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The brain is a very complex structure. Over the past several decades, many studies have aimed to understand
how various non-uniform variables relate to each other. The current study compared the whole-brain
network organization and global spatial distribution of cell densities in the monkey brain. Wide
comparisons between 27 graph theoretical measures and cell densities revealed that only participation
coefficients (PCs) significantly correlated with cell densities. Interestingly, PCs did not show a significant
correlation with spatial coordinates. Furthermore, the significance of the correlation between cell densities
and spatial coordinates disappeared only with the removal of the visual module, while the significance of the
correlation between cell densities and PCs disappeared with the removal of any one module. Taken together,
these results suggested the presence of a combinatorial effect of modular architectures in the network
organization related to the non-uniformity of cell densities additional to the spatially monotonic change.

H
ow do various non-uniform quantities of the brain relate to each other? This has been a key question for
many neuroinformatic studies. To answer this question, an evaluation of the whole-brain data is often
essential. For example, over the past several decades, the uniformity of cell densities in the cortex has been

wrongly assumed by generalizing the results observed in limited brain regions1. Later experimentation revealed
non-uniformity of the densities of neurons and nonneurons in whole regions of the monkey cortex2,4. Similarly,
integrated databases of brain connectivities were also developed to understand the global organization of brain
connectivities5–13.

Several previous studies have compared network organization and cell densities in the brain. For example,
French et al. (2011) demonstrated a relationship between network organizations of the whole-brain and cell
densities in rodent brains14,15. In the monkey brain, it was shown that cell densities of the periarcuate and lateral
intraparietal areas can predict laminar-specificity of connections between the two connected regions16. However,
a comparison between the global organization of networks and cell densities in the whole monkey brain has not
yet been performed. Thus, the current study aimed to investigate whether networks and cell densities relate to
each other, and if so, how the relation can be characterized.

To pursue these questions, this study sought to integrate two independently developed databases of cell
densities and network organization in the monkey brain onto a common three-dimensional space2,3,11. In addi-
tion, widely observed relationships between the cell densities of 69 cortical regions and 27 network variables were
derived from the network organization.

Results
General concept. The aim of this study was to understand how the non-uniformity of cell densities relates to the
non-randomness of brain connections (Figure 1). The cell densities and connections used in this study were
obtained from 69 brain regions shown in Table S-15. Although further information on the quantities of the cell
densities and connections are described in the Methods section, here, I will provide the minimum information
needed to understand the contents and interpretations of results of this study. The connectivity presented in this
report was obtained using the CoCoMac database, and the cell density was obtained from a previous report
(Collins et al. (2010)). The cell densities were defined as the total number of neurons or nonneurons per weight of
parcelled brain slices, and the neuron-per-nonneuron ratio was defined as the ratio between the two densities of
neurons and nonneurons. I combined two maps via direct observation of the brain parcellation maps described in
Collins et al. (2010) and Fellman and vanEssen (1991), which were originally used to create the parcellation map
in the CoCoMac database. The comparisons of the indices in these two databases are also shown in Table S-1.
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Three-dimensional coordinates and gradient of cell densities.
Cahalane et al. (2012) demonstrated that cell densities change
monotonically on two-dimensional maps after segmentation of the
cortical surface. Their coordinates were based on those described in
Collins et al. (2010)17. To observe this directionality in a three-
dimensional space, this report re-evaluated the spatial monotonic
change in cell densities after reconstructing three-dimensional
coordinates of the cortical regions. These results are shown in
Figure 2. First, I evaluated the correlation between the three-
dimensional coordinates and the distribution of three types of cell
densities (Figure 2-A). These results revealed that only the anterior–
posterior axis showed a significant correlation with cell densities. The
spatial mapping of the cell densities is shown in Figure 2-B. These
color maps show a clear gradient of cell densities on the anterior–
posterior axis with several exceptions, such as the somatomotor
and primary auditory regions. On the basis of these results, this
report focused on the anterior–posterior axis in the following data
analyses.

