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Abstract
We describe statistical methods that extend the application of admixture mapping from unrelated
individuals to nuclear pedigrees, allowing existing pedigree-based collections to be fully
exploited. Computational challenges have been overcome by developing a fast algorithm that
exploits the factorial structure of the underlying model of ancestry transitions. This has been
implemented as an extension of the program ADMIXMAP. We demonstrate the application of the
method to a study of sarcoidosis in African Americans that has previously been analyzed only as
an admixture mapping study restricted to unrelated individuals. Although the ancestry signals
detected in this pedigree analysis are generally similar to those detected in the earlier analysis of
unrelated cases, we are able to extract more information and this yields a much sharper exclusion
map; using the classical criterion of an LOD score of minus 2, the pedigree analysis is able to
exclude a risk ratio of 2 or more associated with African ancestry over 96% of the genome,
compared with only 83% in the earlier analysis of unrelated individuals only. Although the
pedigree extension of ADMIXMAP can use ancestry-informative markers only at relatively low
density, it can use imputed ancestry states from programs such as WINPOP or HAPMIX that use
dense SNP marker genotypes for admixture mapping. This extends both the efficiency and the
range of application of this powerful gene mapping method.
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Introduction
Where large admixed populations are available, admixture mapping is the most direct
method of localizing genes that underlie ethnic variation in disease risk [McKeigue, 2005].
A key advantage of admixture mapping over genome-wide single nucleotide polymorphism
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(SNP) association mapping is that it is not affected by allelic heterogeneity. Standard panels
of ancestry-informative markers are now widely available, and statistical methods to infer
locus ancestry and test for linkage with a disease or quantitative trait are implemented in
programs such as ADMIXMAP [Hoggart et al., 2004] and ANCESTRYMAP [Patterson et
al., 2004]. However, these programs can be used only with samples of unrelated individuals.
Many existing collections of clinical data and DNA from admixed populations consist of
pedigrees with multiple affected members, originally collected for linkage studies. Standard
programs for pedigree linkage analysis such as GENEHUNTER [Kruglyak and Lander,
1995] cannot model the linkage disequilibrium that is generated by admixture. To apply
admixture mapping in these collections, it has been necessary to restrict the analysis to a
subset of unrelated individuals. In principle, it is possible to extend the statistical theory
underlying admixture mapping to pedigrees. In this paper, we describe the extension of the
statistical and computational methods for admixture mapping to nuclear pedigrees, and
apply these methods to the AMASS (Ancestry Mapping of African genes of Sarcoidosis
Susceptibility) study from which we have previously reported an analysis restricted to
unrelated individuals [Rybicki et al., 2011]. The rationale for applying admixture mapping
to this disease is based on the higher risk in people of west African ancestry than in people
of European ancestry living in the same countries [Edmondstone and Wilson, 1985; Rybicki
et al., 1997; Sartwell and Edwards, 1974].

Methods
Statistical Model for Admixture and Linkage

To model admixture in pedigrees, we have to combine two families of models, each of
which is well established in statistical genetics: a hidden Markov model (HMM) for
segregation indicators in pedigrees, and a HMM for locus ancestry in admixed individuals.

The classical HMM for segregation indicators was first described by Lander and Green, and
later used in programs such as GENEHUNTER [Kruglyak and Lander, 1995] for linkage
analysis in pedigrees. In this model, each meoisis is represented by a sequence of
segregation indicators, one for each locus, that take value 0 or 1 according to whether the
paternally derived or maternally derived copy is transmitted at the locus. The stochastic
variation of segregation indicators between states 0 and 1 on each gamete is generated by
two independent Poisson arrival processes each with intensity one per morgan. This is
equivalent to the Haldane mapping function. For a single gamete, the probability of
transition to state j at locus t + 1 given state j at locus t as , where δij is an
indicator variable taking value 1 if i = j and 0 otherwise, g = exp(−2x), and x is the map
distance in morgans from locus t to locus t + 1. For a pedigree with M meioses in the
pedigree, the joint state space of the segregation indicators is of size 2M. The transition
probabilities between these 2M joint states can be calculated as products of the
corresponding transition probabilities for each meiosis. The probability of the observed
genotypes given each joint state (emission probabilities) can be calculated from the allele
frequencies. This is a HMM in which the hidden state at each locus is defined by the vector
of segregation indicators, the transition probabilities are known (given the map distances),
and the observations are the unphased marker genotypes. The probability distribution of the
hidden states given the observations can be calculated by standard algorithms.

A HMM for ancestry at linked loci in a population formed by admixture between K
ancestral populations [McKeigue, 1998] has been implemented for unrelated individuals in
programs such as STRUCTURE [Pritchard et al., 2000], AD-MIXMAP [Hoggart et al.,
2004], and ANCESTRYMAP [Patterson et al., 2004]. In this model, stochastic variation of
ancestry across each of the two parental gametes in each individual is generated by K -
independent Poisson arrival processes, with total intensity ρ per morgan. This model
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specifies the probability of transition to ancestry state j at locus t + 1 given ancestry state j at
locus t as f δij + (1 – f)μj, where f = exp(−ρx) and μj is the proportion of the parental genome
that has ancestry from the kth population. The locus ancestry states on each gamete thus
arise from a Markov process with stationary distribution probabilities (μ1,…, μK). The
Haldane mapping function can be viewed as a special case of this model in which K = 2, ρ =
2 and the two arrival processes each have intensity 1. The transition matrices depend on the
model parameters (μ1,…, μK) and ρ, which can be learned from the data. The parameter ρ
can be interpreted as the effective number of generations back to unadmixed ancestors.

