be most effective

when a considerable pool of heme-free sGC is present, which can

occur both in the case of chronic low-level inflammation or acute

(systemic) inflammation [15,16]. BAY 41-2272, on the other hand,

will act synergistically with NO to stimulate the activity of

functional (reduced-heme) sGC [17]. Documented effects of

treatment with BAY 58-2667 and BAY 41-2272 in various disease

models include: reducing preload and afterload, increasing cardiac

output, inducing pulmonary vasodilation, reducing cardiac

hypertrophy, inhibiting platelet aggregation, increasing renal

blood flow and glomerular filtration rate, and lowering systemic

BP [18,19]. In addition, Sildenafil (ViagraTM), a phosphodiester-

ase-5 (PDE5) inhibitor that inhibits breakdown of cGMP to GMP,

was used as a control drug [20].

In this study, we examined the effect of post-treatment with the

sGC activator BAY 58-2667 and sGC stimulator BAY 41-2272 in

a model of endotoxic shock, and found that late treatment with

BAY 58-2667 can protect mice from a lethal shock-inducing

challenge, in contrast to BAY 41-2272. Analysis of indices of BPV

indicated that improved morbidity and survival was associated

with a systemic recoupling effect.

Results and Discussion

BAY 58-2667 protects against LPS-induced morbidity and
mortality, in contrast to BAY 41-2272 and Sildenafil

Late (+8 h) post-treatment with BAY 58-2667 protected against

progressive hypothermia and mortality (combined survival rate of

66% versus 0% for controls) induced by a lethal dose of LPS. In

contrast, early post-treatment (+3 h) exacerbated LPS-induced

hypothermia and mortality (Fig. 2A–B). Post-treatment (+3 h or

+8 h) with the sGC stimulator BAY 41-2272 had no or only a very

small temporary positive effect on body temperature. No effect was

found on survival (Fig. 2, C–D). Cyclic GMP levels in kidney were

increased 2 h after late (+8 h) treatment with BAY 58-2667 (Fig. 3,

A); cGMP levels in heart were not affected by treatment (Fig. 3, B).

In liver, cGMP levels were downregulated due to challenge with

LPS (Fig. 3, C); early or late treatment with BAY 41-2272 did not

have any effect (Fig. 3, A–C). Plasma NOx
2 levels, reflective for

increased NO production by NOS2, were increased for all LPS-

challenged animals, indicating that direct stimulation of sGC by

NO was similar in all groups, independent of treatment (Fig. 3, D).

Plasma IL-6 levels, a known prognostic marker for sepsis, were

increased in the early (+3 h) treatment groups compared to

appropriate vehicle controls, and decreased in the late (+8 h) BAY

58-2667 treatment group compared to vehicle controls, correlating

with outcome (Fig. 3, E). Late (+8 h) treatment with the PDE5

inhibitor Sildenafil, used as an additional drug control, had no

effect on body temperature and survival, whereas early (+3 h)

treatment sensitized mice to the effects of LPS (Fig. 2, E–F), similar

to early (+3 h) treatment with BAY 58-2667.

BAY 58-2667 selectively binds to heme-free sGC, thereby

stabilizing the enzyme and reactivating cGMP production [16].

