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Mini-Review Mini-Review

Introduction

Obesity and its associated metabolic diseases are one of the greatest 
public health challenges in the United States.1 Insulin resistance, 
a central and defining feature of obesity, has been identified as a 
primary contributor to the increase in many metabolic diseases 
including type 2 diabetes, cardiovascular disease, and hyperten-
sion.2 Currently, obesity-induced insulin resistance is proposed 
to arise secondary to an inflammatory response that is caused 
by an infiltration of adipose tissue by monocytes and subsequent 
pro-inflammatory macrophage differentiation.3,4 Adipose tissue 
macrophages release pro-inflammatory cytokines that act both 
locally on adipocytes and vascular cells and also circulate to 
distal tissues to stimulate intracellular pro-inflammatory path-
ways. In a feed-forward cycle, these cytokines can also stimulate 
adipose tissue macrophages to secrete chemokines that promote 
the recruitment and infiltration of additional monocytes/macro-
phages into adipose tissue. These combined actions result in cell-
autonomous insulin resistance in adipocytes, exacerbation of the 
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In the United States, obesity is a burgeoning health crisis, with 
over 30% of adults and nearly 20% of children classified as 
obese. Insulin resistance, a common metabolic complication 
associated with obesity, significantly increases the risk of 
developing metabolic diseases such as hypertension, coronary 
heart disease, stroke, type 2 diabetes, and certain cancers. With 
the seminal finding that obese adipose tissue harbors cytokine 
secreting immune cells, obesity-related research over the past 
decade has focused on understanding adipocyte–macrophage 
crosstalk and its impact on systemic insulin sensitivity. Indeed, 
adipose tissue has emerged as a central mediator of obesity- 
and diet-induced insulin resistance. In this mini-review, we 
focus on a potential role of adipose tissue phosphoinositide 
3-kinase (PI3K) as a point of convergence of cellular signaling 
pathways that integrates nutrient sensing and inflammatory 
signaling to regulate tissue insulin sensitivity.
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inflammatory state, and subsequent systemic insulin resistance.3,4 
While increased macrophage accumulation is the primary driver 
of the pro-inflammatory response, the cellular processes and sig-
nals within the adipose tissue that initiate and promote an unre-
solved pro-inflammatory state and systemic insulin resistance are 
not well understood. We propose that adipocyte insulin resis-
tance per se initiates macrophage recruitment through dysregula-
tion of adipocyte nutrient metabolism and adipose tissue vascular 
remodeling. Further, our recent findings suggest that these events 
are orchestrated by changes in phosphoinositide 3-kinase (PI3K) 
signaling.5

PI3K: The great integrator. PI3K is essential for many cellular 
functions such as differentiation, apoptosis, cell growth, motil-
ity and is necessary for almost all of insulin’s metabolic actions 
including glucose transport, lipid metabolism, and glycogen and 
protein synthesis.6 In adipocytes, PI3K plays a key role in differ-
entiation,7 and is essential for insulin-stimulated glucose uptake 
and suppression of lipolysis. It also regulates insulin-stimulated 
remodeling of the adipocyte extracellular matrix,8 collagen pro-
duction,9 vascular growth, and function.10 Additionally, PI3K 
signaling is required for several key immune cell functions from 
cytokine production to proliferation and chemotaxis.11,12 Various 
impairments in these PI3K-linked pathways are found in obesity, 
implicating it as a major contributor to the progression of insulin 
resistance and inflammation in adipose tissue.