To model admixture in a pedigree with F founder gametes and M meioses, we combine
these two model families in a factorial HMM, in which the hidden states are generated by F
+ M independent Markov processes. “Factorial” means that the Markov processes are
independent (unless we condition on the observed genotypes). At each locus, there are KF

possible states for founder ancestry, and 2M possible states of the segregation indicators, so
the hidden state space is of size KF 2M. For an African American sib pair, there are four
founder gametes (F = 4), two ancestral populations (K = 2), and four meioses (M = 4) so
there are 4224 = 256 states. For affected-only analyses, we can model nonshared ancestors as
contributing only a single founder gamete and no meioses: thus for a pair of half-sibs, there
are only four founder gametes (one from each nonshared parent, two from the shared parent)
and two meioses.

At any locus, the ancestry states in the F founders and the segregation indicators for the M
meioses specify the locus ancestry states for all individuals in the pedigree. The transition
probabilities between joint states of the HMM are the products of the corresponding terms
for the F + M individual processes. Given the ancestry-specific allele frequencies
(probabilities of each allele given each locus ancestry state), we can specify for each hidden
state the emission probability (probability of the observed genotypes given the hidden state)
as a sum of phased genotype probabilities (calculated as products of allele frequencies)
taken over all phased founder genotypes that are compatible with the observed unphased
genotypes given the segregation indicators. This accounts for phase uncertainty in the
observed genotypes.

A few other modifications of the standard model of admixture are required to handle
pedigrees. We constrain the admixture proportions to be the same for both gametes in each
parent, as there is not usually enough information in the data to infer whether the two
gametes in a parent (not directly genotyped in most pedigrees) differ in their admixture
proportions. For the same reason, the total arrival rate ρ is constrained to be the same for all
individuals. As with unrelated individuals, we introduce an additional global parameter ψ to
allow for unequal sex ratio in the founder populations [Rybicki et al., 2011]. ψj is the odds
ratio for female sex in the j th ancestral population compared with the reference population.
From previous studies of mitochondrial and Y chromosomal lineages [Lind et al., 2007;
Parra et al., 1998], we estimate this parameter to be about 10 for female vs. male sex in
African vs. European founders of the modern African American population. Given average
autosomal European admixture proportions of 0.20, this is approximately equivalent to a 20
to 1 ratio of Africans to Europeans among unadmixed females who contributed gametes to
the modern African American gene pool, compared with a 2 to 1 ratio of Africans to
Europeans among unadmixed male founders. In principle, it should be possible to learn the
parameter ψ from comparing ancestry state frequencies on the X chromosome with
frequencies on the autosomes. In practice, a very large sample size is required for ψ to be
inferred accurately, as large changes in ψ correspond to fairly small changes in the X
chromosome admixture proportions. For instance, with autosomal European admixture
proportions of 0.20, the expected X chromosome admixture proportion would vary only
from 0.20 to 0.13 as ψ varies from 1 to infinity. As in the dataset used for this study
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(described below) there was not enough information for ψ to be inferred reliably, we
therefore specified a Gaussian prior on log ψ with mean 2.4 and variance 0.01. This forces
the value of ψ to be close to 10 in accordance with estimates based on mitochondrial and Y
chromosome lineages.

Computational Methods
As each pedigree is represented as a HMM, a standard HMM forward recursion algorithm
can in principle be applied to compute the likelihood P (y | μ,ρ) at any value of the
admixture proportions μ and ancestry arrival rate ρ, given the observed genotypes y. For a
fully Bayesian approach, we can sample the posterior distribution of these parameters using
a Metropolis algorithm, rather than just maximize their likelihood as in classical machine
learning applications that use HMM methods. At each realization of the model parameters,
the forward and backward probability vectors can be used to calculate for each locus the
marginal posterior distribution of hidden states, conditional on the model parameters. The
standard algorithm for recursive computation of the forward and backward probabilities of a
HMM entails at each locus multiplication of the transition matrix by a vector, as described
in the Appendix. As the order of the transition matrix is equal to the size of the hidden state
space, this matrix multiplication has time complexity that scales with the square of the size
of the hidden state space.

Faster algorithms have been developed for special cases of the hidden Markov model. Two
special cases are classical multipoint linkage analysis with unadmixed founders (K = 1), and
admixture mapping of unrelated individuals (F = 2,ρM = 0). In classical linkage analysis, the
transition probabilities for each segregation indicator are of the form , and the
forward and backward recursions can be computed efficiently with a Hadamard transform
[Kruglyak and Lander, 1998]. For admixture mapping with unrelated individuals, there are
only two Markov processes each with transition probabilities of the form f δij + (1 – f)μj, and
the time complexity can be reduced from O(K 4) to O(K) by using an algorithm that
computes expectations of products from the product of expectations plus the covariance.
This is implemented in ADMIXMAP for analysis of unrelated individuals. However, neither
of these algorithmic speedups can be extended to the combined model of segregation and
admixture that is required to model data on admixed pedigrees. We have therefore
developed a more general algorithm for factorial HMMs where on each chain the stochastic
transitions between states are generated by independent Poisson arrival processes, giving
rise to transition probabilities of the form f δij + (1 – f)μj. This algorithm, described in the
Appendix, achieves a speedup of about 100-fold compared with the standard HMM
algorithm. This has been implemented in an updated version of the ADMIXMAP program
for analysis of nuclear pedigrees including half-sibships.