Comparison between network properties and cell densities. Next, I
evaluated the correlations between three variables of cell densities
and 27 network measures (Figure 3). Pairs of correlations and P-
values for the statistical tests for neuron density, nonneuron density
and the neuron-per-nonneuron ratio are shown in Figure 3A–C.
Moreover, weak but significant negative correlations that were
present only for the participant coefficients (thick, red dotted lines
in Figure 3, p , 0.05/27, according to Bonferroni correction) are
shown in Figure 3A–C. However, all of the network variables did not
significantly correlate with the anterior–posterior coordinates, as
shown in Figure 3D. The significance of the correlation between
the participation coefficient and neuron-per-nonneuron ratio was
robust even after exchanging approximately 16% of the adjacent
brain regions (11/69 brain regions; Figure S-2). In addition,
although the path lengths between all pairs of brain regions
showed a significant correlation with the sum of the cell densities
for the same pairs of brain regions (CC: 0.14, p 5 6.3*1024), the path
lengths also significantly correlated with the anterior-posterior
coordinate (CC: 20.05, p 5 4.7*1024).

Participation coefficient is a measure that evaluates how often a
node connects to nodes in other modules (communities) from the

module (community) in which the main node participates. Thus,
intuitively, this measure is low at central locations in networks and
is high at provincial locations in the networks.

Direct observation of participation coefficients. One intriguing
question may be, ‘‘Why does only the participation coefficient
show a significant correlation with the cell densities?’’ To answer
this question, I sought to directly observe spatial distributions of
the cell density and the participation coefficient (Figure 4). The
following analyses focused on the properties of the neuron-per-
nonneuron ratio because neuron density and 1/(nonneuron den-
sity), showed similar trends as the neuron-per-nonneuron ratio.
Here, the observed brain networks in physical space are shown in
Figures 4-A, C, and E, and the observed networks mapped using the
Fruchterman–Reingold algorithm are shown in Figures 4-B, D, and
F. Participation coefficients were defined on the basis of their
modular architecture, which was automatically extracted by optimi-
zation of the community structure using the Louvain algorithm.
During the optimization process, the significance of the correlation
also gradually developed (Figure S-3).

Unexpectedly, the modular architecture after the optimization
process naturally segmented the visual, auditory and somatomotor
systems (Figure 4-E and F). These indices are shown in the right
column in Table S-1.

Among these communities, relatively lower participant coeffi-
cients were observed not only in the visual region but also in the
somatomotor and auditory systems (Figure 4-C and D). These lower
participation coefficients in individual systems were caused by
less divergent inter-modular connections with the participating
community.

As shown in Figure 2, a prominently higher neuron-per-non-
neuron ratio was observed around the visual system, as observed
in the upper-left community in the Fruchterman–Reingold network
(Figure 4-B). However, a slightly higher neuron-per-nonneuron
ratio was also present in different regions, such as the somatomotor
and primary auditory regions. These findings were difficult to
explain using only the anterior–posterior coordinates.

Effect of the removal of brain communities. What type of effect
does each community have on the previously observed correlation
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Figure 1 | Concept of this study. The main aim of this study was to compare cell densities (Figure A) and network organization, which consists of

connecting brain regions (Figure B). As shown in Figure A, the cells were categorized into neurons and nonneurons. From these values, the neuron-per-

nonneuron ratio was defined according to the equation shown below (A). The network organization was quantified using 27 network variables. Changes

in color gradations correspond to the anterior–posterior coordinates.
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significance? To quantify these relative contributions, I evaluated the
correlations and p values between cell neuron-per-nonneuron ratio
and participation coefficient after removing each community
(Figure 5). Three correlations were obtained from three pairs of
variables selected from the cell density, spatial coordinate, and
network variable. The cell density, spatial coordinate, and network
variable are represented by the neuron-per-nonneuron ratio,
anterior–posterior coordinate, and participation ratio, respectively
(Figure 5-A).

Interestingly, although the significant correlation between the
anterior–posterior coordinates and neuron-per-nonneuron ratio
vanished only with the removal of the visual system (Figure 5-D),
the significant correlation between the participation coefficients and
neuron-per-nonneuron ratios always vanished with the removal of a
brain community (Figure 5-B). These results indicated that the cell
density selection information, which was included in the participa-
tion coefficients, was caused by non-uniformity of the participation

coefficients in many widespread communities. Furthermore, the cor-
relation between the participation coefficient and anterior–posterior
coordinate was always non-significant (Figure 5-C). This result will
be further discussed in the Discussion.

