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ABSTRACT
Objective To provide a natural language processing
method for the automatic recognition of events,
temporal expressions, and temporal relations in clinical
records.
Materials and Methods A combination of
supervised, unsupervised, and rule-based methods were
used. Supervised methods include conditional random
fields and support vector machines. A flexible automated
feature selection technique was used to select the best
subset of features for each supervised task. Unsupervised
methods include Brown clustering on several corpora,
which result in our method being considered
semisupervised.
Results On the 2012 Informatics for Integrating
Biology and the Bedside (i2b2) shared task data, we
achieved an overall event F1-measure of 0.8045, an
overall temporal expression F1-measure of 0.6154, an
overall temporal link detection F1-measure of 0.5594,
and an end-to-end temporal link detection F1-measure
of 0.5258. The most competitive system was our event
recognition method, which ranked third out of the 14
participants in the event task.
Discussion Analysis reveals the event recognition
method has difficulty determining which modifiers to
include/exclude in the event span. The temporal
expression recognition method requires significantly more
normalization rules, although many of these rules apply
only to a small number of cases. Finally, the temporal
relation recognition method requires more advanced
medical knowledge and could be improved by separating
the single discourse relation classifier into multiple, more
targeted component classifiers.
Conclusions Recognizing events and temporal
expressions can be achieved accurately by combining
supervised and unsupervised methods, even when only
minimal medical knowledge is available. Temporal
normalization and temporal relation recognition,
however, are far more dependent on the modeling of
medical knowledge.

INTRODUCTION
With the ever-growing importance and utilization
of electronic medical records (EMR), there is
increasing demand for techniques to reconstruct
the patient’s clinical history automatically from
natural language text. Central to this is the ability
to extract clinically relevant events and place them
on a timeline. This would enable automated rea-
soning about a patient’s conditions. Causal relation-
ships are difficult to establish without temporal
relationships. Furthermore, without temporal infor-
mation, one cannot distinguish between a condition

that occurred years ago and one that has occurred
within a patient’s current hospital visit, and there-
fore whether it might be related to other symptoms
the patient is experiencing.
The 2012 Informatics for Integrating Biology

and the Bedside (i2b2) shared task
1

focuses on the
recognition of temporal relations between events
and temporal expressions in clinical documents. It
follows the TimeML standard for representing
events (EVENT), temporal expressions (TIMEX3), and
the relations between them (TLINK).
This article presents three distinct methods for

resolving these three tasks. These methods are char-
acterized by the central role of supervised techniques,
while additionally using temporal normalization
rules and unsupervised word clustering from large,
unlabeled corpora. Moreover, instead of manually
selecting the best features for the supervised methods
employed in each task, we rely on a flexible method
automatically to select the optimal subset of features
from a large set of features.

BACKGROUND
Temporal information is used in clinical documents
to ground events chronologically. However, as with
all natural language, temporal information may be
ambiguous and requires pragmatic reasoning to be
fully grounded. Consider the following sentence
from a clinical progress note:

Cardiovascular stable, significant hypertension was
noted on 9/7/93 at 5:10 a.m. and therefore 10 cc
per kilo albumin was given.

This sentence discusses a change in a patient’s
medical condition and the response that was taken
by the hospital. In order to represent this response
formally, several steps are necessary. First, the rele-
vant medical events must be noted. Second, tem-
poral expressions must be extracted and grounded
on a timeline. Finally, relations must be detected
between these events and temporal expressions in
order to enable chronological reasoning about the
clinical note.
Temporal relation recognition has been well

studied in non-clinical settings. Evaluations for this
task on newswire include the TempEval-12 and
TempEval-23 challenges, as well as an upcoming
TempEval-34 challenge. The interest in these tasks
has generated numerous automatic methods5–17 for
recognizing events, temporal expressions, and the
temporal relations between them. These automatic
methods have taken a variety of different
approaches: (1) rule-based classifiers incorporating
real-world knowledge; (2) supervised classifiers (eg,
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support vector machines (SVM), maximum entropy, and condi-
tional random fields (CRF)) using common natural language
processing (NLP) features; and (3) joint inference-based classi-
fiers, such as Markov Logic.15 Many methods use some combin-
ation of these, such as a supervised classifier and a limited set of
rules. Our work most closely falls under the second category, as
we present a largely supervised approach. We differ from these
previous methods, however, by focusing on how to create a flex-
ible method that is customizable to changes in the data, as
methods for temporal information extraction in clinical text
need to be robust to changes in data (different hospitals,
doctors, electronic medical records (EMR) systems, etc).

