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ABSTRACT
Objective Identification of clinical events (eg,
problems, tests, treatments) and associated temporal
expressions (eg, dates and times) are key tasks in
extracting and managing data from electronic health
records. As part of the i2b2 2012 Natural Language
Processing for Clinical Data challenge, we developed and
evaluated a system to automatically extract temporal
expressions and events from clinical narratives. The
extracted temporal expressions were additionally
normalized by assigning type, value, and modifier.
Materials and methods The system combines rule-
based and machine learning approaches that rely on
morphological, lexical, syntactic, semantic, and domain-
specific features. Rule-based components were designed
to handle the recognition and normalization of temporal
expressions, while conditional random fields models
were trained for event and temporal recognition.
Results The system achieved micro F scores of 90%
for the extraction of temporal expressions and 87% for
clinical event extraction. The normalization component
for temporal expressions achieved accuracies of 84.73%
(expression’s type), 70.44% (value), and 82.75%
(modifier).
Discussion Compared to the initial agreement
between human annotators (87–89%), the system
provided comparable performance for both event and
temporal expression mining. While (lenient) identification
of such mentions is achievable, finding the exact
boundaries proved challenging.
Conclusions The system provides a state-of-the-art
method that can be used to support automated
identification of mentions of clinical events and temporal
expressions in narratives either to support the manual
review process or as a part of a large-scale processing
of electronic health databases.

BACKGROUND
Recent advances in the availability of electronic
health records (EHRs) provide an opportunity to
improve the quality of clinical care (eg, through
large-scale data sharing and integration that can be
used to build clinical decision support systems1)
and to support medical research (eg, identification
of patients with specific conditions to support
clinical trials2). While key issues remain in the
adoption of EHRs and in managing data confiden-
tiality,3 automated processing of available clinical
data is also a major challenge: manual identification
of such information is time consuming and often
inconsistent and incomplete.4 This is particularly
the case with clinical narratives, which are often

the primary, preferred, and richest source of patient
information. Several efforts have been reported in
the area of clinical text mining to bridge the gap
between unstructured clinical notes and structured
data representation,5–21 including tools such as
MetaMap22 23 and KnowledgeMap24 that have
been developed to automatically annotate medical
concepts in free text, along with systems to identify
patient disease status,25–27 medication informa-
tion,28–30 etc.
The i2b2 Natural Language Processing for

Clinical Data challenge series provides a framework
for common evaluation of clinical text mining
systems. The topic of the 2012 challenge was the
identification and linking of mentions of temporal
expressions (TEs) (eg, dates, times, durations, and
frequencies) and clinically relevant events (eg,
patient’s problems, tests, treatments) in
narratives.31

Extraction of clinical events has recently attracted
considerable attention, and was, for example, one of
the tasks in the i2b2 2010 challenge.30 Awide variety
of approaches (semi-supervised,32 supervised,33 34

hybrid models35 36), features (orthographic, lexical,
morphological, contextual, semantic), terminological
resources (UMLS,17 18 MedDRA,37 DrugBank38),
and heuristic post-processing methods35 were used.
The best lenient F score for the extraction of clinical
events ranged from 89.80%36 to 92.40%.32

On the other hand, previous research on TE
extraction has been mainly focused on the general
domain.39 40 The clinical domain has been consid-
ered only relatively recently and often as an exten-
sion of general systems. For example, Med-TTK41

is built on top of a newswire system (TTK,
TARSQI Toolkit42) by modifying and expanding
rules developed on a set of 200 clinical narratives.
The system identifies mentions of date, time, dur-
ation, and frequency TEs (with an overall F score
of 85%), but does not provide their normalized
values.
In this paper we describe, discuss, and evaluate a

system that we have developed as part of our con-
tribution to the i2b2 2012 challenge.

