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Mouse Primary Auditory and Somatosensory Microcircuitry
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Mapping the flow of activity through neocortical microcircuits provides key insights into the underlying circuit architecture. Using a
comparative analysis we determined the extent to which the dynamics of microcircuits in mouse primary somatosensory barrel field
(S1BF) and auditory (A1) neocortex generalize. We imaged the simultaneous dynamics of up to 1126 neurons spanning multiple columns
and layers using high-speed multiphoton imaging. The temporal progression and reliability of reactivation of circuit events in both
regions suggested common underlying cortical design features. We used circuit activity flow to generate functional connectivity maps, or
graphs, to test the microcircuit hypothesis within a functional framework. S1BF and A1 present a useful test of the postulate as both
regions map sensory input anatomically, but each area appears organized according to different design principles. We projected the
functional topologies into anatomical space and found benchmarks of organization that had been previously described using physiology
and anatomical methods, consistent with a close mapping between anatomy and functional dynamics. By comparing graphs representing
activity flow we found that each region is similarly organized as highlighted by hallmarks of small world, scale free, and hierarchical
modular topologies. Models of prototypical functional circuits from each area of cortex were sufficient to recapitulate experimentally
observed circuit activity. Convergence to common behavior by these models was accomplished using preferential attachment to scale
from an auditory up to a somatosensory circuit. These functional data imply that the microcircuit hypothesis be framed as scalable
principles of neocortical circuit design.

Introduction
Computation in mammalian neocortex relies on specific circuits
comprising individual neurons and the connections between
them. Given the myriad functions that can be assigned to differ-
ent regions of the brain, it is unclear whether circuitry is general-
ized across multiple regions of neocortex. Because all regions
must perform similar basic tasks under the same biophysical con-
straints (Douglas et al., 1989; von Melchner et al., 2000), the
cortex may use a general circuit design as described by the micro-
circuit hypothesis (Mountcastle, 1957; Szentágothai, 1978;
Douglas et al., 1989). System level studies have provided data
consistent with the postulate showing that primary sensory cor-
tices process other modalities (Kayser et al., 2005) and are capable
of taking on a primary processing role of a different modality
following experimental manipulation (von Melchner et al.,
2000). It is clear that microcircuitry in the neocortex is structured
(Song et al., 2005; Yoshimura et al., 2005; Perin et al., 2011; Levy
and Reyes, 2012); however, it is unknown how this structure

manifests functionally particularly at the larger mesoscale
throughout the neocortex. Elucidating the organization of func-
tional circuitry (Gerstein et al., 1978) will provide key insights
into the flow of activity through local neocortical circuitry, the
underlying circuit architecture, and also has the potential to pro-
vide insight into the computational strategies used in each re-
spective cortical region (Watts and Strogatz, 1998; Alon, 2007).

We imaged the flow of activity at the at the mesoscale level,
which spans multiple columns and layers, to generate functional
wiring diagrams in two areas of sensory neocortex. The lack of
experimentally defined benchmarks to characterize functional
microcircuitry necessitated a novel approach that would allow us
to identify which statistical features of activity flow were infor-
mative. By increasing the field of view, we maximized the number
of neurons imaged and the statistical power to investigate neo-
cortical circuit dynamics. Moreover, we were able to evaluate the
role, if any, of traditional anatomical boundaries in shaping the
flow of activity and in turn the functional circuitry. We chose a
comparative methodology (Kätzel et al., 2010; Yang and Zador,
2012) to examine the microcircuit postulate by comparing func-
tional wiring diagrams generated from primary auditory (A1)
and somatosensory barrel field (S1BF) neocortex. These two re-
gions are an interesting test of the microcircuit hypothesis as both
map sensory input anatomically and display temporally struc-
tured circuit activity (Luczak et al., 2007; Montemurro et al.,
2007), but each area appears organized according to different
design principles. A1 can be considered a one-dimensional tono-
topic mapping of the cochlea along the rostrocaudal axis (Ban-
dyopadhyay et al., 2010; Oviedo et al., 2010; Rothschild et al.,
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2010; Levy and Reyes, 2012), whereas S1BF provides a two-
dimensional mapping along both the rostrocaudal and dorsoven-
tral axes corresponding to the spatial location of the whiskers,
manifested in a clear columnar organization containing barrels
(Woolsey and Van der Loos, 1970; Welker, 1976; Simons, 1997;
Lefort et al., 2009). Additionally, laminar cell-type composition
and thalamic projections may differ slightly between these re-
gions (Barbour and Callaway, 2008). Given that these areas map
sensory information in anatomically distinct ways, similarities in
emergent circuit activity would reflect common cortical organi-
zation, whereas differences would highlight the role of the dis-
tinct architecture for each region.

Materials and Methods
Preparation of calcium dye-loaded slices. C57BL/6 strain mice of either sex
on postnatal day 14 –17 were anesthetized by intraperitoneal injection of
ketamine-xylazine, rapidly decapitated, and had their brains removed
and placed in oxygenated ice-cold “cut” artificial CSF (ACSF; contents
contain the following, in mM: 3 KCl, 26 NaHCO3, 1 NaH2PO4, 0.5 CaCl2,
3.5 MgSO4 25 dextrose, 123 sucrose). Coronal slices (500 �m thick)
containing the sensory region of interest was cut perpendicular to the pial
surface using a vibratome (VT1000S; Leica). In a subset of experiments,
alternate coronal brain slices with thalamocortical connectivity intact
were cut (450 �m thick S1, 500 �m thick A1) at angles as previously
described (Agmon and Connors, 1991; Cruikshank et al., 2002). Slices
were placed in a 35°C oxygenated incubation fluid (Incu-ACSF; contents
contain the following, in mM: 123 NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4,
2 CaCl2, 6 MgSO4, 25 dextrose) for 30 – 45 min. Calcium dye loading was
then achieved by placing all slices into a small Petri dish containing �2
ml of Incu-ACSF, an aliquot of 50 �g Fura-2AM (Invitrogen) in 13 �l
DMSO and 2 �l of Pluronic F-127 (Invitrogen) as previously described
(Sadovsky et al., 2011). All procedures were performed in accordance
and approved by the Institutional Animal Care and Use Committee at the
University of Chicago.