Model parameters are updated with Metropolis algorithms, using a stochastic approximation
algorithm to tune the step size automatically for each parameter [Atchade and Rosenthal,
2005]. For founder admixture proportions, the Metropolis proposals are generated by a
Hamiltonian leapfrog algorithm which uses gradient information to propose states that have
higher probability [MacKay, 2003]. Sampling algorithms are documented in more detail in
the source code.

As a pedigree consisting of a single individual is just a special case of a nuclear pedigree, a
collection that combines unrelated individuals and multimember pedigrees can be handled
with the same algorithm. The only exception to this is the modeling of ancestry-specific
allele frequencies. When ADMIXMAP is used to model unrelated individuals, the ancestry-
specific allele frequencies are generated from their posterior distribution. The priors on the
allele frequencies are based on the observed counts in samples from un-admixed modern
populations such as the HapMap reference panels. This allows the program to learn the
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allele frequencies from the admixed population under study, rather than relying only on
samples from modern populations that may differ from the ancestral populations that
contributed to the admixed population. By sampling the joint posterior distribution of allele
frequencies, we ensure that uncertainty in these nuisance parameters is integrated out in
accordance with the rules of Bayesian inference. With unrelated individuals, it is possible to
use an efficient sampling algorithm that integrates over phase in heterozygous individuals.
This sampling algorithm cannot easily be extended to pedigrees, so instead we resort to an
approximation of the fully Bayesian procedure in which the allele frequencies are fixed at
the posterior mean computed from an initial run of ADMIXMAP with unrelated individuals
only. In a large sample (as in the study reported here), this effect of this approximation on
tests for linkage is likely to be small.

Testing for Linkage of Disease Status With Locus Ancestry
In admixture mapping, the effect of locus ancestry on disease risk is measured by the
ancestry risk ratio parameter r: the ratio of risk in those with 2 copies that have ancestry
from the high-risk population to risk in those with 0 copy [McKeigue, 1998]. For a rare
disease with low penetrance, the ancestry frequencies at the disease susceptibility locus will
differ only slightly between unaffected individuals and the general population. This can be
seen by reversing the labeling of the diseased and nondiseased states to define “risk” as the
probability of the nondiseased state. If the disease is rare and has low penetrance, the “risk”
ratio associated with 2 vs. 0 copy of the high-risk ancestry state will be close to 1. Thus,
very little information is lost by restricting the test for linkage to affected pedigree members.

The likelihood P (A, S | x, r) for an affected pedigree with disease states x given founder
ancestry states A and segregation indicators S at the locus under study can be factored as P
(S | A, x, r) P (A | x, r). In words, the likelihood factors into the contribution of segregation
indicators S and the contribution of founder ancestry states A.

We consider the simple case in which high-risk and low-risk alleles are each fixed in one of
the two ancestral populations. Under this assumption, the score test previously derived for
unrelated individuals under a multiplicative model for penetrances [Hoggart et al., 2003] can
be extended to related individuals. With individuals who have 0 copy of the high-risk allele
as baseline, the risk ratios associated with 1 and 2 copies of the high-risk allele are,
respectively,  and r. The likelihood as a function of r, given the observed founder
ancestry states, segregation indicators, and disease status in pedigree members can then be
calculated by application of the rules of conditional probability. For affected half-sibs, the
likelihood is evaluated as the sum of the contribution of meioses in the shared parent, the
contribution of locus ancestry in the shared parent, and the contribution of the gametes
transmitted to affected individuals from the non-shared parents. For n affected offspring of a
founder parent, the contributions of segregation indicators and founder ancestry states to the
likelihood are as follows:-

• Contribution of segregation indicators to the likelihood conditional on founder
ancestry states: P (S | A, n, r) Only meioses in parents who are heterozygous for
ancestry (locus ancestry from high-risk population on one gamete, low-risk
population on other gamete) contribute to this component. This is analogous to the
transmission disequilibrium test [Spielman et al., 1993], in which only parents
heterozygous at the locus under study contribute to the likelihood conditional on
parental genotype. Given a parent heterozygous for ancestry at the locus under
study who transmits the copy with ancestry from the high-risk population m times,
the log-likelihood of the ancestry risk ratio parameter r is m log π+ (n – m) log (1 –

π), where .

McKeigue et al. Page 5

Genet Epidemiol. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• Contribution of parental locus ancestry to the likelihood: P (A | n, r)

This is evaluated as Σm P ((A, m,ρ| n, r). Expressions for this component of the log-
likelihood are given in Table 1.

To construct a classical score test, we evaluate the score (gradient of the log-likelihood at
the null) and information (minus the second derivative of the log-likelihood at the null) with
respect to log r. We use the logarithm of the rate ratio because in this basis the quadratic
approximation to the log-likelihood (on which the score test depends) is more accurate
[Kirkwood and Sterne, 2003].

At log r = 0, the segregation indicators for meioses in a parent heterozygous for ancestry at
the locus under study contribute  to the score and n/16 to the information.
Expressions for the contribution of parental locus ancestry to the score and information are
given in Table 1. Each gamete from a nonshared parent with admixture proportions μ
contributes  to the score and  to the information, where A is an indicator
variable for locus ancestry (0 for ancestry from low-risk population, 1 for ancestry from
high-risk population). These expressions are equivalent to those derived previously for
admixture mapping in unrelated individuals [Hoggart et al., 2003].