The specificity of PI3K signaling for these diverse pathways 
within a cell is not fully understood but likely relies on the cellu-
lar distribution and specificity of the regulatory/adaptor subunit 
isoforms. The Class I PI3K is an obligate heterodimer consisting 
of a regulatory subunit and a p110 catalytic subunit, each of which 
have several isoforms. Class I is further subdivided into IA or IB, 
which have unique regulatory and catalytic subunits and signal-
ing patterns. The class IA regulatory subunit isoforms are a group 
of related proteins encoded by the Pik3r1 (p85α, p55α, p50α), 
Pik3r2 (p85β), and Pik3r3 (p55γ).6,13 They control not only the 
subcellular localization of the enzyme but also the stability and 
activation of the catalytic subunits (p110α, p110β, and p110δ) 
through domain interactions.14 The regulatory subunit isoforms 
share common N-terminal and C-terminal Src-homology-2 
(SH2) domains with affinity for phosphorylated tyrosine resides 
linking the Class IA PI3Ks to tyrosine kinase receptor signaling 
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PI3K-independent effects of the regulatory subunits. Several 
studies have identified PI3K-independent roles for p85α subunit 
that may better explain the inverse relationship between p85α 
abundance and insulin sensitivity. Such roles include binding 
and stabilization of the lipid phosphatase, PTEN (phosphatase 
and tensin homolog deleted on chromosome 10), which directly 
opposes PI3K action.28,29 Additional kinase-independent roles for 
p85α include nuclear translocation of XBP-1, important in ER 
stress signaling30,31 and insulin-activation of c-Jun N-terminal 
kinase (JNK) through association with Cdc42.32 The p85β sub-
unit has also been shown to bind and translocate XBP-1 into the 
nucleus.30 Kinase-independent roles have not yet been elucidated 
for the shorter Pik3r1 isoforms, p50α and p55α or for the Pik3r3, 
p55γ. However, novel, non-redundant PI3K signaling roles have 
been attributed to both p50α-PI3K and p55α-PI3K. For exam-
ple, in activated T cells, p50α-PI3K was shown to accumulate at 
the immunological synapse to mediate ICOS signaling for cyto-
kine production.33 In addition, p55α expression is specifically 
induced in cells infected by Epstein-Barr virus and p55α-PI3K 
is necessary for cell proliferation as knockdown of p55α in these 
cells resulted in apoptosis.34 In contrast, in mammary epithelial 
cells, signal transducer and activator of transcription 3 (STAT3) 
activation increases p55α and p50α expression and reduces PI3K 
activity and Akt signaling, leading to cell apoptosis, which is 
necessary for involution.35 Taken together, these studies reveal 
that differential increases in p85α, p55α, and p50α abundance 
is another mechanism used by cells to confer specificity of PI3K 
signaling in response to different stimuli.

Metabolic functions of PI3K. The function of PI3K is to 
convert phosphatidylinositol-4,5-bisphosphate (PIP

2
) into phos-

phatidylinositol-3,4,5-trisphosphate (PIP
3
) creating true second 

messengers in cellular membranes. In an un-stimulated state, 
the heterodimer is held in the cytosol in a state of low kinase 
activity through its association with its regulatory subunit. With 
hormone or cytokine stimulation, PI3K regulatory subunits are 
recruited to adaptor proteins containing tyrosine phosphorylated 
(pYxxM) sites. In adipocytes, substrate metabolism is regulated 
by insulin activation of PI3K leading to increased glucose metab-
olism and decreased fat metabolism (Fig. 1). Insulin-stimulation 
leads to auto-phosphorylation of the insulin receptor and subse-
quent recruitment and tyrosine phosphorylation of insulin recep-
tor substrate (IRS1–4) proteins. IRS proteins act as docking sites 
for the regulator subunits and binding leads to a conformational 
change that relieves kinase inhibition and brings the enzyme in 
close proximity to its lipid membrane substrate.14 After differen-
tiation, the p110β subunit is the predominant insulin-responsive 
catalytic isoform in adipocytes.36 Increased PIP