Electrophysiology and calcium dye imaging. Experimentation was per-
formed in standard ACSF (contents contain the following, in mM: 123
NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 2 MgSO4, and 25 dex-
trose, which was continuously aerated with 95% O2, 5% CO2). Whole-
cell current-clamp recordings were made using Multiclamp 700B
amplifiers (Molecular Devices). We required a stable voltage value re-
corded during the down state, for the duration of the experiment for
inclusion of the physiology. Rapid whole-field imaging of Fura-2AM
loaded neurons was achieved by taking multiple 5 min movies using the
Heuristically Optimal Path Scanning technique and microscopy setup as
previously detailed (Sadovsky et al., 2011), allowing us to monitor action
potential generation within individual neurons. Our dwell time param-
eter for each experiment was fixed at a value between 16 and 20 samples/
cell/frame for each experiment. Greater than or equal to four events were
necessary for a field of view to be included in our dataset.

Laminar identification. We used biotinylated NeuN staining along
with biocytin filled neurons which acted as fiduciary markers, in combi-
nation with measures of distance from pia and bright-field, NeuN, and
two-photon cell density to identify lamina.

Statistical analysis. All statistical analyses were performed with MATLAB
(MathWorks). Unless otherwise noted, data are presented as mean � SD.
For nonparametric distribution comparison between the two sensory
regions, and unless otherwise noted, the Wilcoxon rank sum test was
implemented via the MATLAB “ranksum” function. If more than two
medians were being compared, as in the case of lamina, the Kruskal–
Wallis test was used and noted in text. A two-tailed t test, noted in text,
was used to compare normal distributions. A one-tailed t test, noted at
use, was used to compare graphical topological data when we had an a
priori expectation of the experimental mean being larger than that from
null datasets. For tests of significance, � � 0.05 was used as the cutoff.

Spike and circuit event detection. Spikes were inferred from the calcium
traces of individual neurons using a modified version of fast-oopsi
(Vogelstein et al., 2010; Sadovsky et al., 2011). Spikes from each cell’s

calcium trace were then identified and circuit events were defined as
regions where the network of cells was active for at least 500 ms.

Spike timing precision. We established statistical significance of tempo-
ral stereotypy for each cell in a field of view by comparing all the individ-
ual spike trains of a cell obtained from every circuit event. Cells had to be
active in at least four events to be considered for analysis. To compare
spike trains, we used the D spike Victor metric (Victor and Purpura, 1996)
with a time parameter (q) of 1 s. This comparison gave us a distance value
corresponding to the amount each spike train needed to be modified to
be identical across activations. Distance is larger when the temporal sim-
ilarity between spike trains is decreased. To see whether these distance
value were significant compared with what would be expected by chance
of a neuron firing at a rate similar to that of the network, we created a null
comparison of 5000 shuffled spike trains using an inhomogeneous Pois-
son process with a rate that was equal to the average network firing rate
across events. We then compared our observed metric value to that of
this shuffled population to obtain a p value (see Fig. 5A). Cells showing
p � 0.05 were considered significant.

Circuit area. Circuit area was determined by using a convex-hull ap-
proach analogous to the smallest convex region that can be formed that
contains all active cells.

Fuzzy clustering. By flattening temporal dynamics, we created binary rep-
resentations of each circuit event with 1 s indicating which cells were active at
any point during the event and 0 s representing cells not active in that event.
Fuzzy-c means that clustering was achieved using the MATLAB function
“fcm” with specified numbers of clusters N ranging from 2 to the total num-
ber of events for a single slice. This function returns the membership func-
tion matrix for all events indicating how strongly each event belongs to each
specified N cluster. For our analysis, cluster sufficiency was defined as all
events having at least one cluster membership larger than 1/N � (1/N)/4.
This indicated that an event was nonambiguously placed into a single fuzzy
cluster. To obtain the number of clusters necessary to explain all the events in
a region, we iteratively ran the fuzzy clustering method with increasing values
of N, looking for the point in which all events fell under the definition of
being sufficiently clustered. Because fuzzy clustering is dependent on initial
seed, we took the average output of 100 runs of the fcm method, with each
run consisting of either a maximum of 100 iterations or a clustering im-
provement of �0.00001.

Hierarchical clustering. Binary representations of each circuit event
were created in the same manner as used in fuzzy clustering. From these
time-independent flattened events, we calculated the Jaccardian distance
between every pair of these binary representations to create a pairwise
distance matrix where E1 � event 1, E2 � event 2:

Jaccardian Distance �
�E1 � E2� � �E1 � E2�

�E1 � E2�

We then clustered the resulting pairwise distance matrix, D, to build a
binary, hierarchical clustering tree using the unweighted pair group
method with arithmetic mean (UPGMA; each cluster A, B is made up of
events x in A and y in B):

Cluster Distance �
1

�A� �B� �x�A
�
y�B

D�x, y�.

Then we apply a cutoff and count clusters.
A precise reliability index was made for each cell in the form of:

index � participation � (1 � temporal significance)

where participation was the fraction of times that cell was active at least
once during imaged circuit events and temporal significance refers to the
Victor significance p value for that cell.

Columnar/laminar flow. For each individual circuit event, directional
flow between lamina was defined by a field of view where a statistically
significant correlation existed between time frames and distance from the
pial surface. Intercolumnar flow was determined similarly according to
distance to an arbitrary line perpendicular to the pial surface not in the
field of view. Events with significant correlations in both cases were con-
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sidered to have both types of flow. Events with no significant correlation
in either case were considered disperse.

Spatial clusters similar flow analysis. Cluster IDs for each dataset were
determined using the fuzzy clustering method with N equal to the grand
average cluster amount. For each dataset, circuits were separated into
their functionally clustered spatial groups. For each group which was
activated two or more times, we evaluated what percentage of those
events showed similar laminar flow. The same was done with columnar

flow. Permuted clusters were then made by permuting the cluster mem-
bership between circuit events, thus maintaining the total number of
clusters and distribution of similar events falling into a cluster, but per-
muting the actual membership of each event. The same analysis was run
and resulting distributions were compared.