Previous i2b2 tasks have studied important elements in the
processing of clinical text, such as extracting medication infor-
mation;18 identifying medical concepts, assertions, and relations
between concepts;19 and recognizing co-reference relations
between medical concepts.20 The most relevant of these to the
2012 i2b2 shared task is the recognition of clinical concepts per-
formed in the 2010 task. The three types of medical concepts in
that task (PROBLEMS, TREATMENTS, and TESTS) form the core
subset of the medical events studied in the 2012 task.

TASK DESCRIPTION
The 2012 i2b2 shared task1 adapts the TimeML21 temporal
annotation standard for use on clinical data, providing 310
annotated documents (190 development, 120 test). The i2b2
standard contains three primary annotations:
▸ EVENT: any situation relevant to the patient’s clinical timeline.

EVENTs have one of six types: (1) PROBLEM (eg, disease,
injury); (2) TREATMENT (eg, medication, therapeutic proced-
ure); (3) TEST (eg, diagnostic procedure, laboratory test);
(4) CLINICAL_DEPT (ie, the event of being transferred to a
department); (5) EVIDENTIAL (eg, report, show); and (6)
OCCURRENCE (ie, all other events). In addition, EVENTs have a
polarity (POSITIVE, NEGATIVE) and modality (FACTUAL,
CONDITIONAL, POSSIBLE, PROPOSED).

▸ TIMEX3: temporal expressions that enable EVENTs to be
chronologically grounded. TIMEX3s have one of four types
(DATE, TIME, DURATION, FREQUENCY) and a modifier (MORE,
LESS, START, MIDDLE, END, APPROX, NA). In addition, TIMEX3
annotations have a value, which is the normalized form of
the temporal expression.

▸ TLINK: temporal relations between either EVENTs or TIMEX3s.
For the official evaluation, a simplified set of temporal rela-
tions were used (BEFORE, AFTER, and OVERLAP).

For the example sentence above, the relevant annotations are:
▸ EVENT{text=“Cardiovascular stable”; type=OCCURRENCE;

polarity=POSITIVE; modality=FACTUAL}
▸ EVENT{text=“significant hypertension”; type=PROBLEM;

polarity=POSITIVE; modality=FACTUAL}
▸ EVENT{text=“albumin”; type=TREATMENT;

polarity=POSITIVE; modality=FACTUAL}
▸ TIMEX3{text=“9/7/93 at 5:10 a.m.”; type=TIME; mod=NA;

val=“1993–09–07T05:10”}
▸ TLINK{from=“Cardiovascular stable”; to=“significant hyper-

tension”; type=BEFORE}
▸ TLINK{from=“significant hypertension”; to=“9/7/93 at 5:10

a.m.”; type=OVERLAP}
▸ TLINK{from=“albumin”; to=“9/7/93 at 5:10 am”;

type=AFTER}
From these annotations, we can gather that after an OCCURRENCE

(“Cardiovascular stable”), a PROBLEM (“significant hypertension”)
emerged around a TIME (“9/7/93 at 5:10 a.m.”), after which a
TREATMENT (“albumin”) was administered. To detect EVENTs,

TIMEX3s, and TLINKs automatically, we have designed a large set
of features to train classifiers to detect such expressions in clin-
ical records.

FEATURES
Supervised machine learning methods are composed of three
primary elements: (1) input features to represent the data; (2) a
model to act as the classification function; and (3) a learning
process to estimate the parameters of the model. While all three of
these elements are important, we have found the proper selection
of features to be especially critical for NLP tasks. Importantly, par-
ameter estimation techniques tend to perform poorly when given
highly redundant or noisy features. As our goal is to experiment
with as many features as possible, we utilize a technique to select
the best subset of features automatically. We first give a brief over-
view of the feature types used in feature selection. We then
describe how, from all these potential features, the highest per-
forming subset is automatically selected for each sub-task.

Feature types
In this article, we only provide a high-level overview of the
types of features we use due to space limitations. However, we
have included supplementary materials (available online only)
that give detailed feature descriptions, as well as examples of
the feature values on actual data from this task. The list of
feature types below is largely organized by the resource that best
exemplifies their purpose. Many of the discussed feature types
actually correspond to dozens of specific feature types.
Additional feature types were considered but discarded. The
feature types are:

Common NLP features
These features (eg, bag-of-words, previous token, previous EVENT

type) are simple, largely self-explanatory features common in the
NLP literature. They are primarily lexical in nature or rely on
specific attributes of the 2012 shared task. Sections ‘event recog-
nition’, ‘temporal expression recognition’ and ‘temporal link rec-
ognition’ explain any such feature when necessary.