3
 in the membrane 

attracts two key signaling proteins with lipid binding pleckstrin 
homology (PH) domains, PDK1 (phosphoinositide-dependent 
kinase-1) and PKB/Akt (protein kinase B). Akt isoforms are 
major downstream effector molecules of PI3K and are activated 
through phosphorylation by PDK1 at threonine 308 and by 
mTORC2 at serine 473.37 In adipocytes, Akt2 is the primary iso-
form that stimulates the translocation of the glucose transporter 
GLUT4 to the plasma membrane, thereby promoting the uptake 
of glucose into the cell.38

pathways.15,16 Detailed information on the structure and function 
of PI3K subunit domains is reviewed elsewhere.6

For the purposes of this mini-review, we focus on the role 
of the class IA PI3K regulatory subunits in mediating obesity-
induced insulin resistance and inflammation in adipose tissue. 
This mini-review highlights key PI3K-dependent pathways in 
adipose tissue adipocytes, vascular cells and macrophage that 
are dysregulated in obesity and implicated in the pro-inflamma-
tory phenotype that contributes to systemic insulin resistance. 
We speculate that changes in PI3K signaling under conditions 
of nutrient excess (such as in obesity) coordinately lead to adi-
pocyte insulin resistance, vascular remodeling, and macrophage 
recruitment.

Adaptor Molecules Define PI3K Signaling Specificity

Individual signaling roles for the different regulatory subunits 
has not been fully explored. However, differences in insulin acti-
vation and binding affinities between the Pik3r1 subunits have 
been tested in differentiated adipocyte and muscle cell cultures.17 
Interestingly, PI3K activity associated with p50α was greater than 
that associated with p85α or p55α, while increasing the level of 
p85α or p55α, but not p50α, inhibited both phosphotyrosine-
associated and p110-associated PI3K activities and downstream 
signaling at Akt when expressed either alone or in the presence 
of overexpression of p110α.16 These data suggest that p85α and 
p55α act as both positive and negative regulators of insulin 
action whereas the p50α subunit lacks the inhibitory function. 
Consistent with in vitro studies, transgenic mouse models have 
demonstrated that deletion of the class IA regulatory isoforms 
(p85α only, p85β only, and p55α/p50α double knockout) or 
heterozygous Pik3r1 deletion enhances PI3K activity and subse-
quent insulin sensitivity.15,18-20

Regulatory to catalytic subunit ratio: Are the regulatory sub-
units “free”? Despite nearly a decade of observation, the mecha-
nism of action for improved insulin action with reduced subunits 
is still controversial. The original mechanism proposed that 
“excess” regulatory subunits not bound to a catalytic subunit act 
as negative inhibitors of insulin action by competing with func-
tional heterodimers for IRS binding sites.13 This idea has stemmed 
primarily from knockout mouse studies and immunodepletion 
assays in cells and tissues.21,22 However, the idea of “free p85” has 
been disputed as unstable and non-existent in cells as measured 
by quantitative mass spectrophotometry.23 While the report by 
Geering et al. is convincing, the p85 to p110 ratio was only tested 
in tissues from mice under normal conditions. Most studies that 
have found increased expression or abundance of the regulatory 
subunits and reduced insulin-stimulated PI3K activity were in tis-
sues from mice or humans under conditions of physiological stress 
like obesity,5,24 nutrient excess,25 pregnancy,26 or excess growth 
hormone.27 To date, there have been no in vivo studies using a 
Pik3r1 over-expression model to test directly whether increasing 
the regulatory subunits would have the opposite effects of sub-
unit deletion on insulin sensitivity. Over-expression or knock-in 
mouse studies may also reveal novel signaling roles or binding 
partners for the different regulatory subunits.
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through serine phosphorylation of IRS, which both prevents IRS 
tyrosine phosphorylation for PI3K association and signals for IRS 
degradation.43