Comparison of Information From Different Study Designs
We can compare the information from different study designs in the limiting case that
segregation indicators and founder ancestry can be inferred without uncertainty. This is the
Fisher information (minus the expectation of the second derivative of the log-likelihood)
with respect to the parameter under test. This is relevant because the total information
content of the study design determines the statistical power of the study: a fourfold increase
in information content is required to halve the size of effect that can be detected. The
statistical power to detect an effect of given size can be calculated from the information
content of the study design as described previously [Hoggart et al., 2003].

Using the expressions in Table 1, we can calculate the expected information contributed by
parental locus ancestry from one parent of n affected offspring (where the expectation is

over the probability distribution of parental locus ancestry) as . Thus, for an
affected sibship of size n, the expected information is  from the 2n segregation

indicators, and  from locus ancestry in both parents. For a single individual (n =
1), this evaluates to  as derived previously [Hoggart et al., 2003]. For an affected
sib-pair (n = 2), this evaluates to  one and a half times the information contributed
by two unrelated individuals. Larger affected sibships are even more informative: thus an
affected sib-trio contributes twice as much information as three unrelated individuals.

Score Test Algorithm
Using the expressions derived above for the score and information given the hidden states
(segregation indicators and locus ancestry) and model parameters, we can evaluate the score
and information given the observed data by averaging over the posterior distribution. For
any realization of the hidden states and model parameters, we can calculate the complete
data score U and the information V by summing over all pedigrees. Standard results
[Dempster et al., 1977] yield the observed score as the posterior expectation of U, the
missing information as the posterior variance of U, and the complete information as the
posterior expectation of V. The observed information is calculated by subtracting the
missing information from the complete information. A useful by-product of this algorithm is
that the ratio of observed to complete information (proportion of information extracted) can
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be used to assess the efficiency of the study in relation to an ideal design in which all
pedigree members are typed with a perfectly informative marker panel.

The expectations of U, U2, and V are evaluated in two steps:-

• At each realization of the model parameters, accumulate the conditional
expectations of U, U2, and V over the probability distribution of hidden states given
by the HMM algorithm (elementwise product of the forward and backward
probability vectors at the locus).

• At the end of the sampling run, calculate the observed score as the average (over all
samples) conditional expectation of U, and the complete information as the average
(over all samples) of the conditional expectation of V.

• Calculate the missing information (posterior variance of the score) as the sum of
the variance of the conditional expectation of U and the expectation of the
conditional variance of U. Using angle brackets to denote expectation:-Varθ(U) =
Varθ(〈 U〉) + 〈Var(U | θ〉 θ.

This algorithm is computationally efficient because the conditional expectations at each
realization of the model parameters can be calculated exactly, and sampling is required only
to average over the posterior distribution of model parameters. A useful by-product of the
algorithm is that the ratio of observed to complete information (proportion of information
extracted) can be used to assess the efficiency of the study in relation to an ideal design in
which all pedigree members are typed with a perfectly informative marker panel. The
missing information can be partitioned into two components: information missing because
of uncertainty about model parameters (Varθ(〈 U 〉)), and information missing because of
uncertainty about locus ancestry and segregation indicators (〈 Var(U | θ;〉 θ).

Effect estimates for the log ancestry risk ratio and standard errors can be calculated from the
score and information using a quadratic approximation to the log-likelihood. The same
approximation can be used to calculate an exclusion map as described elsewhere [Hoggart et
al., 2003].

Description of Study Dataset
The AMASS study comprises three datasets: a multisite case-control study (ACCESS)
[Rybicki et al., 2001], a multi-site affected sib-pair study (SAGA) [Rybicki et al., 2005], and
a single institution family-based study [Iannuzzi et al., 2003]. All three studies had informed
consent for use of data and genetic material for future studies, and the admixture mapping
study underwent human subjects review (Henry Ford Human Subjects Assurance number
FWA00005846, AMASS IRB protocol number 4466). The dataset is available on request
for sharing subject to a safeguards agreement. Our previously reported admixture mapping
analysis of this study was restricted to 1,026 unrelated sarcoidosis cases and 316 unrelated
controls [Rybicki et al., 2011]. This included all individuals from the ACCESS study (272
cases and 286 controls). For the two family-based designs, the probands were preferentially
sampled for analysis (754 cases), and the eldest unaffected individual (30 controls) was
sampled from families where DNA was no longer available from the affected family
members. For the pedigree admixture analysis reported here, an additional 935 subjects (329
affected and 606 unaffected) were included from the two family-based studies, increasing
the total number of cases by 32% to 1,355 in comparison with the earlier analysis of
unrelated individuals only. Inclusion of additional unaffected pedigree members does not
contribute directly to the affected-only test but helps to reduce the uncertainty in inference
of segregation indicators within the pedigree. From the two family-based studies, 257
pedigrees contributed additional affected full- or half-sib pairs beyond the index case, and
those families are categorized as follows: 165 had a single affected full-sib pair; 55 had a
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single affected half-sib pair; and 37 had more than one full-sib or half-sib pair. These
individuals were typed for 1,384 SNPs informative for ancestry as described previously
[Rybicki et al., 2011]. For the current analyses of unrelated and related subjects, we
genotyped an additional 32 SNPs around our strongest ancestry peak on chromosome 6 in
attempt to further refine the signal, giving a total of 1,416 SNPs in the final analysis map.
All markers had passed diagnostic tests (implemented in ADMIXMAP) for lack of fit to
Hardy-Weinberg equilibrium in a model that allows for population stratification, for mis-
specification of allele frequency priors, and for residual linkage disequilibrium between
adjacent pairs of loci conditional upon locus ancestry. This last diagnostic test is equivalent
to testing for linkage disequilibrium within the ancestral subpopulations.