We showed previously that the hypoxia-selective vasodilator nitrite

can protect mice against tumor necrosis factor (TNF) and LPS-

induced morbidity and mortality in an sGC-dependent manner

[11]. However, nitrite treatment was only able to prevent

mortality in the LPS model when administered as a pretreatment

and at very high doses, whereas the current study focused on later

intervention by targeting a more downstream component of the

pathway. We found a positive treatment effect when BAY 58-2667

was administered late (+8 h) after induction of endotoxic shock,

indicating that the distribution of heme-free sGC in that window

was optimal for intervention with the drug, also confirmed by the

highly elevated cGMP levels in the kidney. BAY 58-2667-

mediated protection is most likely a consequence of its specificity

for vessels and tissues that were exposed to oxidative stress, as we

did not observe similar positive effects on body temperature or

survival when using the heme-dependent sGC stimulator BAY 41-

2272 or the PDE5 inhibitor Sildenafil. However, early treatment

with BAY 58-2667 exacerbated mortality, indicating that +3 h

after LPS challenge the pool of heme-free sGC had already

increased substantially, which could also explain the lack of early

BAY 41-2272 effect. In addition, the sensitizing effect of BAY 58-

2667 implies that reactivation of the heme-free sGC pool can have

unfavorable effects when administered in the wrong time window.

In a similar fashion, early (+3 h) Sildenafil treatment exacerbated

mortality, indicating that bioactive cGMP was still present at that

point in time, and that increasing cGMP activity by preventing its

breakdown, can also sensitize mice to the effects of an LPS

challenge. As this warranted further investigation, we focused on

the cardiovascular system because of the pivotal role of sGC/

cGMP signaling in its regulation.

BAY 58-2667 Protects against Endotoxic Shock
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Effect of BAY 58-2667 and BAY 41-2272 treatment on
cardiomyocyte apoptosis

Apoptotic cardiomyocytes were determined by counting the

number of TUNEL positive nuclei over the entire surface area of a

cross-section of the heart (Fig. 4, A): 2 h after late (+8 h) vehicle

treatment, the number of apoptotic cells was increased compared

to saline (PBS) and early treatment controls. Late (+8 h) treatment

with BAY 58-2667 significantly reduced the amount of apoptotic

cells in the heart. However, although not significant, the number

of apoptotic cells was also reduced after late BAY 41-2272

treatment, hinting towards the presence of a mixed pool of

oxidized- and reduced-heme sGC in the heart, 8 h post-LPS

challenge. Cardiac dysfunction is one of the most important

determinants of sepsis-induced mortality, both in humans and in

animal models [21,22]. Our results are corroborated by a previous

study that showed that sGCa1-deficient mice are sensitized to

inflammation-induced cardiac dysfunction, emphasizing the car-

dioprotective effect of sGCa1-derived cGMP [12]. Although

cardiomyocyte apoptosis was reduced thanks to late (+8 h) BAY

58-2667 treatment, this was not reflected in increased cGMP levels

in the heart (Fig. 3, B). However, samples were taken 2 h post-

treatment, when cGMP levels were still highly increased in the

kidney, while this increase could have been more transient in the

heart. In addition, very low levels of sGC activation have been

shown to elicit full level responses in smooth muscle cells [23,24],

i.e. low level stimulation of sGC and resulting small or even

undetectable changes in cGMP levels can have profound

cardiovascular effects. Furthermore, reduced cardiomyocyte ap-

optosis may not only be caused by a direct sGC-mediated effect on

the heart, but could also be secondary to a more distal effect on the

circulatory system.

The involvement of apoptosis in LPS-induced mortality has

been corroborated by other studies [25,26], albeit not specific to

the heart. Hence, it seems likely that reduced cardiomyocyte

apoptosis contributed to improved survival, and that any

potentially detrimental effect of late sGC reactivation on survival

-as observed for early sGC reactivation- could have been masked

Figure 1. Schematic overview of drug interactions with the NO/sGC/cGMP pathway. NO produced by NOS activates sGC, resulting in the
production of cGMP, and subsequent relaxation of VSMCs and inhibition of platelet aggregation and leukocyte adhesion, among others. In turn,
cGMP is broken down to GMP by PDE5, which can be inhibited by Sildenafil. ROS can interact at various levels with this pathway, including facilitating
the oxidation of the iron in the heme-prosthetic group of sGC. The resulting heme-free sGC (apoGC) is no longer functional and a target for rapid
ubiquitin-mediated proteolytic degradation. However, BAY 58-2667 can bind heme-free sGC and reactivate cGMP production independent of
NO. BAY 41-2272, on the other hand, can stimulate the activity of functional (reduced-heme) sGC synergistically with NO. Nitrite, a hypoxia selective
NO donor, can also be used to stimulate this pathway selectively. No cell specific effects for the compounds or enzymes are assumed, they are shown
as such for simplicity only. Arrows indicate binding, interaction or induction; bold arrows indicates increased production; dashed lines indicate an
inhibitory effect; bold/underlined text indicates NO/cGMP-mediated effects; ‘apoGC’ = heme-free sGC. Figure was produced using Servier Medical Art.
doi:10.1371/journal.pone.0072155.g001
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by this protective effect on cardiomyocyte apoptosis, among