PI3K Signaling: At the Heart of the Inflammatory 
Response in Obesity

Does NFκB link PI3K to the inflammatory response in obe-
sity? Nuclear factor κB (NFκB) is a key transcriptional regulator 
of the inflammatory response associated with diet-induced obe-
sity in various cell types, including adipocytes, and along with 
other transcription factors coordinates the increase in cytokine 
and chemokine production, inflammatory enzymes and adhesion 
molecules.44 FFAs can increase pro-inflammatory cytokine and 
chemokine secretion via activation of Toll-like receptor (TLR) 2 
or TLR4 and stimulation of signaling to NFκB in macrophage 
and other immune cells.45 This suggests that FFAs may indirectly 
stimulate insulin resistance through recruitment and activation 
of macrophage. Knockout of IKKβ or TLR4, the major upstream 
regulators of NFκB, in myeloid cells ameliorates obesity induced 
insulin resistance through suppression of NFκB activation and 
reduced circulation of inflammatory cytokines.46,47 In contrast, 
constitutive activation of IKKβ and subsequently NFκB activa-
tion in hepatocytes causes profound insulin resistance.48

Transduction of TLR4 signaling to NFκB requires PI3K 
activity for cytokine production in leukocytes.49-51 Similarly, 
NFκB activation by IL-1β is also dependent on PI3K function, as 
pharmacological inhibition with wortmannin or LY294002 ame-
liorates NFκB activation.52,53 Furthermore, deletion of the PI3K 

Insulin-activation of PI3K signaling is also important in sup-
pression of lipolysis through activation of Akt and phosphory-
lation of phosphodiesterase 3b (PDE3b) at Ser273.39 Activation 
of PDE3b catalyzes the hydrolysis of cAMP to 5'AMP, thereby 
attenuating PKA activity and decreasing the activity of hormone-
sensitive lipase (HSL). Suppression of HSL inhibits the release of 
fatty acids from adipocytes triglycerides. A recent study by Choi 
et al. suggests that insulin may also regulate lipolysis through 
a PI3K-dependent but Akt-independent pathway in conditions 
of submaximal/physiological beta-adrenergic stimulation, poten-
tially through subcellular localization of signaling to directly 
regulate perilipin phosphorylation.40 This divergence in insulin 
signaling downstream of PI3K for glucose versus lipid metabo-
lism has also been observed in liver, whereby insulin stimulates 
the PI3K–Akt axis to regulate gluconeogenesis and the PI3K-
aPKC (atypical protein kinase C) λ/ζ to regulate lipogenesis.41 
Increased lipolysis in obese adipose tissue resulting in an increase 
in circulating free fatty acids (FFAs) is thought to be a major con-
tributor to skeletal muscle and systemic insulin resistance. To this 
end, increasing FFAs flux in lean individuals to rates similar or 
greater than those found in obesity induces insulin resistance.42 
Pharmacological treatment with acipimox to reduce plasma FFAs 
improves insulin sensitivity in obese and diabetic subjects.29 FFAs 
can directly induce insulin resistance in skeletal muscle, adipo-
cytes and liver through increased production of fatty acid inter-
mediates (diacylglyceride, ceramide, and long-chain acyl-CoA) 
that activate stress or inflammatory kinases and inhibit insulin 
signaling.43 Activation of stress kinases, JNK, inhibitor of κB 
kinase (IKK), and atypical aPKCλ/ζ, inhibit insulin signaling 