Results
Information Content and Model Parameters

To keep memory and CPU time requirements within bounds, unaffected pedigree members
were omitted from the analysis where necessary so as to limit the maximum sibship size to
seven. Analysis with 200 iterations for burn-in and 1,000 iterations for inference took 32 hr
on 12 × 86–64 cores. From the affected-only test, we computed at each locus the complete
information (the Fisher information that we would have if founder ancestry states,
segregation indicators, and founder admixture proportions were directly observed) the
observed information, and the proportion of information extracted. As the score test is
computed with respect to the natural logarithm of the ancestry risk ratio, the information is
expressed in natural log units (nats) to the power of minus 2. Over all autosomal loci, the
mean complete information was 110 nats−2, and the mean proportion of information
extracted was 74%. Only 1% of information was missing because of uncertainty about
model parameters. For comparison, with unrelated individuals only, the mean complete
information was 70, and the mean proportion of information extracted was 69%. Modeling
the pedigree structure thus increased the effective sample size (indexed by the observed
information) by nearly 70% (from 48 (69% of 70) to 81 nats−2, even though the number of
affected individuals in the dataset increased only by 32%. The posterior mean of the
proportion of European admixture in the population was 0.18 (95% CI 0.17–0.18). The total
arrival rate parameter was 4.7 per morgan (95% CI 4.7–4.8). This parameter can be
interpreted as the effective number of generations back to unadmixed ancestors. In the
pedigree ADMIXMAP model, this parameter is specified for gametes transmitted from
grandparents of the sibs. In the earlier study restricted to unrelated individuals, this
parameter was estimated to be 5.2 per morgan on gametes transmitted from the parents of
the genotyped individuals. As in a population with admixture proportions (0.2/0.8), the
arrival rate increases by about 0.6 per generation, the estimate for parental and grandparental
gametes are consistent.

Results of Admixture Scan
Figure 1 shows a QQ plot of the affected-only test for linkage with sarcoidosis, comparing
the analysis of the full AMASS dataset including pedigrees results with those reported
earlier based on unrelated cases and controls only [Rybicki et al., 2011]. The outliers on the
right tail of the distribution of test statistics correspond to the signals of linkage with African
ancestry on chromosomes 6p and 17p described below. When chromosomes that show
possible signals of linkage (Table 2)–2, 3, 5, 6, and 17—are excluded, there is no remaining
overdispersion of the test statistic.

Figure 2 shows a plot of the z scores by map position, comparing previous results with
unrelated individuals only (blue) with those obtained using all pedigrees (red). As the
pedigree analysis contains 70% more information than the analysis with unrelated
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individuals only, we expect it to perform better at distinguishing true linkage signals from
false-positive signals. Table 2 compares the results of affected-only tests between unrelated-
only and full pedigree analysis at those loci which showed the most extreme results in the
analysis of unrelated individuals reported previously. The most extreme P-values in that
analysis were in the region 6p12.1–6p24.3, with a minimum value of 2 × 10−4 at rs11966463
where the estimated ancestry risk ratio was 1.90 (95% CI 1.36–2.64) [Rybicki et al., 2011].
With the additional 32 markers typed in this region for this analysis, the most extreme P-
value in this region was at rs2844463, where the ancestry risk ratio estimate based on
unrelated individuals was 1.97 (95% CI 1.49–2.59, P = 6 × 10−7) at this locus. With
pedigrees included, the estimated ancestry risk ratio at this locus was 1.75 (95% CI 1.43–
2.16, P = 9 × 10−8). This more extreme P-value despite a smaller effect size estimate reflects
the increase in information obtained with the pedigree analysis. Over the rest of the genome,
chromosome 17p13.1–13.3 (Fig. 2 and Table 2) now stands out more clearly than before as
the only other region where there is suggestive evidence (P = 0.0002) of linkage with
African ancestry.

Exclusion Mapping
The exclusion map calculation, which takes into account not only the P-value but also the
amount of information, shows in Figure 3 how extra information has been gained by the full
pedigree analysis in comparison with an analysis of unrelated individuals only. We have
used the classical criterion of a likelihood ratio less than 0.01 (LOD score less than minus 2)
to exclude linkage. From the pedigree analysis, a risk ratio greater than or equal to 2
associated with African ancestry could be excluded at an LOD score of minus 2 over all but
four regions on the genome: chromosome 3 (10–43 cM), chromosome 6 (37–82 cM),
chromosome 10 (112–115 cM), and chromosome 17 (3–19 cM). In comparison with the
earlier analysis of unrelated individuals only, the proportion of the genome excluded was
increased from 87% to 96%.

Discussion
Although family-based designs are more difficult to assemble than case-control collections,
many existing case collections in admixed populations are based on sib-pairs or other
nuclear pedigrees. Our calculations show that for admixture mapping with a given number
of affected individuals, affected sibships contribute more information than collections of
unrelated cases. The extent to which the genotyping workload is also reduced depends upon
whether parents and other unaffected pedigree members are genotyped also. In principle, the
affected sibship design is more robust than the unrelated case-only design to violations of
the assumptions on which the affected-only test for effect of locus ancestry depends. This is
because the affected-only test in an affected sibship uses not only the likelihood given
parental locus ancestry states (which depends upon the assumption that ancestry state
frequencies do not vary systematically across the genome within the admixed population
under study), but also the likelihood given the segregation indicators, which does not depend
upon any assumptions other than the absence of ancestry-related segregation distortion.
When five chromosomes showing signals of linkage are excluded, the distribution of
affected-only test statistics in this analysis is a close fit to the theoretical distribution under
the null, implying that there is no serious violation of model assumptions.