Null connectivity distribution. Our null connectivity distribution was
created by looking at all the pairwise distances between 750 uniform
random distributed centroids falling within a 1 mm diameter circle.
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Figure 1. High speed mesocircuit imaging across primary sensory neocortex reveals a common capacity for emergent circuit events. A, Magnification (1.25�) of a bright-field imaging of a slice
of S1BF cortex. B, Left, Multiphoton photon raster of an imaging field of view at 20� magnification. Right, Automated cell detection and heuristically optimal scan path creation from raster on left.
C, Examples from each cortical area of whole-cell patch-clamp recordings of neurons recorded during a network circuit event. Spikes are truncated. D, Examples of imaging network data as a raster
(top), network spiking average (middle), and time collapsed spatial projection of cells active during peak firing (corresponding to red box region of firing average; bottom).
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Graph metrics. Graph metrics were obtained using the Brain Connectivity
Toolbox for MATLAB (http://www.brain-connectivity-toolbox.net/). Mod-
ularity was performed using the toolbox’s implementation of the measure
presented by Leicht and Newman (2008). Some graph figures were
generated using the open source graph visualization platform Gephi
(https://gephi.org/).

Modeling. Modeling was implemented using the NeMo (http://www.doc.
ic.ac.uk/�akf/nemo/) neural network spiking simulator using CUDA and
multicore processing. Previous work in the laboratory had demonstrated
the need for spike rate adapting neurons to achieve dynamics similar
to experimental measures therefore networks were comprised of
Izhikevich neurons (http://www.izhikevich.org/publications/spikes.
htm) with 80% being excitatory (a � 0.02, b � 0.2, c � 	65, d � 6)
and 20% being inhibitory (a � 0.02, b � 0.25, c � 	60, d � 2).

General network modeling. Weights were directly drawn from experi-
mentally generated functional adjacency matrix weights, and synapti-
cally scaled from 0 to 5 (0 to 	5 for inhibitory cells). Topology was also
directly based off adjacency matrix weights for connections, yet models
were not embedded into a two-dimensional anatomical space. Adjacency
matrices were scanned for cells with zero degrees (no connections) and
removed from the matrix. An input layer containing 50 strongly excit-
atory neurons (synapse strength of 10 units) was randomly connected to
the network with a 0.05 probability to other excitatory cells and 0.02
probability to inhibitory cells. Each cell of the 50 neuron input layer was
activated over two time frames according to a uniform random distribu-
tion, with no network input cell firing more than once. Each simulation
contained a random assignment of which cells were excitatory, inhibi-
tory, and connected to the input layer.

Inferred circuit model. An adjacency matrix from each field of view was
created as described in the text: edges were weighted as the fraction of
observed single frame lag correlation values between two cells spiking.
For each of the adjacency matrices created from data, 1000 network
simulations were performed with different random seeds.

Idealized circuit model. Size distributions for each area were created
using a positive kernel smoothed density (MATLAB “ksdensity”) of ob-
served data values from imaging. The lower tail of this distribution
(�200) was truncated to values of 200. The distribution inferred from
each area was then sampled uniformly five times and summed to size N,
respective to the area modeled. An adjacency matrix of size N was then
created. An out degree per node distribution (D) was created using pos-
itive kernel smoothed density with values from data normalized to the
size of respective datasets. Additionally, weight distributions (W) were
formed via a kernel smoothed density of the weights of respective data-
sets. To fill in the adjacency matrix, for each cell in the adjacency matrix
we would obtain the out degree per node value according to uniform
random sampling from the above distribution D. The out degree for a cell
was then calculated by multiplying with the size N above and rounding.
Then for each out degree, an out synapse was added to a cell sampled
random uniformly without replacement with a weight randomly drawn
from W. Simulations were performed as described above with the caveat
that delays were randomly selected to be twice the duration of inferred
circuits to account for the larger simulated volume of neurons. As above,
all simulations with the idealized model were performed 1000 times with
different random seeds.

Scaling circuit model. Adjacency matrices were created by obtaining a size
from A1 and S1. The A1 size would be the base size (B) and S1 would be the
size to scale to (S). Initial weights/degrees were formed as done for A1 ma-
trices above. For S1 preferential scaling, for the degree difference S-B, new
cells were added using S1 weights/degrees according to a preferential attach-
ment model (Barabási and Albert, 1999). One-thousand circuits for each
region were created and simulated to create dynamics distributions.

Results
To determine whether A1 and S1BF exhibited common func-
tional circuit topology, we monitored neuronal activity in slices
of mouse neocortex using high speed multiphoton laser calcium
imaging (Vogelstein et al., 2010; Sadovsky et al., 2011). We con-
trolled for the potential influence of slice angle and confirmed

primary sensory location by using both coronal and thalamocor-
tical slices (see Materials and Methods). Within each sensory
region, data from both slice angles were indistinguishable and
therefore pooled (S1 p � 0.0894, A1 p � 0.2212). We imaged the
flow of activity through large populations of neurons at the me-
soscale in a two-dimensional circular imaging plane with a diam-
eter of 1.1 mm that comprised multiple layers and columns with
single-cell resolution (Fig. 1A; Movies 1 and 2 ; intervals between
events removed). This allowed us to examine the impact of ana-
tomical boundaries on functional circuitry and also resolve the
general statistical features of functional circuit topologies with

Movie 1. S1BF example activity. Top, Dashed line represents pial surface. Filled red neurons
are cells which were detected active in a frame. Bottom, Representative raster (quiescent inter-
vals between events removed) of 33 circuit events observed in a single somatosensory field of
view. For each cell (n � 698), a black tick mark indicates a detected spike within a 92 ms
imaging frame. Movie time is altered for display. Top, Red line indicates current frame projected
spatially.