Cooperative use of coordinates and the network variable to
estimate cell density. Next, I sought to use both the participation
coefficient and spatial coordinates to estimate the non-uniform
spatial distribution of the cell densities using Principle Component
Regression (PCR) as shown in Figure 6-A. When fitting between two
variables, this regression corresponded to the linear regression. The
estimation of the accuracy of the neuron-per-nonneuron ratio was
improved by including the participation coefficient rather than the
estimation using only spatial coordinates (Figure 6-B). Although this
was not a very surprising result, this result also indicated that the
participation coefficient included information related to cell
densities that was not included in the spatial coordinates. The
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Figure 2 | Coordinate dependencies of the cell densities. The upper figures in Figure A show the correlations between the three spatial coordinates and

cell densities. The lower figures indicate the p values of the t-test that correspond to these three correlations. The directions of the x, y and z axes are shown

in the inserted figure of the brain at the bottom right of Figure A. The thick dotted line represents the threshold of significance (p , 0.05/9, t-test,

Bonferroni correction). The figures in (B) represent the spatial distributions of these three cell densities on the y-z coordinates. From left to right, the three

densities are the neuron density, glia cell density, and neuron-per-nonneuron density. Darker colored circles indicate higher densities or ratios, as shown

in the bottom bubble. The sizes of the circles show the depth of the coordinates.
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partial least square regression (PLSR) also showed the same
estimation result as the findings obtained using PCR (Figure 6-C).
Importantly, this estimation was not performed to elucidate the
causal directionalities from the network and spatial coordinates to
cell density, but rather, for more practical reasons. For example, if
any loss occurred in the cell density data, then it may be possible to
recover this loss using other data.

Contribution of the connections between adjacent brain regions.
In addition, because adjacent pairs of brain regions have a higher
connectivity probability compared to non-adjacent pairs, I examined
the extent to which adjacent pairs of brain regions affected the
significant correlation. Adjacency was defined using a spatial map
of brain regions previously described in Felleman and Van Essen
(1991). The connections between the adjacent pairs are shown as
thick lines in Figure 7-A. Indirect observations of the correlations
for adjacent pairs or non-adjacent pairs has been supported with
results demonstrating that the significant correlation was mainly
caused by pairs of non-adjacent brain regions (Figure 7-B and C).

Discussion
This study reveals that the non-uniformity of the cell density in the
brain relates not only with spatial coordinates but also with the
participation coefficient, which represents the non-random organ-
ization of all brain networks. Interestingly, the spatial coordinate did
not directly show a significant correlation with the participation
coefficient, indicating that the participation coefficient has informa-
tion relating to the non-uniformity of cell density that was not
revealed in the monodirectional decrease in the anterior-posterior
coordinate. This study was designed to understand and examine this
intriguing phenomenon.

The removal of the brain communities helped with the under-
standing of this phenomenon. This study showed that although the
significant correlations between the spatial coordinates and cell
densities were caused by more prominent cell densities in the visual
system compared to other regions, the significant correlations
between the participation coefficients and cell densities were caused
by the combinatorial effects of many brain regions. Phenomeno-
logically, it has been shown that primary sensory and somatomotor
regions exhibit a deviant higher neuronal density compared to a
spatial monotonic change in the neuron-per-glia ratio from the

occipital to the frontal side of the cortex17. Findings of my study
could suggest that the modular architecture of the network organ-
ization of the brain relates to deviations derived from a spatially
monotonic change. Generally, modular architectures characterize
the segmentation and integration of the network organization, and
the network organization may reflect information processes of the
system18,19. For example, communities of visual, auditory and sen-
sorimotor networks are located in provincial regions in the
Fruchterman–Reingold map, while communities of the parieto-
frontal and temporo-frontal association networks are located in
the central regions in the Fruchterman–Reingold map (Figure 4-
F). These locations may represent segregated but specific informa-
tion processes in the former systems and integrating processes in the
latter systems. For the past two decades, the balance between seg-
mentation and integration has been regarded as an important prop-
erty to understand the complexity of the brain20.

It is also possible to use the differences between the spatial coor-
dinates and participation coefficients to improve the estimation per-
formance of the cell densities (Figure 6-C). As natural extensions in
this direction, several potential methods may exist to improve pre-
diction performance. First, it may be possible to use a nonlinear
model instead of a linear model. However, although a nonlinear
model can realize better performance because of an increase in the
number of free parameters, determining the best model is not easy.
To address this question, future studies are required to gather addi-
tional data from a sufficient number of monkeys to assure statistical
significance. Second, a finer separation of the brain regions may
improve the estimation performance. Third, other factors beyond
the spatial coordinates and participation coefficients should also be
considered. Although the correlations between the participation
coefficients and cell densities were significant, the correlation values
were not very high (approximately 0.6). In the next section, I will
specifically discuss the third possibility.