OBJECTIVE
The aim of the 2012 challenge was to create clin-
ical patient timelines from a set of clinical narra-
tives. The TE extraction task focused on
recognition and normalization of TE mentions.
Normalization involved assigning three attributes:
▸ value, using the ISO 8601 representation (eg,

‘2012–10–31T09:00’)
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▸ type of the TE: Time (eg, ‘the morning of admission’),
Date (‘15 May 2007’), Duration (‘4 minutes’), or
Frequency (‘PT48H’)

▸ modifier that may be associated with the TE (eg, ‘approx’).
The event extraction task included recognition of instances of

Problem (eg, ‘hematoma’), Test (eg, ‘an echocardiogram’), and
Treatment (eg, ‘heparin IV’) events. In addition, events included
mentions of a Clinical Department (eg, ‘the ER’). Mentions that
indicate an evidential source of some specified information (eg,
‘CT [shows],’ ‘the patient [complained]’) are considered
Evidential events (note that these can be verbs). Occurrences of
all clinically relevant events that occur to the patient but do not
belong to other event categories are considered Occurrences (eg,
‘follow up,’ ‘transport,’ etc). In addition to the type of an event,
each mention was assigned a modality (Factual, Conditional,
Possible, and Proposed) and a ‘polarity’ (ie, negated or not).

In this paper we focus on the methodologies engineered for
the extraction and normalization of TEs and identification of
events from clinical narratives.

MATERIALS AND METHODS
We approached the tasks as named-entity recognition (NER)
problems, with the aim to identify relevant text spans and
assign required attributes. The system (see figure 1) comprised
two tracks: (a) TE identification and normalization, and
(b) event recognition. Both tracks start with a common pre-
processing step (in order to produce the features for subsequent
steps). For identification of TEs we have developed two
approaches (a rule-based and a machine learning), which are
combined before the TE normalization module. Six separate
machine learning (ML) modules were developed for events.
Given that target annotations comprise spans of text, we
approached the task as a sequence labeling problem and trained
a separate conditional random fields43 (CRF) model with a

number of shared features. The results from the CRF modules
are followed by a set of post-processing rules that are designed
to improve the boundaries of the resulting text spans. In add-
ition to CRF models, a dictionary-based module was developed
for one of the event classes (Clinical Department).

Data
Dictionaries
We manually crafted a dictionary of temporal terms that
included five common types of constituents of TEs: weekdays
and months; times of day; spelled-out numbers; medical tem-
poral abbreviations (eg, ‘OBD’); and common TE references
(such as ‘previously,’ ‘today,’ etc). This dictionary was used in
the feature extraction process for our ML models. In addition, a
dictionary of clinical departments was semi-automatically col-
lected using OpenNLP44 NER to automatically extract candidate
clinical department names from the i2b2 2010 and 2012 data-
sets. The candidates were then manually filtered to remove
ambiguous terms. This dictionary was used for recognition and
classification of mentions of Clinical Departments only.

Annotated corpora
For training, we used the training corpora provided by the i2b2
2012 challenge (190 mention-level annotated narratives).
Additionally, the i2b2 2010 challenge corpus comprising 426 nar-
ratives annotated with Problem, Test, and Treatment concepts30

was used to support the event recognition track. The methods
were tested on the i2b2 2012 test dataset (120 narratives).

Pre-processing
The narratives were first pre-processed (tokenization, sentence
splitting, part-of-speech (POS) tagging, chunking) by GATE45

which was used to develop our rule- and dictionary-based
modules. Additionally, lexical features for our ML modules were

Figure 1 The overall system
architecture. ML, machine learning.
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generated by cTAKES, which provided tokens, POS tags, and
chunks. Mentions of Problem, Test, and Treatment were
pre-generated by the Assertion module of cTAKES. Recognition
of other medical entities was done by mapping all nominal
chunks using MetaMap. The presence of negation was detected
using NegEx,46 and sections (eg, ‘history of present illness,’ ‘hos-
pital course’) within narratives were detected using simple heuris-
tics. We also extracted semantic roles using the Clear Parser
semantic role labeller47 module from cTAKES: each token was
linked to an associated verb and assigned a role (eg, object,
subject) in relation to that verb; verb tokens heading a sentence
or sub-sentence were assigned a set of all participants and their
roles linked to the verb. For example, the token ‘Thoracentesis’
in the sentence ‘Thoracentesis was performed on 7-12-91.’
would be marked as an object of the verb ‘perform.’