Movie 2. A1 example activity. Top, Dashed line represents pial surface. Filled red neurons
are cells which were detected active in a frame. Bottom, Representative raster (quiescent inter-
vals between events removed) of 14 circuit events observed in a single auditory field of view. For
each cell (n � 822), a black tick mark indicates a detected spike within a 109 ms imaging frame.
Movie time is altered for display. Top, Red line indicates current frame projected spatially.
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greater accuracy as they are maximized
with increased sample size (Milo et al.,
2002). Because temporal resolution of
multiphoton microscopy is compromised
at these spatial scales, we used the heuris-
tically optimized path scan technique
(Sadovsky et al., 2011; Fig. 1B), which al-
lowed us to achieve fast frame rates
(12.1 � 2.4 Hz) that did not differ be-
tween regions (p � 0.3211). Both regions
of sensory cortex showed a common ca-
pacity for emergent, multineuronal activ-
ity, classified by discrete periods of
correlated action potential generation
within subsets of neurons. We refer to
these distinct clusters of spontaneous ac-
tion potentials as individual circuit
events. Imaging conducted simultane-
ously with whole-cell patch-clamp re-
cordings demonstrated that imaged
multineuronal firing is coincident with
single-cell depolarization, termed an up-
state, in active neurons (Cossart et al.,
2003; MacLean et al., 2005; Fig. 1C,D;
n � 42 upstates). As previously reported
(Cossart et al., 2003; Shu et al., 2003), the
occurrence of spontaneous multineuro-
nal activity required intact excitatory syn-
aptic transmission. Application of 20 �M

AMPA blocker CNQX and 50 �m NMDA
blocker APV eliminated the occurrence of
all emergent circuit events (n � 3), indi-
cating that these events were not intrinsic
to individual cells but rather required syn-
aptic connectivity. Each imaging plane
contained up to 1126 neurons, with A1
having significantly less neurons 595 � 101, and S1BF 704 � 157
in the imaged field of view (Fig. 2A; p � 0.0305). The majority
of active cells in both cortices had a continuously detectable
signal over 1 h (Fig. 2A) and we found that within 10 circuit
events we had detected a majority of the neurons that would be
active during the experiment (Fig. 2B). Using this approach we
captured the full extent of emergent circuit events within a
single field of view, which allowed comparison of spatiotem-
poral activity and functional circuitry across sensory cortices.

Similar circuit dynamics in A1 and S1BF
We analyzed spontaneous circuit dynamics in each region of neo-
cortex to determine whether there were common features of neo-
cortical circuits in terms of their network size and duration. We
evaluated 350 datasets, comprising a sample of 21338 individual
neurons spread over the two regions of sensory cortex. We con-
trasted the duration of each circuit event, defined as the time
from the first observed spike to the last in each observation. S1BF
exhibited significantly longer imaged circuit event durations
(1568 � 885 ms, n � 268) than A1 (1203 � 456 ms, n � 82, p �
0.0159). Events in S1BF involved a significantly greater number
of active neurons per circuit event (207 � 123; max 577) com-
pared with A1 (155 � 62; max 294, p � 0.0040). A positive
correlation existed between the number of neurons involved and
the duration of an event (Fig. 3A; r � 0.6852). The number of
spikes in an event also had a positive correlation with duration
(r � 0.7451). Thus, the longest events contained the largest num-

ber of active cells and detected action potentials. This linear rela-
tionship was conserved across both areas of sensory cortex,
consistent with emergent dynamics being the result of synaptic
connectivity and indicating that each area showed a range of
functional circuit sizes. For each imaged dataset, our data collec-
tion was restricted to a single two-dimensional plane of focus
that, despite our large sample size, we expected to be insufficient
to fully sample the active three-dimensional circuit. We used
patch-clamp physiology and recordings of upstates as an inde-
pendent measure to confirm that circuit events were longer in
duration in S1BF than in A1. Upstate duration reflects the synap-
tic drive from the three-dimensional active circuit impinging
upon the patch-clamped neuron (Hasenstaub et al., 2005) and as
a result is a description of the duration of the circuit event sam-
pled from a region larger than a two-dimensional plane. We
found that the duration of the upstate was significantly longer in
S1BF compared with A1 (A1 2.14 � 0.48 s, S1BF 3.20 � 0.66 s,
p � 8.8514 � 10	4) consistent with the significant rank order
measured from the imaging data. To compare the temporal pro-
gression of each circuit event we discretized imaging resolved
action potential firing into 100 ms time bins and normalized
cellular activity to the maximum number of active cells in a re-
gion. This analysis revealed that the time course of neuronal re-
cruitment was similar in both regions of neocortex. In each
circuit event, activity began in a small subset of neurons, quickly
rose to a peak as more cells are recruited into the circuit event
and then exponentially decayed (�A1 � 641 ms, �S1BF � 799
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ms; Fig. 3B). This pattern of circuit progression was present
regardless of the total number of neurons recruited. Overall
circuit duration correlated with the time to peak in these
events (r � 0.8347). The number of coactive cells firing during
circuit events, i.e., the functional circuit size, had a long tailed
distribution across all regions (Fig. 3C), consistent with scale
free dynamics (Beggs and Plenz, 2003). We examined whether
these results could be the product of similar activity scaled to
overall cell count in each slice. Together, these data indicated

that functional circuits in both areas of sensory cortex fall
along a continuum of numerical scaling which in turn dictated
the duration and the temporal progression of the dynamics of
each functional circuit.