GENIA features
The GENIA tagger22 is a biomedical text tagger. We use it for
part-of-speech tagging, lemmatization, and phrase chunking.

UMLS features
These rely on a lexicon built from the unified medical language
system (UMLS) metathesaurus.23 The lexicon contains 4.6
million terms.

Third-party TimeML features
The 2012 i2b2 shared task largely follows the TimeML temporal
annotation guidelines. Thus, third-party TimeML systems can
provide a useful source of automatic annotations. The four third-
party systems we incorporate are: TARSQI,5 HeidelTime,24

SUTime,25 and TERNIP.26

i2b2 concept features
Previous i2b2 tasks evaluated concept extraction, which overlaps
significantly with event extraction. We use a pre-existing system27

trained on pre-existing i2b2 data as a source of features.

Quantitative pattern features
These are based on regular expressions that recognize nine dif-
ferent types of entities, largely quantitative in nature: age, date,
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ICD-9 disease ID, dosage, list element, measurement,
(de-identified) name, percent, and time.

Statistical word features
These features use pointwise mutual information to determine
automatically the most relevant words for each output class in
the data. This acts as a filter to improve the classifier’’s ability to
handle bag-of-words style features.

Brown cluster features
Brown clustering28 is an unsupervised technique that has been
shown to be effective when used as features in an otherwise
supervised setting.29 Brown clustering groups words by their
common contexts, based on the distributional hypothesis that
similar words occur in similar contexts. We created Brown clus-
ters from 10 different corpora, including the i2b2 data itself,
other medical texts, newswire, and Wikipedia.

Relation features
The discourse-level TLINKs are unique within the 2012 i2b2 shared
task, as they involve classifying pairs of objects (EVENTs and
TIMEX3s). The relation features leverage this by providing informa-
tion about how the two arguments relate, what is textually
between them, and characteristics of one or both arguments.

In total, close to 300 features were available to the feature
selector for each of the sub-tasks. The supplementary materials
(available online only) describe the candidate feature types in
more detail and provide example feature values of sentences
from the i2b2 data.

Feature selection
When all possible features are incorporated into a model, the
result is a model that is often too big to fit into memory, too slow
to train on a single processor, and—most importantly—performs
worse than a model with a few well-chosen features. This problem
is traditionally called the curse of dimensionality, but it can typic-
ally be described by more practical causes. First, many features are
noisy, incomplete, or not well suited for a particular task. Second,
features are commonly redundant, expressing only minor differ-
ences in the data. Natural language tasks are complex, requiring
many different types of information, and encoding this informa-
tion into features that are both noise free and non-redundant is vir-
tually impossible. The task of feature engineering, therefore, is to
determine experimentally the best subset of features. Not only
does manual experimentation not scale to hundreds of features,
but it commonly results in one-size-fits-all solutions in which mul-
tiple classifiers use the same feature set even though those features
may be suboptimal for a given task.

In this article, we aim to overcome this feature engineering
bottleneck by utilizing automated feature selection for the
extraction of temporal information in clinical texts. This flexible
framework allows our system to determine automatically the
best set of features for each sub-task given (a) a large collection
of features, (b) a classifier, (c) a set of labeled data, and (d) a
feature selection strategy. The features, as described above, are
considered at the type level (eg, previous token) instead of the
specific instantiation level (eg, previous token is the). Otherwise,
instead of selecting from among hundreds of features, it would
be selecting among tens of millions. The classifier is largely a
‘black box’ function: given data and features, return a score.
The score is obtained through a fivefold cross-validation on the
training data. For sequence classification (eg, EVENT boundary
detection), each fold is evaluated using the F1-measure. For
multi-class classification (eg, TIMEX3 type classification), each

fold is evaluated using accuracy. Instead of taking the arithmetic
mean of the scores for each fold, as is typical, we use the har-
monic mean, which is less susceptible to changes in a single
fold, favoring moderate increases in all folds over larger
increases in one or two. This results in a more conservative
method for accepting new features. Given the ability to test the
utility of a single feature set, the feature selection strategy dic-
tates how features will be experimentally chosen.