others.

Effect of BAY 58-2667 and BAY 41-2272 treatment on
systemic blood pressure and heart rate

Figure 5 shows hemodynamic parameters from mice that were

treated with vehicle, BAY 41-2272 or BAY 58-2667, +3 h or +8 h

after challenge with LPS (Fig. 5, A–D), as well as from healthy

mice (Fig. 5, E–F). For LPS-challenged mice, a time window of 2 h

pre- until 4 h post-treatment was analyzed. Injection of saline in

healthy mice typically prompted a transient (630 min) stress-

induced increase in mean arterial pressure (MAP), while injection

of BAY 58-2667 (100 mg/kg or 300 mg/kg) caused a dose-

dependent drop in MAP that lasted for 15–25 min (Fig. 5, E).

Shortly after the drop in MAP, a prolonged compensatory increase

in HR was observed (Fig. 5, F). A phase I dose escalating study in

healthy human volunteers showed that BAY 58-2667 caused a

rapid decrease in systemic vascular resistance (SVR), followed by a

reduction of MAP that, in turn, was followed by a compensatory

increase in HR and stroke volume (SV) [27]. Thus, activation of

the small pool of heme-free sGC present at baseline can have

systemic effects, albeit limited. Our data in non-challenged

(healthy) mice confirmed this.

For LPS-challenged animals, a brief (640 min) lowering effect

on MAP was observed immediately after early (+3 h) treatment

with BAY 58-2667 (Fig. 5, A), while HR was increased for a

prolonged period (Fig. 5, B). During this compensatory increased

HR phase, MAP stabilized for about 90 min, indicating that early

after challenge with LPS the increased HR is able to compensate

for the reduction in SVR and MAP induced by BAY 58-2667.

Early (+3 h) treatment with BAY 41-2272 did not have an acute

effect on MAP (Fig. 5, C), while HR was increased compared to

vehicle controls for about 2.5 h, similar to BAY 58-2667 (Fig. 5,

D). Thus, the transient drop in MAP specific to early (+3 h) BAY

Figure 2. Effect of post-treatment with BAY 58-2667, BAY 41-2272, and Sildenafil on body temperature (left) and mortality (right).
(A–B) WT mice were injected i.v. with 9.5–11 mg/kg LPS (E. coli) or 17.5 mg/kg LPS (S. abortus equi) at t = 0 and treated (+3 h or +8 h) i.v. with 100 mg/
kg BAY 58-2667 or vehicle control (+3 h or +8 h). The combined results of three independently performed experiments are shown (nvehicle = 15,
n+3 h = 8, n+8 h = 12). (C–D) WT mice were injected i.v. with 17.5 mg/kg LPS (S. abortus equi) at t = 0 and treated i.v. with 100 mg/kg BAY 41-2272 (+3 h
or +8 h) or vehicle control (+8 h). The combined results of two independently performed experiments are shown (nvehicle = 11, n+3 h = 8, n+8 h = 8). (E–
F) WT mice were injected i.v. with 17.5 mg/kg LPS (S. abortus equi) at t = 0 and treated i.v. with 1 mg/kg Sildenafil (+3 h or +8 h) or vehicle control
(+8 h) (n = 5). Data are means 6 SEM; temperature curves were compared to appropriate vehicle controls via repeated-measure ANOVA (see Table S1
for individual F-statistics, p- and n-values). For panel A & C, significance was calculated in relation to appropriate controls for single experiments.
Survival curves were compared to controls via log-rank test for merged experiments. ****, p#0.0001; ***, p#0.001; **, p#0.01; *, p#0.05; and
ns = nonsignificant.
doi:10.1371/journal.pone.0072155.g002
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Figure 3. cGMP levels in kidney, heart and liver, and NOx
2 and IL-6 levels in plasma. (A–C) cGMP levels in whole kidney (A), heart (B) and