Figure 1. Insulin-stimulated PI3K signaling in adipocyte and endothelial cells. Insulin binding to the insulin receptor (IR) leads to auto-phosphorylation 
at tyrosine residues and subsequent recruitment and tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. IRS acts as a docking 
protein for PI3K and binding by regulatory subunit relieves kinase inhibition and brings the enzyme in close proximity to the phospholipid membrane. 
PI3K phosphorylates the 3' site on the inositol ring forming phosphoinosital (3, 4, 5) phosphate (PIP3), which attracts lipid binding proteins, PDK1 and 
Akt. In adipocytes, activation of Akt is essential for glucose clearance by enhancing signals necessary for GLUT4 translocation to the plasma membrane 
and for suppression of lipolysis through phosphorylation and activation of phosphodiesterase 3b (PDE3b). Activation of PDE3b leads to inhibition of 
protein kinase A (PKA) and hormone sensitive lipase (HSL) by depleting cyclic AMP (cAMP). In vascular endothelial cells, activation of Akt by PI3K pro-
motes angiogenesis and nitric oxide (NO) production for vascular tone. Akt also represses the expression of adhesion molecules involved in leukocyte 
rolling and adhesion to the vascular luminal wall.
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cytokine release.5 These molecular changes were accompanied 
by significant improvements in systemic insulin sensitivity and 
reduced adipose tissue macrophage accumulation, again, despite 
marked obesity.5 In obese adipose tissue from wild-type mice, we 
found a 4-fold increase in the PI3K regulatory subunits, p55α 
and p50α that was prevented by Pik3r1 knockdown.5 Thus, we 
propose that in obese adipose tissue increased p55α and p50α 
abundance inhibits insulin-stimulated PI3K activity, which 
increases both lipolysis and enhances FFA activation of NFκB 
to stimulate cytokine and chemokine production (Fig. 2). The 
NAD-dependent deacetylase sirtuin-1 (SIRT1) is an important 
cellular nutrient sensor that is down-regulated in obese adipose 
tissue.60,61 We speculate that increased p55α and p50α abun-
dance in obese adipose tissue is due to reduced SIRT1 activity 
and the subsequent increase in STAT3 acetylation, a known tran-
scriptional regulator of p55/p50.35 We have previously reported a 
similar mechanism for SIRT1 regulation of PI3K activity with 
decreased nutrient intake in skeletal muscle.62 Others have found 
that SIRT1 interacts in an insulin-independent manner with the 
PI3K adapter subunit p85 and acts as a positive modulator of 
insulin signaling in muscle cells through PI3K.63 Our proposed 
mechanism links nutrient sensing via SIRT1 with regulation of 
insulin action and inflammation through PI3K activity in obese 
adipose tissue (Fig. 2).

Control of Adipogenesis, Adipocyte Survival,  
and Adipose Tissue Development by PI3K

In addition to its central role in insulin signaling in adipocytes 
and other cells, PI3K also participates in adipogenesis and adi-
pose tissue development. PI3K is activated in preadipocytes by 
insulin or insulin-like growth factor,64 with subsequent stimula-
tion of Akt. Some,65 but not all,64 pro-adipogenic effects of PI3K/
Akt signaling are driven by the mammalian target of rapamy-
cin (mTOR). Direct inhibition of PI3K with wortmannin or 
LY294002 blocked differentiation of immortalized preadipo-
cytes in both 3T3-L1 and 3T3-F442A lines.66 PI3K inhibits 
differentiation by suppressing transcription of pro-adipogenic 
factors including PPARγ6 and Skp2,67 and the phosphorylation 
of FoxO1.68

The importance of PI3K signaling in adipose tissue develop-
ment is further exemplified by studies assessing the impact of 
Akt isoforms on adipocyte production. Mouse embryonic fibro-
blasts deficient in Akt1 exhibit a defect in adipocyte differen-
tiation, and ectopic expression of Akt1, but not Akt2, restores 
adipogenic conversion in fibroblasts deficient in both forms of 
Akt.68 As anticipated, mice deficient in Akt1 display reduced 
adiposity in response to high-fat feeding; however, this appears 
to be due to increased energy expenditure rather than defects in 
adipocyte production.69 Interestingly, mice lacking Akt2 exhibit 
age-dependent loss of adipose tissue accompanied by insulin 
resistance, hyperglycemia, and elevated serum triglycerides.70 
Reusch and Klemm71 have also demonstrated that inhibition of 
Akt in mature adipocytes elicits their apoptosis.