Spatial distribution of functional circuits in sensory neocortex
By bounding the area encompassed by any one functional circuit
(see Materials and Methods), we found that the area encom-
passed by neurons that were recruited into a circuit event
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spanned a large portion of our field of
view (0.519 � 0.1 mm 2; Fig. 3D). We nor-
malized these active circuit areas by the
largest possible convex hull size for each
field of view and found that these active
regions did not significantly differ in size
between cortical areas (p � 0.1029). We
observed functional circuits that over-
lapped and shared neurons between
events in both areas. We evaluated how
many circuits were present in any given
field of view by observing many individual
circuit activations over time and deter-
mining the contribution of neurons to
one or many circuits. We applied fuzzy
and hard clustering algorithms (see Mate-
rials and Methods) to these time flattened
events to isolate the most robust spatial
patterns. Using the fuzzy clustering of ob-
served events, the median number of cir-
cuits differed across regions (p �
3.7104 � 10	33; Fig. 3E,F). A1 contained
the smallest number of functional circuits
(3.05 � 0.283 circuits) and S1BF the larg-
est (4.47 � 0.502; Fig. 3F). Results were
similar using a hard clustering technique
(see Materials and Methods), indicating
that this result was independent of the
clustering algorithm used. We examined
the spatial extent of each functional cir-
cuit by reprojecting circuit events into an-
atomical space. We identified lamina, and
anatomical columns in S1BF (Lefort et al.,
2009; Meyer et al., 2011), in 69% of our
imaged field of views (see Materials and
Methods; Fig. 4A). In this dataset, each
individual lamina was sampled equally
between the two sensory regions (L1 p �
0.9405, L2/3 p � 0.1261, L4 p � 0.3705, L5
p � 0.8813). In concordance with our
convex hull analysis, the full spatial extent
of functional circuits spanned columns
and layers. To evaluate whether anatomi-
cal boundaries constrain the flow of spon-
taneous circuit dynamics we categorized
the time course of each circuit event as
having a dominant direction of flow in re-
lation to the pial surface, discretized as co-
lumnar (perpendicular to pia), laminar
(parallel with pia), both columnar and
laminar, or disperse flow (Fig. 4B). Flows
of all types were found in both regions,
characterized by a majority of disperse ac-
tivity (Fig. 4C). Thus dynamics were often
unconstrained by anatomical boundaries,
even in the case of the clear anatomically
defined columns in S1BF. We determined
whether there was a bias for the initiation
of emergent activity to originate in specific lamina. The earliest
detected spiking activity in neurons was distributed across lamina
with no clear significant difference toward neurons of any layer
starting events (L1, L2/3, L4, L5 Kruskal-Wallis p � 0.1386).
Finally, we determined whether the spatially clustered functional

circuits were more likely to have more similar circuit flow than
expected by chance. We found that both the presence or absence
of laminar flow patterns and columnar flow patterns were more
often shared within spatial clustered data than permuted cluster
memberships (see Materials and Methods; laminar flow within-

Figure 4. Dynamics of circuit events indicate that functional circuits span anatomical boundaries. A, Left, NeuN staining
brightfield imaging and corresponding spatial averaged opacity measure. Right, Progressive opacity overlay of NeuN bright field
imaging with multiphoton calcium fluorescence raster image. Pial surface and biocytin labeled neuron are used as fiduciary
markers. B, Circuit exhibiting intercolumnar spread. Neuron color is based upon the time of first observed spike from cool (early) to
hot (late). C, Distribution of observed spatial activation patterns.
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cluster data � 80% similarity, permuted-cluster � 39%; p �
2.5955 � 10	7; columnar flow within-cluster data � 85%, per-
muted-cluster � 50%; p � 1.6160 � 10	4). These data suggested
that while functional circuit activity was not dictated by gross
anatomical boundaries, similar spatially coactive groups of cells
display similar activity flow.

Temporal activity is structured in both regions of sensory cortex
After establishing spatial structure and structured circuit activity
flow patterns in both regions, we tested for the presence of tem-
porally precise neuronal firing sequences across sensory cortex.
Spatiotemporal structure is consistent with spontaneous activity
being dictated by underlying synaptic connectivity (Luczak and
MacLean, 2012). We compared single-neuron firing activity
from circuit events in each field of view using a metric where
increasing dissimilarity between circuit reactivation spike pat-
terns is associated with increased cost (Victor and Purpura, 1996;
Fig. 5A; see Materials and Methods). In both regions of sensory
cortex, circuit reactivations demonstrated precision in the spike
timing of a subset of individual cells (38 � 11% of cells in A1,
31 � 13% in S1BF, p � 0.4433; Fig. 5B). Cells that demonstrated
patterned spike timing were found in all lamina (32% of cells in
L1, 33% L2/3, 37% L4, 43% L5). Further, the same cells often
spiked in multiple circuit activations (27.9% � 7.5 of activations
averaged across all cells in A1, 26.0 � 08.9% S1BF, p � 0.9052),
with some cells being active in every event (5.2 � 5.7% of cells
grand average in A1, 2.0 � 3.2% in S1BF p � 0.0214). To evaluate
how often the same cells fired precisely over multiple circuit
events, we combined our measure of multiple circuit participa-
tion with the above defined metric of temporal precision (see

Materials and Methods), with values of 1 representing temporally
reliable cells present in every event and 0 representing cells that
are either nonprecise, rarely firing or both. A1 had the highest
reliable precision (0.58 � 0.28), which was significantly different
from S1BF (0.47 � 0.27; p � 4.415 � 10	22). Overall, indicators
of temporal precision, firing reliability, and nonrandom circuit
activation, were found in both A1 and S1BF.

Graph analysis of inferred functional connectivity
We used the temporal flow of activity to evaluate the statistical
features of functional circuit organization in A1 and S1BF. We
determined whether the imaged flow of activity through local
circuits was randomly organized or whether there the activity
flow reflected functional organizing principles that might be
common to both sensory cortices. Graph theory provided a
mathematical framework and established metrics for describing
high dimensional networks (Bullmore and Sporns, 2009). There-
fore, to compare our two sensory regions, we generated graphical
abstractions, i.e., circuit topologies, corresponding to observed
functional activity. The sparse firing of circuit events necessitated
the use of correlative methods for inference of topology (Pajevic
and Plenz, 2009). Consistently active neurons across events (
4
spikes) were represented as nodes in each graph. Edges between
nodes were directional and formed according to a single frame
lagged correlation (frame duration 86.43 � 18.62 ms; Fig. 6A).
Edges were weighted according to reliability of lagged activity
normalized to the number of events in that field of view; their
weight represented the reliability of a connection. Although it is
clear that a functional relationship between neurons increases the
probability of them having an effective physical connection (Ko

Figure 6. Properties of inferred functional connectivity. A, Functional connections are determined via a lagged correlation rule. Nodes represent neurons and edges represent the reliability of
observing single frame lagged activity. B, Ratio of nodes to edges in graphs from all regions ( p � 0.4508). C, Cumulative density function of weights observed in each region. D, Log-log plot of
reliable (weight
0.4) degree distributions of functional networks compared with an Erdős–Rényi randomized graph (ER-A1) based upon the mean nodes and edges from A1 functional networks.
E, Gaussian kernel smoothed distribution of observed nodes in functional graphs from each region. F, In and out degree distributions normalized to number of nodes in network. G, Example dataset
histogram demonstrating hubs based upon the distribution of total degrees per node.
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et al., 2011, 2013), and functional structures, such as hubs, have
been shown to have corresponding structural correlates (Honey
et al., 2007; Bonifazi et al., 2009), it is unlikely that each functional
edge, or connection, corresponds to an effective, or literal, con-
nection (Gerstein et al., 1978). Rather, given our method of in-
ference, our functional connectivity measure captured the flow of
activity through the network during a circuit event.