liver (C) homogenates, respectively, 2 h post-treatment (n = 3). (D) Circulating NOx
2 levels in plasma, and (E) IL-6 levels in plasma, 2 h post-treatment

(n = 3). Data are means 6 SEM and comparisons were made between baseline (PBS) and LPS-challenged vehicle control animals (*), as well as LPS-
challenged vehicle control and treatment groups (#) via one-way ANOVA with Fisher’s LSD test. ***, p#0.001; **, p#0.01 and *, p#0.05.
doi:10.1371/journal.pone.0072155.g003

Figure 4. Cardiomyocyte apoptosis. (A) The number of apoptotic cells per heart section were counted and normalized over the total surface area
of the tissue section, 2 h post-treatment (n = 3). (B) Representative example of whole heart section for late (+8 h) vehicle control (top-left), and late
(+8 h) BAY 58-2667 treatment (bottom-left). Representative example of data processing in BD Attovision software: calculation of total surface area
(top-right) and detection of TUNEL events (bottom-right). Data are means 6 SEM and comparisons were made between baseline (PBS) and LPS-
challenged vehicle control animals (*), and LPS-challenged vehicle control and treatment groups (#) via one-way ANOVA with Fisher’s LSD test. ***,
p#0.001; **, p#0.01 and *, p#0.05.
doi:10.1371/journal.pone.0072155.g004

BAY 58-2667 Protects against Endotoxic Shock
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58-2667 treatment, could be responsible for the increased

mortality observed in this treatment group, whether or not

combined with a possible lack of effect on cardiomyocyte

apoptosis. In contrast, for late BAY 58-2667 (+8 h) treatment an

effect on MAP was found that lasted for approximately 2.5 h

(Fig. 5, A), while HR was decreased in the same time window

(Fig. 5, B). For late (+8 h) BAY 41-2272 treatment, MAP and HR

appeared to be different from vehicle controls (Fig. 5, C).

However, the difference in MAP was already present before

treatment and is thus not likely caused by a drug or vehicle effect.

Also the delayed onset of the increase in HR post-treatment, is

more likely to be related to variation in the response to LPS than a

direct drug effect.

The fact that the effect of late (+8 h) BAY 58-2667 treatment on

MAP lasted longer compared to early (+3 h) treatment, indicates

that the pool of heme-free sGC was increasing during the

progression of endotoxic shock, and that reactivation of this pool

had a larger effect on SVR. However, the decrease in MAP

following late (+8 h) treatment was not associated with an elevated

HR; on the contrary, HR was lower compared to controls. Exactly

how the combination of reduced MAP and HR are linked to

improved survival is unclear, but it implies that the baroreceptor

reflex may be malfunctioning, a documented effect of LPS toxicity

[28], thereby failing to translate the drop in MAP into a

compensatory tachycardia, which appeared to be still functional

+3 h after LPS challenge. Alternatively, BAY 58-2667 could have

had a direct effect on HR, masking the effect of the reflex arc.

Nevertheless, successful treatment was associated with increased

peripheral body temperature (Fig. 2, A), indicative for improved

perfusion.