Improvement of the estimation performance can be achieved with
a deeper understanding of the physiological factors related to the
non-uniform distribution of neurons and nonneurons. Thus, it will
be necessary to consider a more systematic understanding, which will
include unknown factors. In the database used in this study, the cell
density was determined using the brain tissue average, which
included all layers in each brain region. However, cell density also
demonstrates some clear differences among the cortical layers,
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Figure 4 | Comparisons between the participation coefficients and cell densities. The spatial maps of the neuron-per-nonneuron ratio, participation

coefficient, and module (or community) architecture are shown in Figures A, C, and E, respectively. Figure A is the same as the right figure of

Figure 2-B. Figures B, D, and F are their reorganized network architectures using the Fruchterman–Reingold algorithm. The values, which correspond to

the colors, are shown as bubbles at the right side of Figure A and C. The denser blue dots in Figures A–D indicate the relatively higher values of each main

variable. Five different markers in Figures E and F indicate the five modules (or communities), which were defined using the Louvain algorithm.

In Figures A, C, and E, the marker sizes were changed according to the depth of the brain regions.
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particularly in layer 4, which exhibits a higher neuronal density
compared to other layers in the cat visual cortex19 and rat barrel
somatosensory cortex21. As previously mentioned, the non-uniform-
ity of cell density among the cortical layers relates to the laminar-
specificity of connections in studies of a limited brain region16.
Furthermore, a recent study showed that the difference in cytoarch-
itectural types, which is defined by the relative thickness, density and
granularization of layer 422, is the best factor to predict the laminar-
specificity of projections compared to hierarchical levels and dis-
tances between brain regions25. Thus, these studies suggest local
non-uniformity of cell densities between columnar layers, which
are related to the selection of layers (local structures) in brain regions
connected by global networks.

This study reported a general trend in the relationship between the
non-uniformity of cell density, which is summed by all layers and
global connections. If we could generate a database that includes both
the cell density in a resolution of layers and the difference of the
layers at every brain region, then we would be able to combine these
findings, and may systematically improve the estimation perform-
ance of cell densities from network organization.

To understand in more detail the information processes of neur-
onal circuits, it will be necessary to understand how the target of
global connections relates to the intricate microcircuits in the colum-
nar architecture, which originates from global connections in every
brain region. Several studies have reported that neurons in the frontal
region demonstrate different local topological patterns depending on

B

Visual

Somatomotor

Parieto-frontal

Temporo-frontal

Auditory

Community all

-0.5 0 0.5
Correlation

-4 -2 0
p value

C

-8 -6 -4 -2 0
p value

D

Participation
Coefficient

Neuron/Glia
ratio

Anterior-posterior
Coordinate

B

CD

A

-0.5 0 0.5
Correlation

-4 -2 0
p value

-0.5 0 0.5
Correlation

Figure 5 | Selective removal of each brain community. Figure A shows the scheme of the three comparisons depicted in Figures B–D. Figures B–D

correspond to the comparisons among the three variables: the neuron-per-nonneuron ratios, anterior–posterior coordinate and participation coefficient,

respectively. In each pair of panels in Figures B–D, the left panels indicate the correlations and the right panels represent the p values of the t-tests. The blue

bars are the correlations and p values after the removal of the individual brain communities, and the original correlations and p values are shown as red

bars at the top of each figure. The dotted lines in the right figures indicate the threshold of significance, which is the same p value in Figure 3.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1
-0.5

0
0.5

1
1.5

Observed neuron per non-
neuron ratio

E
st

im
at

ed
 n

eu
ro

n 
pe

r 
no

nn
eu

ro
n 

ra
tio

CB

Participation
Coefficient

Neuron per
Non-neuron

Anterior-posterior
Coordinate

C
or

re
la

tio
n

Coordinate  

pv
al

ue
[lo

g]

Coordinate
     + 
Network

A

m
ea

n 
sq

ua
re

of
 fi

tti
ng

 e
rr

or

0
0.2
0.4
0.6

0

20

40
-8
-6
-4
-2

 

PLSR with 2 Components
PCR with 2 Components

Corr.=0.60
p=0.58 10-8

Figure 6 | Principle component regression using both spatial coordinates and participation coefficient. Figure A shows how accurately the neuron-per-

nonneuron ratio can be estimated using the participation coefficient and spatial coordinate. Three panels in Figure B show the correlations between the

estimated neuron-per-nonneuron ratios and observed neuron-per-nonneuron ratios, their p values (two sided t-test) and fitting error for PCR,

respectively. The left bars indicate the results estimated from only the spatial coordinates, and the right bars indicate the results estimated from both the

spatial coordinates and participation coefficients. As expected, the estimation was improved by including the participation coefficients. A direct

comparison between the observed neuron-per-nonneuron ratio and the estimated neuron-per-nonneuron ratio from both the participation coefficient

and anterior-posterior coordinate is shown in Figure C. The red dots and blue circles were estimated using PCR and PLSR, respectively. The red dotted

line is the diagonal line.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2541 | DOI: 10.1038/srep02541 6



the difference in their connecting targets26–29. However, studies on
whole brain regions have not yet been performed, and to resolve
these challenges, various effective technologies must be developed
to record the detailed architecture of the micro-neuronal circuits in
the columnar architecture30,37,38.