We characterized the general graph properties of each func-
tional circuit topology. Functional connectivity was sparse in
both regions of neocortex and the ratio of edges to nodes did not
differ between regions (p � 0.4508; Fig. 6B). We examined the
strength and arrangement of connections between neurons in
graphs from each region of sensory cortex. In both areas there was
a distribution of strong and weak weights, reflecting both weakly
and highly reliable connections (Fig. 6C). In both areas, the de-
gree distribution of high weight edges, i.e., the reliable functional
connections between neurons, demonstrated linear regimes on a
log-log scale and scaled similarly between regions with a bias
toward small degree nodes in contrast to Erdős–Rényi random-
ized graphs that contained the mean number of edges and nodes
from an A1(shown; ER-A1) or S1BF functional graph (Fig. 6D).
We examined the numerical size of the functional circuits and
found significant differences in the sizes of the graphs. A1 graphs
contained 595 � 101 neurons and S1BF 704 � 157 (p � 0.0305;
Fig. 6E), with graphs containing only neurons with edges of
weight 
0.1 containing 341 � 90 neurons in A1 and 474 � 200
neurons in S1BF. The large size of these graphs,compared with
the relatively small sizes of individual circuit activations (A1
155 � 62 cells, S1BF 207 � 123 cells), indicated that the full graph

was the product of the connectivity inferred across many distinct
observations. A1, which contained the numerically smallest cir-
cuits, also had the lowest probability for neurons with a large
number of connections. We examined in and out degrees, respec-
tively the inward and outward connections of each node, normal-
ized by total graph size so that degree per node ranged from 0 to
1 (Fig. 6F). These distributions suggested that A1’s lower proba-
bility of high degree nodes was linked to the size of its graph;
when the distribution was scaled by the overall size, A1 closely
matched the distribution of S1BF. We determined whether both
areas of sensory cortex contained highly interconnected neurons,
hubs, a hallmark of scale free topologies which are considered
optimal for limiting the impact of the loss of any randomly se-
lected node (Albert et al., 2000) and for coordinating activity
between neurons (Bonifazi et al., 2009). Here, we defined hubs as
neurons whose degree was at least 1 SD higher than the mean
degree (Honey et al., 2007; Fig. 6G). Hub neurons did not differ
in their prevalence in both areas of sensory cortex (p � 0.4387),
regardless of whether we defined hubs using 2 (p � 0.2569) or 3
SDs (p � 0.2362) beyond the mean. These results demonstrated
that the functional connectivity of both regions of sensory cortex
consisted of sparsely connected neurons and a minority of highly
connected hubs. Moreover, consistent with results reported by
effective connectivity and theoretical studies, circuits were
marked by a small number of strong reliable links among a ma-
jority of weak connections (Teramae et al., 2012).

We measured modularity in our directed networks (Leicht
and Newman, 2008) to determine whether circuits were defined
by one homogenous topology, marked by low modularity, or
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characterized by multiple interconnected modules. All of the in-
ferred functional graphs exhibited significantly higher modular-
ity than expected from randomly shuffled graphs in which we
preserved the degree distributions (one-tailed t test, p �
0.0300). Modularity measures did not differ between brain re-
gions (p � 0.3615). We measured the mean clustering coefficient
of each network (Watts and Strogatz, 1998), which is a measure
of how often neighboring neurons are connected to one another’s
neighbors. This metric provided an indicator of the small-world
architecture combined with a measure of the characteristic path
length through a network. The clustering coefficient was signifi-
cantly greater (one-tailed t test, p � 1.316 � 10	15; Fig. 7A) and
shortest path length significantly smaller (one-tailed t test, p �
2.482 � 10	13) in the experimentally derived graphs than in degree-
preserved random graphs, which indicated small world topologies in
both regions of sensory cortex. We tested for hierarchical modular-
ity, a topology comprised of modules of modules that has been ob-
served in metabolic networks and large scale fMRI data, and has been
shown to allow for increased information transfer without increas-
ing wiring cost (Ravasz et al., 2002; Gallos et al., 2012). This was
achieved by evaluating the relationship between the clustering coef-
ficient of a neuron and its number of connections. When we isolated
highly reliable edges in the network (weights � 0.4; degree dis-
tribution is long tailed with mean in-degree � 9 � 11 connections;
max in-degree � 117) we find a relationship where the clustering of
a node, C(k), with k links followed the scaling law C(k) � k	1,
consistent with a hierarchically modular circuit organization in S1BF
and A1 (Fig. 7B). We determined whether there were any additional

organizational principles of connectivity. As
previously reported by studies that used
paired patch-clamp recordings (Song et al.,
2005; Perin et al., 2011), a greater number of
reciprocal, or bidirectional, functional con-
nections exists than would be expected by
chance, assuming an independent probabil-
ity of connection (A1 4.51 � 2.11-fold in-
crease, S1BF 4.48 � 3.70; Fig. 7C). Together
these graph metrics indicated that the func-
tional topology of each region consisted of
hierarchically organized cells that shared
neighbors. Thus, despite differences in the
duration and overall size of circuit events
between A1 and S1BF, each sensory cortical
region was made up of circuits that had sim-
ilar statistically defined emergent functional
architectures.

Projection of inferred graph topology into
anatomical space
To study the inferred functional connec-
tivity graphs in anatomical space, we ex-
amined the distribution of connections
over physical neuron distance (Fig. 7D).
Similar to benchmarks established using
paired patch-clamp recordings and anat-
omy (Perin et al., 2011; Song et al., 2005;
Hill et al., 2012), functional connections
were biased toward short pairwise physi-
cal distances. (Fig. 7D, red line; see Mate-
rials and Methods). Additionally, we
examined whether the hub neurons that
we identified were over-represented in a
specific anatomical location. We found
neurons with hub properties in all lamina

but with an overrepresentation in L1, L2/3, and L5 (5.0%, 2.5%,
and 3.6% over expected) and an under-representation in L4
(	11.15%). Our data demonstrated that functional circuits were
biased toward spatially local activity with high degree connec-
tions being spread throughout the lamina.