BAY 58-2667 recouples communication between the
autonomic nervous system and the heart

As a readout of systemic organ function, we analyzed BPV. The

numerous feedback loops inherent to any kind of biological system

are essential to allow a dynamic system to respond to changing

environmental conditions, and prevent excessive ‘‘mode-locking’’

[29]. A direct consequence is that, rather than the individual

values of different variables within the system, the interconnections

between those variables are more representative for the health

status of the organism. Disturbing such a system, for instance by a

massive inflammatory insult, will cause uncoupling of the organs

resulting in organ failure due to lack of inter-organ communication

and inability to respond to environmental input [6,7]. The

Figure 5. Effect of BAY 58-2667 and BAY 41-2272 treatment on hemodynamic parameters. Mean arterial pressure (MAP) and heart rate
(HR) were recorded via implanted telemetry devices. (A–B) Mice were injected i.v. with 9.5–11 mg/kg LPS (E. coli), and treated i.v. with 100 mg/kg BAY
58-2667 (+3 h or +8 h) or vehicle control (+3 h or +8 h); 2 h pre- until 4 h post-treatment of data is shown (n = 4). (C–D) Mice were injected i.v. with
9.5–11 mg/kg LPS (E. coli), and treated i.v. with 100 mg/kg BAY 41-2272 (+3 h or +8 h, n = 2) or vehicle control (+3 h or +8 h, n = 1); 2 h pre- until 4 h
post-treatment of data is shown. (E–F) Unchallenged mice were injected with saline (PBS), 100 mg/kg or 300 mg/kg BAY 58-2667; 4 h of data post-
injection is shown (n = 4). Data are means and were compared to vehicle controls by fitting a linear mixed model (see Table S2 for fixed term
statistics). ****, p#0.0001; ***, p#0.001; *, p#0.05; ns = nonsignificant; trt = treatment effect and time6trt = time-treatment interaction.
doi:10.1371/journal.pone.0072155.g005
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variability inherent in the oscillatory signals that form the basis of

these interconnections can be measured in certain biological

signals, of which HR and BP are most straightforward to obtain. If

BAY 58-2667 indeed had a systemic effect on inter-organ

communication, this should be reflected in the variability imposed

by the sympathetic and parasympathetic branches of the ANS on

the BP signal.

Two indices of variability were analyzed: the low frequency

band, obtained via fast Fourier transformation (FFT) of the

original time series; and the scaling factors, calculated via

detrended fluctuation analysis (DFA). The normalized LF (nu)

band was quantified for BP data in the pre- and post-treatment

interval (40 min each). For early (+3 h) BAY 58-2667 treatment

and corresponding vehicle control groups, the change in LF (nu)

was randomly distributed across different animals (Fig. 6, A & C),

whereas the trends for early BAY 41-2272 were negative (Fig. 6,

B). In contrast, an increase in the normalized LF band was

observed for late (+8 h) BAY 58-2667 treatment for all animals

(Fig. 6, F), while decreasing trends were observed for the

corresponding vehicle (+8 h) control and BAY 41-2272 treated

animals (Fig. 6, D–E). Increased activity in the normalized LF (nu)

band indicates mainly an increase in sympathetic tone. Thus,

successful treatment with BAY 58-2667 was reflected in a

temporary increase in sympathetic signaling from the ANS to

the heart, not observed for BAY 41-2272 treatment. These results

seem counterintuitive, as an increase in sympathetic signaling is

usually associated with an increase in HR, while we observed a

prolonged decrease in HR for late (+8 h) BAY 58-2667 treatment

(Fig. 5, B). This suggests again that late after LPS challenge, the

baroreceptor reflex is indeed no longer functional, resulting in

bradycardia as a net secondary effect of late (+8 h) BAY 58-2667

treatment, despite the presence of increased power in the LF band.