Finally, it is worth noting that PI3K may play a role in the 
commitment and differentiation of mesenchymal stem cells 

catalytic subunits, p110δ or p110β, or the Pik3r1 regulatory sub-
units, significantly impairs leukocyte (eosinophils, T cell, B cells, 
macrophage, and neutrophils) proliferation and chemotaxis 
in a cell type-dependent manner.12 In contrast, deletion of the 
p85β subunit increased lymphocyte proliferation, accumulation 
at sites of infection and reduced cell death suggesting a unique 
role for p85β in limiting T cell expansion.54 Relevant to obesity, 
these data suggest that inhibition of PI3K activity specifically 
in immune cells may potentially ameliorate the inflammatory 
response in adipose tissue as was recently described in obese mice 
with deletion of Class IB PI3Kγ.55

The role of PI3K in NFκB mediate cytokine secretion in adi-
pocytes has not been thoroughly investigated. Several studies 
have found that wortmannin inhibited IL-1β-induced inflam-
matory response through reduced expression of NFκB regulated 
genes.56,57 Similarly, Gustin et al.58 found that cell lines, includ-
ing 3T3-L1 adipocytes, that have a high proportion of IKKα to 
IKKβ were most sensitive to PI3K inhibitors to diminish the 
NFκB activation in response to TNFα exposure. Like leuko-
cytes, palmitate exposure in 3T3-L1 adipocytes increased NFκB 
mediate cytokine secretion; however, in contrast to immune 
cells, inhibition of PI3K by wortmannin, alone or additively with 
palmitate, further activated the NFκB to induce cytokine (IL-6, 
TNFα) expression,59 suggesting that PI3K may act constitutively 
to suppress inflammation. This is a very important point, and 
suggests that inhibition of PI3K may initiate and exacerbate the 
inflammation in adipose tissue that is associated with obesity and 
insulin resistance.

In agreement with this line of thinking, we have recently dem-
onstrated that heterozygous knockdown of Pik3r1 in obese mice, 
increased adipose tissue PI3K activity concomitant with reduced 
phosphorylation of IKKα/β and suppressed adipose tissue 

Figure 2. PI3K coordinates metabolic control and inflammatory signal-
ing. Our proposed model for PI3K mediated signaling in obesity postu-
lates that increased expression of the class IA regulatory subunits, p50α 
and p55α, inhibits insulin-stimulated PI3K activity for glucose uptake 
and suppression of lipolysis causing adipocyte insulin resistance. Con-
comitantly, reduced PI3K activity enhances activation of nuclear factor 
κ B (NFκB) to promote inflammatory cytokine secretion in adipocytes 
and increased secretion of adhesion molecules in the vascular endothe-
lial cells. Combined, these signals promote adipose tissue recruitment 
and pro-inflammatory activation of macrophage causing a feed forward 
cycle that leads to infiltration of additional macrophages into adipose 
tissue. This results in the exacerbation of the inflammatory state and 
systemic insulin resistance.
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altering the strength of adhesion or formation of the EC “dock-
ing structure” following ICAM ligation.83 However, treatment 
of ECs with LY294002 prevented lymphocytes from extending 
processes below the level of VE-cadherin in the monolayers.

In summary, PI3K in ECs is crucial to the normal devel-
opment and expansion of adipose tissue. Defects in EC PI3K 
signaling likely contribute to adipose tissue dysfunction by lim-
iting angiogenesis and blood flow to the tissue, while promot-
ing the recruitment of macrophage that further suppress insulin 
responsiveness.