Although we can posit many future studies, there are limitations
that are present due to differences in the parcellation schemes used in
the two databases. For example, we cannot answer questions relating
to the detailed differences between adjacent regions. Furtheremore,
comparison between different monkeys may potentially important
to be solved. If possible, databases of different quantities should share
a unified parcellation scheme, such as a parcellation scheme on
the basis of cytoarchitectural type22,25, from the same individual
monkeys.

Recently, Modha and Sigh (2010) generated a hierarchically orga-
nized network database of the monkey brain, which included sub-
cortical regions13. The present study demonstrated a low
participation coefficient and high neuron density as properties of
the visual, auditory and somatosensory areas in cortical networks.
Importantly, these regions have rich connections from subcortical
regions. Some subcortical regions also play important roles in medi-
ating interactions between two distanced cortical regions. Networks
relating to this property have potential effects on changes in the
participation coefficients, for example, secondary thalamic nuclei
support information integration and regulation of connecting cor-
tical regions31,32. Thus, how subcortical networks function as a whole
system for cognitive tasks will also be an important topic to explore in
the future33.

As a final remark, an understanding of the participation coefficient
and modular architecture of cortical networks in relation to the non-
uniformity of cell densities will help future neuroinformatic studies
to uncover how non-uniformities of the brain play functional roles in
information processes.

Methods
Introduction of databases. Due to the intensive efforts of previous studies, it is
possible to use the data summaries of the cell densities in every cortical region
(neuronal densities, cell densities, and neuron-per-nonneuron ratios)3 as well as
databases of connectivity among brain regions covering the entire brain5–9,13.

Specifically, the connectivity database known as Collations of Connectivity data on
the Macaque brain (CoCoMac) has widely contributed to theoretical studies aimed to
create a new research field by applying Graph theory to data10–12,34–36.

Evaluation of the connectivity properties of each brain region. The network was
obtained from the CoCoMac database2,12. The parcellation scheme was based on
Felleman and Van Essen (1991). Among the 27 network variables used in this study, I
specifically introduce the participation coefficient in detail here because only this
variable showed a significant correlation with cell densities. The definition of the
participation coefficient is written as follows:

PCi~1{
XNm

s~1

kis

ki

� �2

: ð1Þ

Here, kis is the number of nodes in a community, s, connecting with node i, and ki is
the total number of nodes connecting with node i. The ratio was summed using the
number of communities Nm . Thus, when links connecting with node i spread to many
communities in a diverse manner, the participation coefficient PCi is closer to 1, and if
the connections are more concentrated in one community, then the participation
coefficient PCi is closer to 0. The community structure was determined by
maximizing the modularity function Q (Girvan and Newman, 2002; Newman, 2004).
The Q value is given by:

Q~1{
1

4m

X
ij

Aij{
kikj

2m

� �
d ci,cj
� �

: ð2Þ

Here, ki and kj represent the degrees of nodes i and j, and m~1=2
P

i
ki represents the

total number of nodes in the network. If nodes i and j belonged to the same
community, c, then the delta function d ci,cj

� �
is 1; otherwise, it is 0. Importantly,

different groupings will affect the value of Q via this delta function. Here, Aij provided
the actual weight of the connection between nodes i and j. The term kikj

�
2m provided

the expected weight of the connection between node i and node j, if the network was
randomized. It is known that optimization has an NP-hard problem23. Thus, to reach
the most optimal solution, I repeated the optimization using the Louvain method40

1000 times and selected the community architecture that provided the highest Q
value. Using the Louvain optimization method, the calculation was terminated when
the Q value increased by less than 10210 in one step, and the final community
structure, including the number of communities, was stocked. The most stable
community architecture among the final 1000 answers was regarded as the optimal
community in this study. The community architecture used in this study was
observed more than 100 times in 1000 repeating calculations.