Extraction and normalization of temporal expressions
This module aims to identify and normalize TEs in pre-
processed clinical narratives. The TE identification component
accepts plain-text narratives and produces the spans of text
recognized as TEs. We developed two identification modules:
one based on rules and one ML-based. The results of both
modules were integrated and passed to the normalization com-
ponent, which provided the type, value, and modifier for the
identified TEs.

The rule-based module
The rule-based module was developed using GATE. A total of
65 rules were engineered containing literal expressions derived
from initial collocation extraction of TEs in the training data.
The rule set is made up of (a) JAPE45 macros which defined a
set of recurring literals and symbols (eg, temporal modifiers,
weekdays, name of months, temporal medical abbreviations,
etc) and (b) JAPE rules which combine macros and JAPE
grammar for rule formalism. The effectiveness of rules (in terms
of precision, recall, and F score) was analyzed on the training
data to identify those that could have a positive effect on preci-
sion, recall, or F score.

The CRF-based module
The CRF-based module used token-level features that included
the token’s own properties and context features of the neighbor-
ing tokens (the experiments on the training data showed that
two tokens each side provided the best performance). We used
the inside-outside (I-O) annotation. The following features were
engineered for each token:

1. Lexical features included the token itself, its lemma, and
POS tag, as well as lemmas and POS tags of the surrounding
tokens. Each token was also assigned features from its asso-
ciated chunk (phrase): the type of phrase (nominal, verbal,
etc), tense and aspect (if the phrase was verbal), the location
of the token within the chunk (beginning or inside), and the
presence of negation as returned by NegEx.

2. Domain features capture mentions of specific clinical/
healthcare concepts. All nominal chunks were fed to
MetaMap and the returned UMLS semantic class was
used as a feature for all tokens within that particular
chunk. In the case of multiple semantic classes returned
by MetaMap, we concatenated them alphabetically and
used the resulting string as a hybrid semantic class.
Additionally, mentions of Problem, Test, and Treatment (as
generated by cTAKES) were assigned to the token.

3. Semantic role features model dependencies between the
token and associated verb, following the approach of

Llorens et al.48 Each token is assigned the role, the verb,
and their combination (eg, ‘object+perform’) in order to
capture particular verb–role preferences.

4. Section type feature represents the section type in which
the token appeared.

5. TE features represent five features that indicated the pres-
ence of the five common types of constituents of TEs in a
given token (see the temporal dictionary mentioned in the
Data section above).

An example of a complete feature vector for the CRF model
is given in the online supplementary data. The results of the
CRF-based tagging were post-processed to adjust the boundary/
scope of token-level tags (eg, including determiners and pro-
nouns where appropriate) and remove obvious false positives
(eg, single character predictions such as ‘/’ or ‘a’).

The results of both identification modules were integrated. In
cases of overlap, the union at the token level is taken: for
example, consider the segment ‘starting at 9am of the morning
of admission;’ if our rule-based method tagged the segment
‘9am of the morning’ and our CRF model annotated ‘morning
of admission,’ the final integrated result will be ‘9am of the
morning of admission.’

Temporal expression normalization module
The temporal expression normalization module has three
components:

▸ A rule-based extractor of key reference dates within the
clinical pathway (namely, time of admission, discharge,
operation, transfer) uses a set of regular expressions to
extract and associate these main clinical events to a date.
The rules are based on the proximity of specific keywords
(eg, ‘operative,’ ‘hospital,’ ‘discharge,’ ‘operation’) and
their direction (is the event mention before or/and after
these keywords).

▸ A rule-based utterance time selector pairs each TE with a
reference time by analyzing its component words. For
example, the expression ‘the day after the admission’ will
be paired with the date of the admission, where the
expression ‘postoperative day 2’ will be paired with the
operation date. In the case of ambiguous expressions (such
as ‘that time,’ ‘that period’), the module used the time
assigned to the preceding TE. Otherwise, for all other
TEs, the default reference time (admission) was used.