PI3K in Macrophage Function

Macrophages are an important constituent of adipose tissue. 
These immune cells have been unambiguously linked to adipose 
tissue remodeling and changes in adipocyte insulin sensitivity in 
obesity.3,4 The PI3K signaling system governs or participates in 
several signature macrophage functions including recruitment 
and invasion,84,85 lipid uptake and accumulation,86-88 inflamma-
tory activation,89,90 and glucose utilization.91 Unfortunately, none 
of these studies examined macrophage residing in adipose tissue. 
However, experiments in other tissues and systems provide some 
potential insights into PI3K signaling in adipose tissue macro-
phage. For example, recruitment and invasion of macrophage 
into inflamed colon tissue,84 or blood vessel walls in response to 
advanced glycosylation endproducts85 requires PI3K activation. 
Similar recruitment to and invasion of adipose tissue occurs in 
obese humans and animals making it likely that PI3K signaling 
is involved in this process as well. The PI3K pathway also partici-
pates in the upregulation of CD36, LDL uptake and storage in 
macrophage expose to oxidized LDL88 and lipid droplet forma-
tion and perilipin 2 expression in macrophage exposed to snake 
venom.87 This suggests that the PI3K system may be engaged 
to facilitate the uptake of lipid from dying adipocytes by mac-
rophage in adipose tissue of obese individuals. The absence of 
data to support these conjectures makes this an untapped field 
for future research.

An Old Idea, New Again: Does Insulin Action Direct 
the Inflammatory Response in Obesity?

Current dogma posits that obesity-induced insulin resistance 
arises secondary to the inflammatory response caused by infil-
tration of adipose tissue with pro-inflammatory immune cells.92 
This paradigm is strongly supported as interventions that reduce 
circulating inflammatory cytokines or prevent AT macrophage 
infiltration, not only reduce inflammatory cytokine production 
but also improve insulin action in rodent models of obesity.3,4 
Separating induction of insulin resistance from initiation of adi-
pose tissue inflammation is difficult as both manifest rapidly, 
occurring within as little as 3 days of beginning high-fat diet 
(HFD) feeding.25,93 However, a recent study by Lee et al. found 
that while 3 days of HFD caused both insulin resistance (tissue-
specific and systemic) and macrophage infiltration in WT mice, 
deletion of macrophage/inflammatory component did not reverse 
IR associated with acute HFD. Rather, deletion of macrophage 

to the adipocyte lineage. For example, activation of Exchange 
Protein Activated by cAMP (EPAC) promotes adipogenic rather 
than osteogenic gene expression and differentiation of human 
mesenchymal stem cells via PI3K/Akt signaling to CREB.71 
Dominant negative EPAC suppressed PI3K and Akt activity and 
CREB function, thereby stimulating transcription of osteogenic 
rather than adipogenic genes.71 Results like these have led inves-
tigators to propose that components of the PI3K pathway may 
be targets for therapies to prevent osteoporosis by promoting the 
production of osteoblasts rather than adipocytes from marrow 
MSC.

PI3K in Vascular Endothelial Function

Normal vascular development requires appropriate activation of 
the PI3K signaling in endothelial cells (ECs).10 During angio-
genesis the PI3K pathway is stimulated in ECs in response to 
extracellular stimuli like VEGF and factors. Activation of PI3K/
Akt signaling in ECs by these agents promotes the proliferation, 
differentiation and survival of resident cells in the vessel wall, 
and the recruitment of cells from other regions of the vasculature 
(Fig. 1). The importance of PI3K/Akt signaling in normal vas-
cular development is exemplified by gene knockout studies such 
as the Akt1-null mouse which exhibits delayed vessel maturation 
and increased vascular permeability.72 Alternately, endothelial-
specific knockdown of PTEN, an inhibitor of PI3K/Akt, elicits 
increased angiogenesis.73

Since the growth and expansion of adipose tissue requires 
recruitment of new blood vessels,74 defects in PI3K signaling 
may suppress normal adipose tissue development or adiposity 
with over-nutrition. Loss of PI3K signaling may also account for 
the decreased vascular density observed in “metabolically obese” 
insulin resistant individuals.75 It has been proposed that the 
mismatch between adipocyte hypertrophy and O

2
 delivery may 

contribute to adipose tissue inflammation and dysfunction.76 
EC PI3K is also crucial for maintenance of vascular tone and 
blood flow primarily through the production of nitric oxide.77 
Inhibition of PI3K in EC may in part explain the decreased arte-
rial function observed in the adipose tissue of obese individuals,78 
which would be expected to further diminish adipose tissue oxy-
genation and promote adipose tissue dysfunction.