The feature selection strategy we employ is known as floating
forward feature selection,30 sometimes referred to as greedy
forward/backward. This greedy algorithm starts with an empty
feature set and iterates until it fails to find new features that
improve the cross-validation score. Let F be the best known
feature set at the current stage of the algorithm. At the start of
each iteration (the forward step), for every unused feature g not
in F, the feature set F ∪ g is given to the classifier for testing. Let
g* be the feature g that corresponds to the best performing
feature set. If the score for F ∪ g* is greater than the score
for F and some small margin ɛ (we use ɛ=0.0001), then g* is
added to F. If not, the algorithm has failed to find any beneficial
features and terminates. If a new feature was found, then (in the
backward step), for every currently selected feature f in F, f≠ g*,
the feature set F–{f} is given to the classifier for testing. If some
reduced feature set obtains a better score than F, the feature(s)
corresponding to the reduced feature set is greedily removed.

In short, the algorithm iteratively adds the best unused
feature, and after each feature is added the detrimental features
are pruned. Intuitively, the backward step is necessary because,
as features are added, redundancies are found. While a feature
might have improved the classification performance during the
second iteration, that may no longer be true during the ninth
iteration. Furthermore, it is common for the first selected
feature to be a good predictor, yet have a high level of noise. As
more and more features are added, they act as a better com-
bined predictor than the noisy feature, and so it may be pruned.
In a manual feature engineering process, such pruning is rarely
performed, resulting in diminished classification performance.

The result of this technique is not only a near optimal subset
of features, but one that was achieved without manual interven-
tion. This method is largely agnostic to both the classifier (we
use both SVMs and CRFs) and data (we report results on eight
separate subsets). All the features reported for EVENT and
TIMEX3 recognition, as well as the section time TLINKs, were
chosen by this feature selection technique. Unfortunately, there
was insufficient time to incorporate discourse TLINK recognition.
While it uses many of the same features, its classification
method was based on a separate platform and could not be reli-
ably integrated before the submission deadline. A post-hoc
evaluation of discourse TLINKs was conducted, showing small
improvements. This evaluation is discussed further in the
Results section.

Event recognition
Figure 1 illustrates the architecture of our EVENT recognition
system. First, we identify EVENT boundaries with a CRF classi-
fier. Then we detect type, modality, and polarity using separate
SVM classifiers. In particular, we use the Mallet31 CRF imple-
mentation and LibLinear32 SVM implementation. The chosen
features for all EVENT classifiers are shown in table 1.

For boundary detection, the feature selector primarily chose
features based on GENIA and Brown clusters. GENIA lemmas,
parts of speech, and phrase chunks were all found to be import-
ant EVENT indicators. Four different Brown cluster features were
chosen from four different corpora. The two medical corpora
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are likely to be useful for medical words, while the two
Gigaword sub-corpora cluster more general words.

For type classification, the feature selector chose a diverse set
of feature types, indicating the wide variety of ways in which
EVENT types may be discovered. The lexical features (E2.1 and
E2.2) capture the common EVENTs from the training data (eg,
noted, administered), while features E2.3 and E2.4 suggest the
importance of an EVENT’s context. Feature E2.6, the previous
EVENT’s type, was chosen because often EVENTs of the same type
occur together, such as in a list. While the UMLS feature

(E2.10) is clearly useful, as UMLS is organized into a taxonomy
compatible with the event types, it is interesting that several
Brown cluster features (E2.11–13) were also chosen. These fea-
tures indicate that the Brown clusters are able to differentiate
between event types, justifying the distributional hypothesis.

For polarity and modality classification, the feature selector
chose much smaller sets of features. Both include a feature indi-
cating the previous EVENT’s classification. Note again that these
features were chosen automatically. Although it may seem
logical, the decision to use the previous event’s type/polarity/

Figure 1 EVENT Recognition Architecture.