As in the previous analysis of unrelated individuals [Rybicki et al., 2011] an effect of
African ancestry on sarcoidosis risk is detected in the human leukocyte antigen (HLA)
region on chromosome 6p but the estimated ancestry risk ratio at this peak is only 1.75. As
the risk ratio between Africans and Europeans is much larger than this, other regions must
account for most of the excess risk of sarcoidosis associated with west African descent. In
this example, the main advantage of using the pedigree-based analysis is that we are able to
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exclude an African ancestry risk ratio of 2 or more over all but three regions on the genome
apart from chromosome 6p: 3p25.3–26.2, 3p24.3, 10q23.1, and 17p13.1–13.3. These regions
are now being investigated more intensively with tag SNP genotyping.

The main limitation of the modeling approach used in AD-MIXMAP and in similar
programs such as ANCESTRYMAP is that it assumes no linkage disequilibrium within the
ancestral populations. This limits the density of markers that can be used to about 1 per cM,
and this in turn generally limits the efficiency of the marker panel (proportion of information
extracted) to about 80% even with markers that have been selected to be informative for
ancestry. Alternative modeling approaches, such as those used in HAPAA [Sundquist et al.,
2008], LAMP/WINPOP [Pasaniuc et al., 2009], and HAPMIX [Price et al., 2009] can
extract more than 95% of information about locus ancestry using all the genotype data from
a dense panel of SNPs used for genome-wide association studies. HAPAA and HAPMIX
model the genotypes as generated by a mosaic of source haplotypes in the ancestral
populations, while LAMP and WINPOP use a sliding window to combine information about
locus ancestry from multiple SNPs. However, these programs have not been extended to
handle pedigree data. In principle, any of these programs could be used with ADMIXMAP
for a pedigree analysis by a two-stage procedure as follows. In the first step, the dense SNP
genotype data are used to infer locus ancestry states of each typed individual, ignoring the
pedigree data. In the second step, the inferred locus ancestry states (at a thinned subset of
marker loci) can be used as pseudo-genotypes (scored as 0, 1, 2 copies from the high-risk
population) in a pedigree analysis with ADMIXMAP with the corresponding ancestry-
specific “allele” frequencies set to be close to 0 or 1. By allowing the pseudo-markers to be
less than perfectly informative for locus ancestry (“alleles” are not differentially fixed in the
ancestral subpopulations), we allow for incorrectly imputed ancestry states. ADMIXMAP
can then generate score tests for linkage based on averaging over the joint distribution of
founder locus ancestry states and segregation indicators. Although this procedure has yet to
be demonstrated, it is possible in principle using existing software tools. It would not be so
straightforward to extend to admixed pedigrees the joint test developed by Pasaniuc et al.
[2011]. This test combines the likelihood given locus ancestry in affected individuals with
the likelihood given case-control genotypes conditioned on locus ancestry, assuming a
single causal variant with the same odds ratio for disease in each ancestral subpopulation. To
extend this argument to admixed pedigrees would require integrating over the joint posterior
distribution of founder genotypes and segregation indicators, rather than the joint posterior
distribution of founder locus ancestry and segregation indicators generated by AD-
MIXMAP. An alternative approach would be to use a mixed model to test for allelic
association, in which kinships are used to correct for stratification and relatedness [Astle and
Balding, 2009].
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Appendix A
The forward recursion of a HMM with hidden states h and observations x is given by

(A1)

where , and the

emission probability . Equation (A1) may be expressed in
matrix form as

(A2)

where [T(t)]ij = p (h (t+1) = i|h(t) = j) = at(j i), [b(t+1)]i = bt+1(j), [α(t+1)]j = αt+1(j), and a ○ b
denotes the element-wise product of vectors a and b. The computations in (A2) are
dominated by the matrix product Tα ~ O(n2), where T ∈ ℝn×m, α∈ℝn×1, and n is the
number of states of the latent variable h.

The combined model for linkage and admixture is a special case of a HMM, with two
properties that make it possible to implement a faster algorithm. First, the underlying
Markov process is generated by several parallel (marginally independent) Markov chains:
one for each segregation indicator and one for ancestry on each founder gamete. This is a
factorial hidden Markov model. Second, the transitions on each of these chains are generated
by independent Poisson arrival processes, so that the transition probabilities on each chain
have the form

(A3)

where  is the state of the ith chain at locus t,  is the probability of 0 arrivals between

loci t and t + 1, and  is the probability of state k in the stationary distribution of this chain.

For the founder ancestry chains,  is the proportion of ad-mixture from population k on
gamete i, and k, l ∈{1,…, ni} are ancestry states at loci t + 1 and t, respectively, For the

segregation indicator chains, the number of states ni = 2, and . Without loss of
generality, we will treat founder and segregation chains similarly, assuming that the
segregation variables are binary with equal proportions μ.
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Appendix B: Forward Recursion for Factorial HMMs

Notation

Let vector h(t) denote both hidden founder states  and indicators  at locus t, where
different components of h(t) may have different semantics and cardinality. The vector of the
corresponding observations will be given by x(t). For T loci, the total collection of
observations and hidden variables will be denoted as {x} and {h}, respectively.