Scaling factors quantify the fractal properties of a time series

and were increased after treatment with BAY 58-2667 in both the

+3 h (Fig. 7, C) and +8 h (Fig. 7, F) treatment group to values

closer to 1.0, the physiological optimum, while trends were

randomly distributed for both vehicle control groups (Fig. 7, A &

D). Trends were negative for early (+3 h) and slightly positive for

late (+8 h) treatment with BAY 41-2272 (Fig. 7, B & E), although

the latter was not reflected in the LF (nu) trends. Thus, the BAY

58-2667-mediated effect was most pronounced for late treatment,

but also present in the early treatment group, indicating that

despite the lack of positive effect on survival, early treatment with

BAY 58-2667 also had some effect on neurological regulation of

the heart. However, scaling factors are not limited to activity in a

specific spectral band, as is the case for LF (nu), suggesting that the

observed increase in the power of the LF band may be a more

important determinant for survival.

Conclusion

Summarized, our data show that protective post-treatment with

the sGC activator BAY 58-2667 is associated with reduced

hypothermia and mortality, reduced cardiomyocyte apoptosis,

reduced plasma IL-6 levels, and a reduction in HR. Late

treatment with BAY 41-2272 also had some minor (nonsignificant)

effects on cardiomyocyte apoptosis and IL-6 levels, despite a

complete lack of any beneficial effect on body temperature or

survival. Because sGC is a major regulator of (micro)circulatory

flow [30], stabilization of its function may improve perfusion and

decrease hypoxia and cytopathic hypoxia, subsequently supporting

organ function and survival. Since the pool of heme-free sGC is

increasing during the progression of endotoxic shock, the

beneficial effects of BAY 58-2667 compared to the lack of effect

of BAY 41-2272 on survival could be attributed to its selectivity for

tissues and vessels that were exposed to high levels of oxidative

stress. To substantiate this hypothesis, we determined indices of

BPV that are reflective for heart-ANS coupling and found that

Figure 6. Effect of BAY 58-2667 and BAY 41-2272 treatment on LF (nu). Normalized low frequency (LF (nu)) values for 40 min pretreatment
were compared to 40 min post-treatment values and plotted as changing trends over time for vehicle +3 h (A), BAY 41-2272 +3 h (B), BAY 58-2667
+3 h (C), vehicle +8 h (D), BAY 41-2272 +8 h (E), and BAY 58-2667 +8 h (F).
doi:10.1371/journal.pone.0072155.g006
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early and late BAY 58-2667 treatment both influence communi-

cation between the ANS and the heart, but protective (+8 h)

treatment is specifically associated with increased activity in the LF

(nu) band, indicative for increased sympathetic signaling.

In conclusion, our results demonstrate the pivotal role of the

NO/sGC/cGMP axis in endotoxic shock. Stabilization of sGC

function with BAY 58-2667 can prevent mortality induced by LPS

when given in the correct treatment window, which probably

depends on the dynamics of the heme-free sGC pool, in turn

influenced by ROS. We speculate that the effect of BAY 58-2667

on (micro)circulatory homeostasis supports cardiac and organ

function by recoupling inter-organ communication pathways.

Selective stimulation of this pathway could be a new treatment

paradigm for sepsis and septic shock, as was already shown with

the hypoxia selective NO donor nitrite [11]. Treatment strategies

aimed at sGC can interfere more downstream in the common path

to MOF, allowing more time between diagnosis and start of

treatment. However, selectivity and spatiotemporal targeting

appear to be extremely important to avoid deleterious effects,

warranting further investigation in more complex models. In

addition, there is a need for biomarkers that can help in identifying

the optimal treatment window for intervention with sGC

activators in those models. One of the most pressing issues with

regard to SIRS patient management, is the lack of validated

biomarkers that allow reliable and early diagnosis, one of the most

important determinants of survival [31]. Indices of variability hold

promise as prognostic tools as they are known to be altered in

critically ill patients, and HR and BP are routinely measured in the

ICU. Coupling experimental treatment approaches to a biomarker

that allows follow-up of treatment response, could allow for a more

efficient translation of results between various disease models, as

well as to the clinic.

Materials and Methods

Mice
Female C57BL/6J mice were purchased from Janvier (France).