Circuit models are sufficient to replicate experimental
circuit dynamics
Theoretical studies have shown a direct link between the connec-
tivity in network models and the resultant dynamics (Honey et
al., 2007; Galán, 2008; Roxin et al., 2011; Litwin-Kumar and Doi-
ron, 2012). We evaluated whether these inferred functional to-
pologies were capable of recapitulating experimentally observed
dynamics in a spiking neuronal network (SNN) model. It was
unclear whether these topological descriptions of the most com-
mon and reliable circuits based on function would be able to
capture any of the original emergent dynamics of actual anatom-
ical circuits. For each experiment we used experimentally defined
functional connectivity as the weighted connectivity matrix in a
SNN (see Materials and Methods). These network models pro-
duced mean firing dynamics that followed a similar temporal
progression of neuronal recruitment to that measured experi-
mentally with similar decay (�A1-Model � 485 ms, �S1BF-Model �
878 ms; Fig. 8A; see Materials and Methods). Specifically the
modeled network dynamics correlated with key features of the
experimentally observed dynamics in terms of total cells active
(n � 32000 simulations, r � 0.9740; Fig. 8B), total spikes (r �
0.9310) and duration (r � 0.3934). These similarities demon-
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strated that functional topological connectivity, inferred from
reliable time lagged circuit events, was sufficient to replicate key
aspects of the imaged dynamics.

We manipulated the features of our network models to deter-
mine whether the agreement between the models and experi-
mental data were the result of an overly parameterized model
(Prinz et al., 2004). In addition these manipulations allowed us to
determine what aspects of the inferred connectivity were crucial
to replicate experimentally observed dynamics. In line with pre-
vious work (Teramae et al., 2012), the combination of both weak
and strong connections was necessary for our model to function
well. Running the model without low weight edges (weights 	
0.2) caused mean duration of activity to decrease to 63.7% com-
pared with experimentally generated topologies. Correspond-
ingly, the number of active cells decreased to 36.0% and total
spike count fell to 9.5% compared with models that had been
generated from experimental data, indicating that a full range of
weights was necessary to support firing activity (Fig. 8C, purple
line). We manipulated experimentally generated topologies by
maintaining the respective out degree distribution of each node,
but permuting the edges so that individual neurons maintained
the number of outgoing connections but not which cells they
connected to. This decreased all activity, as indicated by a lower
value of mean active cells (61.8%) and decreased total firing
(69.3%), yet duration of circuit events increased (109.6%). Thus,
the specific identity of connections was necessary for the model to
replicate the observed dynamics. Finally, we created a null model
of circuit topology by constructing edges via a random draw of all
available weights. These networks had the same total degree and
weight as our inferred networks, but the balance of in/out degree
distributions and total weight of each node was changed. These
circuit topologies demonstrated dynamics that were increased to
109.9% of mean duration of models from experimental data, yet
exhibited decreased mean total spike counts (67.3%), whereas
the number of active cells dropped to 62.14% (Fig. 8C, red line),
again changing the observed relationship between active cells and
duration. In both cases, these perturbations showed increased
durations at the expense of activation of the entire network and
also lower overall spike rates. We hypothesize that this is due to an
increase in the inefficiency of the perturbed networks, where

groups of cells uniquely coactivate one another, which appears to
perpetuate firing within subgroups but limits the flow of activity
across the functional network as a whole. Thus, we were only able
to observe dynamics that corresponded to experimental data in
cases in which we maintained the observed degree distributions,
weight distributions, and connectivity of observed circuits dem-
onstrating both sufficiency and necessity of the functional topol-
ogies in these models.

Inverse model reveals that scaling is capable of making regions
similar to one another
Having found that functional circuit topologies were sufficient to
replicate experimentally measured dynamics in our SNN models,
we determined which graph properties were responsible for the
observed differences in the observed duration between A1 and
S1BF by swapping graph metrics between SNN models of each
brain region. Instead of using models built according to directly
observed topologies as above, we generated probabilistic models
of circuits of each neocortical area using draws from distributions
of size, degree, and weight from the empirically defined data
distributions obtained in each specific area (see Materials and
Methods). These models were capable of recapitulating the rank
order of firing duration seen in the experimental data (Fig. 8D,
left) providing a substrate upon which we were able to swap
model parameters to test hybrid circuits and determine which
region specific graph metric distribution accounted for observed
differences. Using the idealized model, duration was significantly
different between A1 and S1BF (two-tailed t test, p � 7.0647 �
10	212), whereas idealized S1BF circuits using A1 sizes had sim-
ilar durations as idealized A1 datasets (two-tailed t test, p �
0.1088) and idealized A1 circuits using S1BF sizes had similar
durations as idealized S1BF datasets (two-tailed t test, p �
0.6031). For both A1 and S1BF, manipulations of numerical cir-
cuit size using the idealized model were sufficient to transform
the firing duration of S1BF to that of A1 and vice versa.