Table 1 EVENT features

Boundary features Type features

(E1.1) GENIA previous token lemma (E2.1) EVENT text (uncased)
(E1.2) GENIA next token part-of-speech (E2.2) EVENT last token (uncased)
(E1.3) GENIA next token phrase chunk IOB (E2.3) Previous token
(E1.4) GENIA 1-token lemma context (E2.4) Previous bigram (uncased)
(E1.5) UMLS category IOB (E2.5) Contains punctuation

(E1.6) Brown cluster (TREC-1000) (E2.6) Previous EVENT type
(E1.7) Brown cluster (i2b2–100) (E2.7) i2b2 Concept type (exact)
(E1.8) Brown cluster prefix (XIN-100, 2) (E2.8) i2b2 Concept type (overlap)
(E1.9) Brown cluster prefix (CNA-1000, 6) (E2.9) TARSQI event polarity

(E2.10) UMLS category prefix (5)
(E2.11) Brown cluster prefix (TREC-100, 4)
(E2.12) Brown cluster (TREC-1000)
(E2.13) Brown cluster (Pubmed-100)
(E2.14) Unigram PMI>0
(E2.15) Sentence Unigram PMI strongest type (sum)

Polarity features Modality features

(E3.1) EVENT unigrams (E4.1) Previous token lemma
(E3.2) Previous EVENT polarity (E4.2) Previous previous token lemma
(E3.3) Indexed previous token lemmas (E4.3) Previous EVENT modality

PMI, pointwise mutual information.
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modality for each of the respective sub-tasks is based entirely on
the data (via feature selection) without any manual intervention.
For instance, if the previous event’s polarity had been useful for
modality classification, it would have been included by the
feature selector. Thus this automatic method still produces a
logical feature set for each task.

Temporal expression recognition
The architecture of our temporal expression recognition
method is shown in figure 2. Similar to EVENT annotation, a
CRF classifier recognizes TIMEX3 boundaries and two SVM clas-
sifiers determine the type and modifier. A rule-based method
then normalizes the TIMEX3. The chosen features for all TIMEX3
classifiers are shown in table 2.

For boundary detection, the feature selector chose a combin-
ation of lexical and syntactic features, along with utilizing third-
party TIMEX3 systems. The basic text feature (T1.1) generalizes
the text by replacing all non-zero digits with a zero. For
instance, both 10:05 am and 11:14 am become 00:00 am. The
prefix (T1.3) and suffix (T1.4) features provide a functionality
similar to lemmatization. The quantitative patterns (T1.5)

contain regular expressions for times and dates, so it is not sur-
prising they prove useful for detecting TIMEX3s. Unlike EVENTs, the
third-party methods were quite useful for detecting TIMEX3s.
HeidelTime (T1.13) and TERNIP (T1.14) in particular were
chosen in addition to the combination of all systems (T1.12).

For type and modifier classification, the feature selector
largely chose lexical features, including a bag-of-words (T2.1,
T3.1), a complete TIMEX3 span (T2.2), and a previous token
(T2.3, T3.2) feature. Lexical cues are good indicators of the
type of TIMEX3, words like am indicates TIME, and daily indi-
cates FREQUENCY. Beyond the lexical features, the coarse-grained
part-of-speech (T2.4, T3.4) feature was chosen to generalize the
TIMEX3’s syntactic category. Feature T3.3 indicates whether the
TIMEX3 contains any uppercase characters. The final feature
(T3.5) is a part-of-speech trigram replace feature, returning the
parts of speech of all three-word sequences within the TIMEX3,
but replacing verbal parts of speech with the verb itself.

Our TIMEX3 normalization (val) method is rule based, combin-
ing custom-built rules with TIMEN,33 an open-source temporal
normalizer. In combination with TIMEN, we use two types of
rules: (1) pre-TIMEN rules that fully normalize temporal

Table 2 TIMEX3 features

Boundary features Type features

(T1.1) Current token (numbers replaced with ‘0’) (T2.1) TIMEX3 unigrams (uncased)
(T1.2) Next token (T2.2) TIMEX3 text (uncased)
(T1.3) 6-character token prefix (T2.3) Previous token
(T1.4) 4-character token suffix (T2.4) GENIA coarse part-of-speech
(T1.5) Quantitative pattern IOB
(T1.6) GENIA next token lemma
(T1.7) GENIA previous token lemma Mod features

(T1.8) GENIA 1-token part-of-speech context (T3.1) TIMEX3 unigrams (uncased)
(T1.9) GENIA 4-token lemma context (T3.2) Previous token (uncased)
(T1.10) GENIA 4-token phrase chunk context (T3.3) Contains uppercase

(T1.11) GENIA 6-token phrase chunk context (T3.4) GENIA coarse part-of-speech
(T1.12) Third-party TIMEX3 IOB (all systems) (T3.5) GENIA part-of-speech trigrams (replace verbs)
(T1.13) Third-party TIMEX3 IOB (HeidelTime)
(T1.14) Third-party TIMEX3 IOB (TERNIP)