Finally, EC PI3K participates in adipose tissue inflammation 
observed with obesity and insulin resistance via the recruitment 
and transendothelial migration of macrophage. The normal tran-
sient activation of the PI3K pathway in EC represses the expres-
sion of adhesion molecules involved in leukocyte rolling and 
adhesion to the vascular luminal wall.79 However, chronic insulin 
resistance results in upregulation of adhesion molecule expres-
sion.80 Cell culture studies demonstrate that inhibition of PI3K 
signaling in ECs with agents like wortmannin or LY294002, 
alone or combination with TNFα, insulin, or VEGF, increase 
the expression of adhesion molecules like ICAM-1, VCAM, 
and E-selectin.81 Alternately, ectopic expression of constitutively 
active Akt has been shown to induce ICAM-1 expression by 
ECs.82 Interestingly, inhibiting PI3K with LY294002 decreased 
leukocyte transmigration through EC monolayers without 
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resulted in systemic improvements in insulin sensitivity and the 
metabolic profile despite massive obesity.98 These studies and 
many others indicate that failure to adequately handle and store 
excess nutrients is a primary mechanism in the development of 
insulin resistance. These studies also indicate that there is coordi-
nation between adipocyte proliferation and vascular remodeling 
that may be directed by PI3K signaling. Further, improving lipid 
and glucose handling alone is sufficient to restore or prevent insu-
lin resistance in obesity making a strong argument that defects in 
cellular metabolism and insulin signaling may initiate the signals 
necessary for macrophage chemotaxis. In obese adipose tissue, 
the inhibition of PI3K signaling in response to nutrient excess 
manifests as increased lipolysis, reduced vascular growth and 
proliferation, and increased chemokine signaling and expression 
of adhesion molecules like ICAM-1, VCAM, and E-selectin to 
upregulate the inflammatory response.

In this mini-review, we present a model in which PI3K is 
linked to cellular energy status through expression of the regula-
tory subunits, whose abundance can modulate enzyme activity 
to coordinate insulin resistance and inflammatory signaling in 
obese adipose tissue. Development of pharmaceuticals that could 
specifically target and suppress transcription of the PI3K regula-
tory subunits may be able to enhance PI3K activity, thus improv-
ing insulin sensitivity and the metabolic profile despite obesity.
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component could only improve insulin sensitivity in already 
obese mice, which indicates that IR can occur independent of 
macrophage infiltration,93 and suggests that inflammation plays a 
key role in the worsening of insulin resistance with chronic HFD 
and obesity.

While current research has focused on adipose tissue inflam-
mation as a key regulator of insulin resistance in obesity, many 
studies have found that enhancing insulin signaling independent 
of known inflammatory pathways can restore or prevent insu-
lin resistance in obesity. For example, adipocyte-specific GLUT4 
over-expression normalizes glucose tolerance, expands fat mass, 
and improves whole body insulin resistance caused my muscle 
deletion of GLUT4.94 Similarly, expansion of adipose tissue 
mass through modest over-expression of adiponectin, mimick-
ing PPARγ agonist treatments, completely rescued the diabetic 
phenotype in ob/ob mice.95 Enhancing PI3K activity through 
global genetic deletion of the pik3r1 subunits improves sys-
temic insulin sensitivity5,96 and prevents macrophage accumu-
lation.5 Furthermore, these improvements in insulin action and 
reduced adipose tissue macrophage accumulation occur inde-
pendent of pik3r1 knockdown in bone marrow-derived cells.5 
Additional studies in adipocyte-specific knockout animals are 
essential in determining the relative contribution of adipocyte to 
the improved metabolic phenotype in these animals. Likewise, 
deletion of PTEN in adipocytes enhances insulin action despite 
hyperphagia.97 Lastly, increasing adipose tissue lipid stor-
age through adipocyte-specific over-expression of mitoNEET 
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