All mice were housed in temperature-controlled, individually

ventilated cages in an SPF facility with 14/10 h light/dark cycles,

food and water ad libitum, and used at 10–16 weeks of age.

Ethics Statement
All experiments were approved by the animal ethics committee

of the Faculty of Sciences of Ghent University (Belgium) and

performed according to its guidelines.

Reagents and injections
All reagents were dissolved in sterile PBS and injected

intravenously, unless stated otherwise. Phenol extracted E. coli

LPS (serotype O111:B4 or O55:B5) and phenol extracted S. abortus

equi LPS were purchased from Sigma (St. Louis, MO (USA)) and

administered at 9.5–11 mg/kg (E. coli) or 17.5 mg/kg (S. abortus

equi) to induce endotoxic shock. BAY 58-2667 (Cinaciguat) and

BAY 41-2272 were administered as a post-treatment at 100 mg/

kg, dissolved in vehicle (20% diethylene glycol monoethyl ether

(DGME, Sigma), 20% Cremophor EL (Fluka, Sigma) and 60%

sterile PBS). Sildenafil citrate was purchased from Tocris

Bioscience (Bristol, UK) and administered as a post-treatment at

1 mg/kg in 0.8% dimethyl sulfoxide (DMSO, Sigma) in sterile

PBS.

Body temperature and hemodynamic measurements
Rectal body temperatures were recorded on an electronic

thermometer (C28K, Comark Electronics; Littlehampton, UK).

BP, HR, and activity were measured continuously in conscious

Figure 7. Effect of BAY 58-2667 and BAY 41-2272 treatment on scaling factors. Scaling factors (a) for 40 min pretreatment were compared
to 40 min post-treatment values and plotted as changing trends over time for vehicle +3 h (A), BAY 41-2272 +3 h (B), BAY 58-2667 +3 h (C), vehicle
+8 h (D), BAY 41-2272 +8 h (E), and BAY 58-2667 +8 h (F).
doi:10.1371/journal.pone.0072155.g007
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mice via radiotelemetry (PA-C10 probes, Data Sciences Interna-

tional, St. Paul, MN) as previously described [32].

Plasma NOx
2 and IL-6 levels

Plasma was prepared from blood collected 2 h post-treatment

via cardiac puncture after terminal anesthesia with xylazine/

ketamine and immediately flash frozen in liquid nitrogen (n = 3).

Plasma concentrations of NO2
2 and NO3

2 (collectively NOx
2)

were determined via the Griess method as previously described

[32]. Plasma concentrations of IL-6 were determined via 7TD1

cell bioassay, as previously described [33].

Cyclic GMP assay
Kidneys, hearts and livers were isolated 2 h post-treatment and

snap frozen in liquid nitrogen (n = 3). cGMP levels in whole organ

homogenates were measured via enzyme-immunoassay (Mono-

clonal anti-cGMP EIA kit, NewEast Biosciences, King of Prussia,

PA (USA)) as per the manufacturer’s instructions.

Immunohistochemical staining of apoptotic
cardiomyocytes

Hearts were isolated 2 h post-treatment and fixed in 4%

paraformaldehyde (n = 3). After dehydration, paraffin embedding

and sectioning, the tissue was stained with a Terminal deoxynu-

cleotidyl transferase dUTP Nick End Labeling (TUNEL) method

(In Situ Cell Death Detection Kit, TMR Red, Roche Diagnostics,

Vilvoorde, Belgium) as per the manufacturer’s instructions. Next,

sections were counterstained with DAPI nuclear staining and

imaged (106 magnification) on a BD Pathway 855 automated

imaging system (BD Biosciences, Erembodegem, Belgium). The

number of TUNEL events was counted and normalized over the

entire tissue surface area with BD Attovision analysis software.