▸ Clinical NorMA, a rule-based clinical TE normalizer, pro-
vides the value, type, and (optional) modifier to identified
TEs. It extends a pre-existing open-source general-domain
normalizer.49 To each TE and its associated reference time
(from the utterance time selector), Clinical NorMA
applies dictionary-driven regular expressions (83 general
domain and 66 rules specifically designed for the clinical
domain) to identify the value and type of the TE. The TE
modifier is set only if a specific syntactic expression is trig-
gered, for example, ‘in [number] or [number] days’. If the
modifier has not been assigned using such expressions, the
modifier (MOD) component checks for the presence of
trigger words (eg, ‘approximately,’ ‘several,’ ‘nearly’).
These triggers have been mined from the training corpus
by applying a feature selection algorithm based on mutual
information. Finally, the post-processing component
applies additional rules that correct systematic errors or
provide default values (eg, the substitution of the
undefined number of days in ‘PXD’ with a default value,
which was set as 3 for the i2b2 challenge).
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Figure 2 summarizes the architecture for the identification
and normalization of TEs.

Extraction of event mentions
This module aims at the extraction of event mentions. Apart
from Clinical Department, all other event types were identified
using CRFs only. The mentions of Clinical Departments were
identified using both a manually-curated dictionary (see the
Data section above) and a CRF module, which were integrated
at the token level (like the TEs above).

The event CRF models were trained on relevant (type-
specific) subsets of the training data and they all shared a
number of feature groups (see table 1 for a summary). However,
the Evidential and Occurrence types relied on additional feature
groups as their scopes were not as focused as the scopes of
other four event classes. We therefore added three additional
feature groups for these event types:

▸ Frequency of the token annotated as Occurrence or
Evidential in the training set, with the aim to help the
model resolve confusion between them.

▸ Co-occurring events: An analysis of the training data
revealed that mentions of these two event types correlate
with the presence of other events in the same sentence.
For example, the verb is 'noted' often annotated as
Evidential if it is preceded with a Problem event (eg,
‘<Problem>Oral cyanosis and shallow respirations

</Problem> were <Evidential>noted</Evidential>’). We
therefore decided to include predictions from Problem,
Test, Treatment, and Clinical Department modules as fea-
tures for the CRF models of the Evidential and
Occurrence categories. The resulting tags of the Evidential
model were also used as features in the Occurrence CRF
model. We note that therefore the CRFs were run in a par-
ticular order: the models for Treatments, Tests, Problems,
and Clinical Departments were run in parallel; the outputs
of these models were then used as features for the
Evidential CRF, whose predictions were used as a feature
in the Occurrence model.

▸ Expanded lexical features: The initial experiments also
revealed that the lexical variability of the Occurrence class
was high, so an additional feature was added to indicate if
a token is a typical Occurrence unigram. These unigrams
were derived manually from a list of the 500 most fre-
quent unigrams associated with this category (as obtained
from the training data); after removing ambiguous terms,
the list comprised 289 unigrams. The feature was also con-
sidered for the Evidential events, but associated words
were heavily context dependent and thus not useful.

All CRF-based results were post-processed in the same way as
TEs. Figure 3 summarizes the architecture developed for extrac-
tion of event mentions.

Figure 2 Temporal expression extraction and normalization architecture. CRF, conditional random field.

Table 1 Groups of features used in the CRF models

Entity type
Lexical
features

Domain
features

Semantic role
features

Section type
feature

Temporal
expression
features

Frequency
features

Co-occurring event
features

Expanded
lexical features

Problem X X X X X X
Test X X X X X X
Treatment X X X X X X
Clinical department X X X X X X
Evidential X X X X X X X X
Occurrence X X X X X X X X
Temporal expressions X X X X X X

CRF, conditional random fields.
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Finally, each of the recognized events was checked with
NegEx to determine polarity. For modality, lexical clue-based
rules were explored during the development phase, but pro-
duced no significant improvement as compared to setting this
attribute to Factual for every recognized event (95% of all
events in the training data were Factual).

RESULTS
Extraction and normalization of temporal expressions
The main evaluation metric for the TE recognition task was the
product of the F score calculated with the lenient matching
strategy (requiring that the system output overlaps the gold
standard) and the accuracy obtained for the value attribute.
Three different results were officially evaluated, based on the
way temporal extractions were identified (the normalization
module was always applied in full):

▸ run 1: only TEs identified by the rules optimized for F
score;

▸ run 2: the union of recall-optimized rule-based predictions
and CRF-generated tags;

▸ run 3: only TEs identified by the rules optimized for
precision.