Furthermore, this report observed 26 other network variables: in degree, out
degree, bidirectional degree (degree of bidirectional connections), out degree per in
degree, bidirectional degree per out degree, bidirectional degree per in degree,
betweenness, k-core centrality, subgraph centrality, local efficiency, clustering coef-
ficient, edge betweenness, within module degree z-score, and motif count (Figure 3).
The in degree is the number of incoming connections. The out degree is the number of
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outgoing connections. The bidirectional degree is the number of bidirectional con-
nections of each node. Betweenness centrality quantifies how often a node connects to
other nodes using the shortest path41. The K-core centrality is defined based on the
decomposition to subgraphs called K-cores. The K-core is a maximal group of nodes
in which all nodes are connected to some number (K) of other nodes of the subgraph,
and the value K is used to quantify the centrality42. The path length between two brain
regions represents the number of necessary nodes to reach from one region to another
region. The subgraph centrality is the weighted sum of the closed path lengths in a
graph starting and ending at the same node. The weight is heavier for smaller sub-
graphs compared to larger ones43. The local efficiency is defined as the average of the
nodal local efficiency computed as the global efficiency of the subgraph, which
consists of its nearest neighbors28. The clustering coefficient is the fraction of con-
nected pairs among the neighbors of a node44,45. The within module degree z score is a
measure of how well node i connects with other nodes within its module46. The motif
count is the number of connections included in the cluster of three nodes selected
from all possible choices in all nodes. The motif counts are categorized into 13
patterns according to the indices defined by Milo et al. (2002)47. All of the data
analyses were achieved using MATLAB software, and these measures were calculated
using the Brain Connectivity Toolbox48.

Evaluation of local brain regions based on cell densities. Non-uniformity of neuron
density is important in the characterization of changes in the brain depending on
evolution4 and sex differences49. Furthermore, the importance of nonneurons on
brain function has become increasingly recognized50,51. Similarly, in studies of
neurodegeneration, the density of nonneurons is regarded as an important measure
to characterize schizophrenia52, depression53,55, and bipolar disorder54. Moreover,
neuron density is important as a basic measure related to aging56 and autism57. The
neuron-per-nonneuron ratio is also regarded as an important characteristic in
understanding the evolution of the brain58.

Recently, Collins et al. (2010) measured the number of neurons, number of cells,
and weight of slices after segmenting the cortical surface in the monkey brain. From
these basic variables, they determined the following three variables related to cell
densities: The first variable is the density of neurons per weight, which is defined by
the total number of neurons/weight of slice; the second variable is the density of
nonneurons per weight, which is defined by the total number of nonneurons/weight of
slice; and the third variable is the ratio of the number of neurons to the number of
nonneurons in each slice. This report refers to these three variables as the neuron
density, nonneuron density, and neuron-per-nonneuron ratio, respectively
(Figure 1-A and C).

How were these two databases combined? To compare the data of the brain
connections and cell densities, it is necessary to combine the two independently
developed databases2,12,3. The brain regions in the CoCoMac database included the
A4, dorsal preluneate (DP) region, and auditory parakoniocortical rostal (PaAr)
regions; however, these three regions were not clearly defined in Collins et al. (2010)
to evaluate cell densities. Conversely, the corresponding brain regions for PAL in
Collins et al. (2010) were not clearly found in the CoCoMac database. Thus, PAL was
not included to evaluate the network architecture. I extracted three-dimensional
brain coordinates, as shown in Figures 1-A and B, from a standardized brain atlas59.

Regression using both network and coordinates. In addition, I evaluated how
accurately the non-uniformity of cell densities could be estimated using the
coordinates and representative network variable – the participation coefficient – as
explanatory variables for Principle Components Regression (PCR). PCR is a multiple
regression method consisting of three steps: First, principle component analysis was
applied to the explanatory variables. Second, an ordinary least square (OLS)
regression was applied to the selected components using principle component
analysis. Third, the model parameters were provided for each selected component.
The merit of this method is that collinear problems can be naturally avoided. To
evaluate the robustness of results, I also used the partial least squares regression
(PLSR)24; however, there was no difference between the results obtained using PCR
and PLSR for the data used in this study.

Network visualization. I used the Fruchterman–Reingold algorithm for the network
visualization39. This algorithm is one of the Forth-based (FB) algorithms. FB
algorithms regard nodes as electrically charged particles and edges as springs that
connect them. The algorithms represent an optimized distribution of the nodes by
solving for the equilibrium conditions where electrical repulsion between the nodes is
balanced by the spring force attracting the nodes.
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