To better understand the role that scaling plays in setting the
unique observed duration of each region, we used the smallest
circuit, A1, as a starting seed to evaluate whether we were able to
construct a circuit that exhibits S1BF firing duration through
scaling. We increased the size of A1 using two approaches. Nodes

Table 1. Principles of sensory neocortical circuitry

A1 S1BF

General dynamical features Capable of multineuronal emergent dynamics Yes Yes
Mean circuit size in a single 1.1 mm 2D imaged plane 155 � 62 neurons 207 � 123 neurons
Max circuit size in a single 1.1 mm 2D imaged plane 294 neurons 577 neurons
Component neuron firing related to circuit duration Yes: short durations Yes: short � long durations
Circuits flow perpendicular and parallel to pia Yes Yes
Fraction of cells showing temporal precision 0.38 � 0.11 0.31 � 0.13

Graph properties Fraction of graph that is sparse 0.9363 � 0.0545 0.8902 � 0.1074
Overrepresentation of bidirectional edges (x-fold) 4.51 � 2.11 4.48 � 3.70
Graph size (nodes) 595 � 101 704 � 157
Out degree distribution tail Smaller Longer

Topological flow characteristics Small world Yes Yes
Scale free Yes Yes
Modular Yes Yes
Hierarchically modular Yes Yes
Connection probability Falls with distance Falls with distance
Connection distances Biased toward local with some long connections Biased toward local with some long connections
Hub neurons Yes Yes

Modeling Dynamics sufficiently replicated by SNN model Yes Yes
Scalable to other networks by size modification Scalable to S1 Scalable to A1
Scalable from a small A1 network NA Yes, via preferential attachment
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were added using either random attachment, according to a uni-
form probability, or by using preferential attachment where new
nodes are more likely to connect to nodes that are already highly
connected (Barabási and Albert, 1999; see Materials and Meth-
ods; Fig. 8D). Only preferential attachment of S1BF sizes resulted
in circuits that captured the firing duration of S1BF networks
(Fig. 8E).

Discussion
Using both experimental and theoretical approaches we eluci-
dated key topological features of functional circuitry in two areas
of sensory neocortex (Table 1). Both areas of sensory cortex dem-
onstrate emergent dynamics marked by stereotypy in both indi-
vidual cell firing times as well as the set of cells active in a single
event. We find that although the flow of dynamics can be canon-
ical, that is to say perpendicular to pia, this is not the dominant
observation. These data are consistent with functional circuits
that are anatomically interdigitated reflecting neuronal popula-
tions that represent information from multiple octaves in A1
(Stiebler et al., 1997) and whiskers in S1BF (Hirata and Castro-
Alamancos, 2008). The relationship between the duration of cir-
cuit activity, the number of neurons active, and the progression
of neuronal recruitment, shows a conserved size-dependent cor-
relation within and across sensory cortices consistent with com-
mon architectural principles. Functional circuits are structured
and are significantly different from random graphs, as they con-
tain hallmarks of scale free, small world, and hierarchically mod-
ular topologies. We replicated experimentally observed temporal
firing features using prototypical circuits from each region; con-
sistent with the hypothesis that functional circuitry provides key
insights into underlying circuit architecture. Simulations using
prototypical circuits of S1BF and A1 showed that scaling from the
smallest circuit architecture of A1 via preferential attachment
reproduced the circuit dynamics of S1BF. We conclude that S1BF
and A1 sensory neocortex show common principles of microcir-
cuit architecture, and that scaling can account for a large portion
of the similarities and differences between regions.

A principle of scaling is seen throughout vertebrate CNSs,
regardless of the spatial resolution at which it is examined: many
brain regions scale allometrically with brain volume (Stevens,
2001), reflected in a scaled relationship between gray and white
matter (Zhang and Sejnowski, 2000). Similarly, resulting dynam-
ics are scale invariant (Beggs and Plenz, 2003). Accordant with
these anatomical and modeling studies, we find a scaled relation-
ship within and between functional circuits in A1 and S1BF. The
number of neurons active in a circuit and the resulting duration
of observed spontaneous circuit events are strongly correlated in
both areas. Numerical scaling also accounts for many of the dif-
ferences that we observe in the functional features of circuitry and
dynamics between both brain regions. Interestingly, we find that
S1BF functional circuits can be grown from the smaller A1 func-
tional circuit through preferential attachment. We suggest that
there are two potential, nonmutually exclusive, driving forces
which underlie the scaled relationship that we see in both areas.
The first is neuronal resources. If there are fewer neurons avail-
able due to differences in the brain volume occupied by a sensory
area and/or differences in the density of neurons present in that
area of cortex (Herculano-Houzel et al., 2008; Collins et al.,
2010), the number of neurons available to comprise a basic com-
putational unit will be less in that area of sensory cortex. Alterna-
tively the number of neurons interconnected, as reflected by the
functional circuit, could be the result of synaptic plasticity driv-

ing different circuit sizes due to the unique statistical features of
each modality (Clopath et al., 2010).

Anatomical connectivity in the brain sets bounds on the dy-
namics which can occur. Rules clearly govern connectivity be-
tween neocortical neurons according to location and cell class
(Silberberg et al., 2002; Thomson et al., 2002; Song et al., 2005;
Lefort et al., 2009; Perin et al., 2011; Hill et al., 2012) and each
brain region is a layered structure (Hubel and Wiesel, 1974;
Rockel et al., 1980) that contains the same general classes of neu-
rons (Silberberg et al., 2002). Our functional data indicate that at
the mesoscale that there are similar architectural principles that
govern functional neocortical circuitry that are likely modified to
be unique in each region (Kätzel et al., 2010; Yang and Zador,
2012). We find that the flow of activity indicates a number of
statistical features which generalize across both regions of sensory
cortex and that wiring is not random and can be distilled to a few
basic rules: (1) Circuit architectures result in emergent dynamics
that are spatiotemporally structured and show a progression of
neuronal recruitment. (2) As previously reported in effective
connectivity studies (Song et al., 2005; Perin et al., 2011) we find
that the functional relationships between neurons are dictated in
part by spatial proximity, although there is a long tail in the
probability distribution of a functional connection which likely
reflects the presence of long connections spanning hundreds of
microns (Gilbert and Wiesel, 1979; Kätzel et al., 2010; Oviedo et
al., 2010) that far exceed estimates of the lateral size of a column
(Lefort et al., 2009; Kätzel et al., 2010). (3) A1 and S1BF have
functional architectures which are hierarchically modular, each
of which exhibit hallmarks of scale free topology marked by long
tailed out degree distributions and hub neurons. This quantita-
tive description suggests that prototypical circuits from each re-
gion strike a balance between independent computation within a
module and efficient transmission of information between mod-
ules (Ravasz et al., 2002; Gallos et al., 2012). (4) The functional
circuit architecture, i.e., the dynamics, of both regions is a scaled
manifestation of a similar basic circuit structure. These dynamics,
when considered in the context of hierarchical modularity, imply
that the general principles of circuit design are optimal for robust
and stable activity over a large operational range.
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