The optimization has been performed on the training set with
respect to the lenient matching strategy. Table 2 provides the
results: run 2 provided the best F score (90.08%) along with the
highest recall (91.54%). The strict evaluation scores (requiring
an exact match between the system output and gold standard)
were significantly lower (by 10–12% for the F score) indicating
that both the ML and the rule-based approaches would benefit
from a better method of boundary adjustment. The normaliza-
tion scores were also highest in run 2 (type: 84.73%, value:

70.44%, modifier: 82.75%). We note that this is a
state-of-the-art result as our run 2 was a top ranked outcome of
the 2012 challenge (there were no significant differences
between the top three runs, coming from three different teams).
Compared to the results on the training data, there was some
drop in the strict F score values (see online supplementary
data), in particular for the rule-based runs, but overall lenient F
score and normalization results were comparable with around a
1% difference between them (in some cases, the test results
were even better).

Extraction of event mentions
The event extraction task was evaluated using the F score calcu-
lated with the lenient matching strategy, averaged across all the
annotations in the test corpus. Accuracy was used to evaluate
polarity and modality attributes. Two different results were offi-
cially evaluated, different only in how mentions of Clinical
Departments were identified:

▸ run 1 targeted precision by choosing Clinical Department
predictions based on dictionary matches only;

▸ run 2 targeted recall, so Clinical Department predictions
included the union of CRF- and dictionary-based tags.

The mentions of other event types were identical in both
runs. Table 3 provides the results: overall, run 2 gave better
results, with the better F score (87.29%), recall (85.32%), and
accuracies: polarity (79.45%) and modality (81.53%).
Nonetheless, as expected, better precision (89.64%) was
achieved in run 1. The strict F scores were 8% lower in both
submissions, indicating again that determining the right bound-
aries for token-level recognized events was challenging. When
compared to the training data (see online supplementary data),

Table 2 Temporal expression extraction: micro-averaged results on the test data (120 narratives, 1820 temporal expressions)

Identification

Strict matching Lenient matching Normalization

P (%) R (%) F (%) P (%) R (%) F (%) Type (%) Value (%) Modifier (%)

Run 1 78.03 78.41 78.22 89.23 89.62 89.42 83.30 69.73 81.98
Run 2 77.03 79.62 78.30 88.68 91.54 90.08 84.73 70.44 82.75
Run 3 79.85 77.09 78.45 90.38 87.25 88.79 80.88 67.91 79.67

F, F score; P, precision; R, recall.

Figure 3 Event extraction architecture. CRF, conditional random field.
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the system seems to have generalized well as there was even a
slight increase in F score (around 1%) as compared to the train-
ing data.

DISCUSSION
Temporal expression recognition
The results indicate that textual spans that represent TEs can be
identified with an F score of 90%, with no significant differ-
ences between rule-based and integrated models (as expected,
the rule-based runs showed slightly better precision; the CRF
model on its own showed lower performance, with an F score
of 86.70%). Common errors include mentions of clinical find-
ings that follow date patterns or ambiguous mentions (such as
‘now’). The online supplementary data provide a detailed error
analysis.

Temporal expression normalization
The normalization results vary for different attributes: while
type and modifier have reasonable accuracies (84.73% and
82.75%, respectively), the value attribute proved challenging
(70.44%). This is expected given that the value prediction asked
for complete identification of a TE, whereas the other two attri-
butes provide categorization-like values. We note that in some
cases the normalizer failed to correctly distinguish between Date
and Duration (and less frequently between Time and Duration).
This is mostly due to wrong boundaries inherited from the TE
recognition (eg, omission of an important preposition like ‘three
days’ (date or duration) versus ‘every three days’ (frequency)). A
detailed error analysis is provided in the online supplementary
data.