Analysis of BP variability
Two broad categories of analysis methods exist for analysis of

variability in biological time series: (1) linear methods, e.g.

frequency domain analysis, and (2) nonlinear methods, e.g.

detrended fluctuation analysis (DFA). For the frequency domain,

fast Fourier transformation (FFT) was used to divide the power

spectrum in discrete frequency bands that can be linked to activity

in specific branches of the ANS. The spectral power in the low

frequency (LF) band is assumed to reflect both sympathetic and

parasympathetic tone, while the high frequency (HF) band reflects

vagal (parasympathetic) tone [34,35]. Nonlinear methods are

expected to extract more relevant physiological information

considering the inherent complexity of biological signals. DFA

quantifies the fractal properties of a time series [36,37]. A scaling

factor a of 1.0 indicates the presence of long-range correlations,

characteristic for proper communication between the ANS

and regulation of the heart rhythm. Higher or lower values

indicate breakdown of correlations, indicative for failure of

communication. Appropriate BP traces were imported into ADI

Labchart Pro v7.3 (ADInstruments GmbH, Spechbach, Ger-

many). BP variability parameters were calculated using the HRV

module v1.4.2. Frequency domain parameters were calculated

with the following settings: FFT size 1024, Window Welch,

Overlap K, Max frequency 5 Hz, Frequency bands

0.15,LF,1.5,HF,5 Hz. Low and high frequency bands (LF

and HF, respectively) were normalized over the very low

frequency (VLF) component subtracted from total power accord-

ing to LF (nu)~
LF (ms2)

Total Power (ms2){VLF (ms2)
. Next, diastolic

interval time series were exported and spline corrected using the

hrspline and ardeglch functions (courtesy of [38]) in Matlab v7.13

(The MathWorks Inc., Natick, MA (USA)). The fractal properties

of the spline corrected time series were analyzed using the

detrended fluctuation algorithm (DFA) [36,37]. Next, the scaling

factor a was calculated by fitting a linear trend through the DFA

result on a log-log plot.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism 6.01

(GraphPad Software, La Jolla, CA (USA)) and SAS software 9.2

(SAS Institute Inc., Cary, NC (USA)). Temperature curves were

compared to appropriate controls via repeated-measure ANOVA.

A survival function was estimated with the Kaplan-Meier

estimator to assess the marginal effect of treatment on time of

death. Survival curves of treatment groups were compared to

appropriate controls using the log-rank (Mantel-Cox) test. For ex

vivo analysis, baseline levels were compared to vehicle controls, and

vehicle controls to appropriate treatment groups using one-way

ANOVA. Means were compared with a Fisher’s LSD test.

Longitudinal data analysis was performed by fitting the following

linear mixed model: effect =b1+b2t+b3T+b4tT where t is time, T

is treatment, and tT is the interaction term. Times of measurement

were equally spaced and various ways of modeling the correlation

structure (simple, unstructured, autoregressive order 1, and

compound symmetry) were compared using the residual maxi-

mum likelihood (REML) method in the mixed model framework

as implemented in SAS. Selection of the best model fit was based

on likelihood ratio test (LRT) statistics and the Aikake Information

coefficient (AIC). All appropriate diagnostics were carefully

examined. Values are means 6 SEM, unless stated otherwise.

Supporting Information

Table S1 Repeated-measure ANOVA. F-statistics, p-values and

n-values for Figure 2. Statistics were calculated for separate (non-

merged) experiments where appropriate. ****, p#0.0001; ***,

p#0.001; **, p#0.01; *, p#0.05 and ns = nonsignificant.

(DOCX)

Table S2 Linear mixed model. Fixed term F-statistics for

Figure 5 A–D. Longitudinal data analysis was performed by

fitting the following linear mixed model: b1+b2t+b3T+b4tT where

t is time, T is treatment, and tT is the interaction term. Times of

measurement were equally spaced and a ‘simple’ model for the

correlation structure was used in the residual maximum likelihood

(REML) framework as implemented in SAS. ****, p#0.0001; **,

p#0.01; *, p#0.05 and ns = nonsignificant.

(DOCX)
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