If each latent variable hi forms a marginally independent Markov chain, the structure is a
factorial HMM. The joint likelihood is given by

(B1)

where the state variables are marginally independent, i.e.

(B2)

Here  corresponds to the j th component of the hidden vector h(t) at locus t, and

 defines the transitions of the j th chain. By analogy with (A2), the forward α-
recursion of the factorial HMM is defined by

(B3)

where , and each latent variable hj of the j th chain takes values in
{1, …, nj }. The transition probability matrix T in (B3) is given as

(B4)

where  is the effective cardinality of the state space, Ti ∈ ℝ ni ×ni is the transition
matrix for the ith chain, and A ⊗ B is the matrix Kronecker product1 (note the fixed
ordering of the states h). In general, computational complexity of (B3) is ~ O(N2), which is
prohibitively expensive in situations when the number of chains |h| is large.

For the considered construction (A3), it is easy to see that if we were able to treat each ith
chain independently of the others, the cost of computing Tiαi would be linear (rather than

1If A ∈ ℝm×n, B ∈ ℝ p×q, and C = A ⊗B, then C ∈ ℝmp×nq is the block matrix such that Ci j = Ai j B ∈ ℝp×q. It is clear that in
general A⊗B ≠ B ⊗ A.
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quadratic) in the number of states ni of each hidden variable hi. Indeed, each factor in (B4)
can be expressed as

(B5)

where I ∈ ℝni ×ni is the unit matrix, 1 ∈1 ni ×1 is the column vector of ones, and

(B6)

is the diagonal matrix of the admixture proportions for all ni states. Clearly, T defined
according to (B4) and (B5) is in general nonsymmetric, so that fast algorithms for the α-
recursion using Fourier transforms [Kruglyak and Lander, 1998] cannot be easily applied.

For a single variable h1 with

(B7)

the matrix product in the α-recursion (B3) would result in

(B8)

where , with the complexity of computing (B8) ~ O(n1) (rather than

 as one would expect for the general construction). Computational advantage may be
carried forward to the multifactor case (|h| > 1) by assuming a simple recursion on the
factors hi.

Algorithm: Define  to be the vector of joint probabilities spanning the complete state

space for variables . Also define  to be the vector of probabilities

spanning the space for hi–1,…, h1 when , so that

(B9)

(B10)

Here we have assumed the descending ordering of the variables hi,…, h1 and ascending
ordering of the states 1,…, ni for each variable, consistent with definitions in (B3) and (B7).
(This ordering is important, because Kronecker products in (B4) are in general
noncommutative.)
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The recursive algorithm is summarized in Algorithm 1. It is assumed that the algorithm has

access to  and  for all factors i = 1,…, |h|, states j = 1,…, ni, and loci t. At the top level

of recursion, one needs to execute ComputeLevel ( ,|h|), which returns Tα (t) ∈ ℝ N×1

with T defined according to (B4).

Algorithm 1

ComputeLevel ( , i)

{Compute Tα(t) recursively}

if i>1 then

 for all j=1: ni do

   , i−1)

 end for

  

  

else

   {see Equation (B8)}

end if

return res

The computations at the inner levels of the recursion are straightforward and analogous to
(B5)–(B8). Note that the vec operation concatenates its arguments to a single column vector.

Appendix C: Analysis of Computational Complexity
Algorithm 1 computes the product (B3) by assuming that at each ith level of the recursion,
variables h|h|,…, hi+1 remain fixed at some unknown values (set at the outer levels of the
recursion), and hi takes each of ni possible values. Thus, on the ith level of the recursion

tree, there are  computations of . By analogy with (B8), each call ComputeLevel

( , i–1) is linear in dimensionality of  and has the complexity of 
(indeed, summations, scalar products of the vectors, and vector-rearrangement operations
vec in the body of the recursion are linear in the size of the function’s argument). Thus, each

level i = 1, …, |h| of the recursion is , with the overall computational
costs scaling as O(|h|N) for each locus t.

Clearly, in the special case when hidden states of all variables hi have the same cardinality,
i.e. ∀i ∈ {1,…, |h|}.ni =n, the α-recursion will scale as O(|h|n|h|). For example, assume that
we are dealing with four founder chains and four ancestry states per gamete. When recursion

level i = 2, the algorithm would generate n3 calls to Compute Level ( , 1) for each
setting of h4, h3, and h2 = j ∈1,…, n, with each call costing O(n) according to Equation (B8).
For i = 3, there would be n2 calls costing O(n2) each. At the outer level, there would be n
O(n3) calls for each setting of h4, with the rearrangement operations costing O(n4), resulting
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in total cost of O(4 × 44) (instead of O(48) as in the general unstructured case). A more
detailed analysis of the number of summations, multiplications, and memory access
operations can be performed similarly.

Unless there is an exploitable factorial structure in the emissions p (x|h), probabilities p (h1,
…, h|h|, x) of the forward-recursion do not factorize in h. This means that despite the
marginal independence of the hidden variables, the chains cannot be handled independently.

This explains why the algorithm is more expensive than , and
motivates the recursion for the settings of the components of h(t). However, the resulting
algorithm appears to be more appealing than O N2 ≡ O ((Πi ni)2) in situations when N is
large, both in terms of speed and memory efficiency. For example, dealing with eight chains
of cardinality four would result in 216 effective states of the hidden vectors, and even storing
the transition matrix T ∈ ℝ216×216

 in memory could pose a challenge for modern desktops.
In contrast, construction (B4) and Algorithm 1 only need to deal with eight matrices Ti
∈ℝ4×4, and a vector α ∈R216×1.