Event recognition
The type-specific lenient evaluation results are given in table 4.
The best F scores were achieved for frequent, well-defined event
types, such as Problem (91.38%), Test (91.11%), and Treatment
(89.26%). This result showed that CRF models generalized well
with an abundance of training data (the additionally used 2010
dataset) and benefited from the use of terminological processing
(cTAKES, MetaMap). For example, when the 2010 dataset is

removed, the F scores drop notably for Problem (by 21%), Test
(19%), and Treatment (20%) (data not shown). We note that
these results are in line with the top performing systems in the
i2b2 2010 challenge (the lenient F score ranges from 89.80%36

to 92.40%32).
The results for the Clinical Department type were a surprise,

as they proved much more lexically variable and ambiguous (eg,
‘Wound care’) than was indicated by both the training and 2010
data. The context-dependant Evidential type showed moderate
results (69.98%), indicating that capturing the right context for
annotations needed improvement. Finally, the Occurrence cat-
egory (any clinically related event that could not be classified as
any of the other categories) was too broad and underspecified
for an ML method to generalize, and thus resulted in a lower F
score (65.12%). The online supplementary data provide an
error analysis and describe the impact that particular groups of
features have on performance.

The accuracy of the polarity identification (79.45%) was
around 10% lower when compared to the results typically
obtained on manually input data (Goryachev et al50), which is
expected given that the input was from our recognition compo-
nent. Our assumption that setting the modality to Factual for
each event mention would provide reasonably high results was
correct (the percentage of Factual modality in the test data was
consistent with the training). The drop in accuracy (81.53%)
can be explained by the imperfect event spans returned by the
recognition module.

CONCLUSION
This paper presents and evaluates various approaches to the
extraction of clinically relevant events and TEs from clinical nar-
ratives, as part of our participation in the i2b2 2012 challenge.
The methodology relies on combining rule-based approaches
with feature-rich ML, which includes morphological, lexical,
syntactic, semantic, and domain-specific features. The rule-based
components were designed to handle the recognition and nor-
malization of TEs and Clinical Departments, while CRF models
were trained for all event and temporal recognition tasks.

The hybrid temporal recognition and normalization system
provides state-of-the-art results with a micro F score of over
90% for lenient matching, and accuracies of 84.73% (type),
70.44% (value), and 82.75% (modifier) for the TE normaliza-
tion. Clinical event extraction showed good performance with a
micro F score of 87.29% (lenient). The well-scoped classes
(such as Problem, Treatment, and Test) showed very good per-
formance (F score of 90%), whereas unfocused and context-
dependent categories (eg, Clinical Department, Occurrence,
Evidential) proved to be challenging. Our study also revealed
that the use of additional annotated corpora can indeed benefit
the models, relaxing the need for specific terminological
information.

While performance based on lenient matching was good, the
most challenging part remains deciding the right boundaries of

Table 4 Event recognition: per category performance on the test
data (run 2, lenient matching)

Event type Frequency P (%) R (%) F (%)

Problem 4309 95.24 87.82 91.38
Treatment 3285 95.68 83.65 89.26
Occurrence 2499 63.43 66.91 65.12
Test 2173 95.05 87.48 91.11
Clinical department 732 76.02 83.61 79.64
Evidential 595 64.99 75.80 69.98

F, F score; P, precision; R, recall.

Table 3 Event extraction: micro-averaged results on the test data (120 narratives, 13 593 events)

Strict matching Lenient matching Attributes

P (%) R (%) F (%) P (%) R (%) F (%) Polarity (%) Modality (%)

Run 1 82.05 77.05 79.71 89.64 84.66 87.08 78.81 80.08
Run 2 81.74 78.05 79.85 89.35 85.32 87.29 79.45 81.53

F, F score; P, precision; R, recall.
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mentions (strict F scores were 78% and 80% for TE and event
mentions, respectively). In addition, future work needs to
explore new methods and features to capture context-dependent
mentions and model unfocused categories.

A comparison to the agreement between the human annota-
tors (89% for TEs and 87% for event recognition) indicates that
the quality of the system’s performance is comparable to what
can be expected from manual efforts, and thus can be used
either as a pre-processing step for a manual review process or as
a part of a large-scale processing of electronic health databases.

The methods described here are packed in the TERN and
CliNER tools, which are freely available at http://gnode1.mib.
man.ac.uk/hecta.html
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