Note that in situations when the number of states is small, the costs of performing the
recursion and/or memory operations may potentially compromise the efficiency of
Algorithm 1. The algorithm could potentially be improved by constraining the model

further, i.e. by assuming that some of the arrival probabilities  or admixture proportions

 are fixed for some of the latent chains. Even more efficient code could potentially be
produced by unrolling the recursion for some special case of interest, and improving
memory indexing for accessing p (hi = a, hi–1 =,…, h1 = {x}). A simple implementation of
the general algorithm checking the consistency of the computations in MATLAB®/Octave is
available online at http://homepages.ed.ac.uk/pmckeigu/admixmap/tools/
TransRecursion.tar.gz.
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Figure 1.
QQ plot of affected-only test statistics: model with unrelated individuals only in blue, model
with all pedigrees (including unrelated cases) in red.
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Figure 2.
Affected-only test statistics by map position: unrelated individuals only in blue, analysis
with pedigrees (including unrelated cases) in red.
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Figure 3.
Exclusion map: unrelated individuals only in blue, analysis with pedigrees (including
unrelated cases) in red.
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Table 1

Likelihood as function of ancestry risk ratio r, score and information (at r = 1 with respect to log r) given n
affected offspring and parental locus ancestry (0, 1, or 2 copies from high-risk population)

Parental ancestry Likelihood Score Information

0 copy

1 copy

2 copies

Genet Epidemiol. Author manuscript; available in PMC 2014 April 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McKeigue et al. Page 21

Ta
bl

e 
2

C
om

pa
ri

so
n 

be
tw

ee
n 

an
ce

st
ry

 r
is

k 
ra

tio
 e

st
im

at
es

 f
ro

m
 u

nr
el

at
ed

 c
as

es
 o

nl
y 

an
d 

es
tim

at
es

 f
ro

m
 th

e 
fu

ll 
A

M
A

SS
 d

at
as

et
 f

or
 th

e 
st

ro
ng

es
t a

ss
oc

ia
tio

ns
re

po
rt

ed
 b

y 
R

yb
ic

ki
 e

t a
l. 

[2
01

1]

C
yt

og
en

et
ic

 lo
ca

ti
on

db
SN

P
U

nr
el

at
ed

 o
nl

y
P

ed
ig

re
e

aR
R

a
95

%
 C

I
P

-v
al

ue
aR

R
95

%
 C

I
P

-v
al

ue

2p
13

.3
–2

q1
2.

1
rs

14
44

54
3

0.
69

0.
53

–0
.9

0
0.

00
6

0.
74

0.
61

–0
.9

1
0.

00
3

2q
35

.2
–q

36
.3

rs
46

74
65

9
0.

70
0.

54
–0

.9
2

0.
01

1
0.

86
0.

70
–1

.0
6

0.
16

4q
31

.2
1–

4q
34

.1
rs

15
30

04
4

1.
53

1.
15

–2
.0

5
0.

00
4

1.
22

0.
98

–1
.5

1
0.

07

5p
13

.2
–5

p1
3.

3
rs

35
39

7
1.

47
1.

13
–1

.9
1

0.
00

4
1.

28
1.

05
–1

.5
6

0.
02

5q
23

.1
–5

q3
1.

2
rs

30
53

3
0.

68
0.

52
–0

.8
9

0.
00

6
0.

79
0.

65
–0

.9
7

0.
02

6p
12

.1
–6

p2
4.

3
rs

28
44

46
3b

1.
97

1.
51

–2
.5

8
6 

×
 1

0−
7

1.
75

1.
43

–2
.1

6
9 

×
 1

0−
8

6q
23

.3
–6

q2
5.

2
rs

27
64

97
0.

68
0.

52
–0

.8
8

0.
00

4
0.

73
0.

60
–0

.8
9

0.
00

2

8p
11

.2
1–

8p
21

.3
rs

14
62

90
6

0.
67

0.
51

–0
.8

7
0.

00
3

0.
82

0.
67

–1
.0

0
0.

06

17
p1

3.
1–

17
p1

3.
3

rs
80

70
46

4
1.

70
1.

27
–2

.2
7

0.
00

03
1.

5
1.

21
–1

.8
6

0.
00

02

a A
nc

es
tr

y 
ri

sk
 r

at
io

.

b In
 th

e 
pr

ev
io

us
ly

 p
ub

lis
he

d 
an

al
ys

is
 o

f 
un

re
la

te
d 

in
di

vi
du

al
s 

on
ly

 [
R

yb
ic

ki
 e

t a
l.,

 2
01

1]
, t

he
 a

dd
iti

on
al

 3
2 

an
ce

st
ry

-i
nf

or
m

at
iv

e 
m

ar
ke

rs
 in

cl
ud

ed
 in

 th
is

 a
na

ly
si

s 
ha

d 
no

t b
ee

n 
ty

pe
d 

an
d 

rs
11

96
64

63
 h

ad
 th

e

hi
gh

es
t l

ev
el

 o
f 

st
at

is
tic

al
 s

ig
ni

fi
ca

nc
e 

in
 th

is
 r

eg
io

n 
(a

R
R

=
1.

90
; 9

5%
 C

I 
=

 1
.3

6–
2.

64
; P

 =
 2

 ×
 1

0−
4 )

.

Genet Epidemiol. Author manuscript; available in PMC 2014 April 01.


