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Abstract
Optical coherence tomography (OCT) is a three- dimensional optical imaging technique that can
be used to identify areas of early caries formation in dental enamel. The OCT signal at 850 nm
back-reflected from sound enamel is attenuated stronger than the signal back-reflected from
demineralized regions. To quantify this observation, the OCT signal as a function of depth into the
enamel (also known as the A-scan intensity), the histogram of the A-scan intensities and three
summary parameters derived from the A-scan are defined and their diagnostic potential compared.
A total of 754 OCT A-scans were analyzed. The three summary parameters derived from the A-
scans, the OCT attenuation coefficient as well as the mean and standard deviation of the
lognormal fit to the histogram of the A-scan ensemble show statistically significant differences (p
< 0.01) when comparing parameters from sound enamel and caries. Furthermore, these parameters
only show a modest correlation. Based on the area under the curve (AUC) of the receiver
operating characteristics (ROC) plot, the OCT attenuation coefficient shows higher discriminatory
capacity (AUC=0.98) compared to the parameters derived from the lognormal fit to the histogram
of the A-scan. However, direct analysis of the A-scans or the histogram of A-scan intensities using
linear support vector machine classification shows diagnostic discrimination (AUC = 0.96)
comparable to that achieved using the attenuation coefficient. These findings suggest that either
direct analysis of the A-scan, its intensity histogram or the attenuation coefficient derived from the
descending slope of the OCT A-scan have high capacity to discriminate between regions of caries
and sound enamel.
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I. Introduction
Preventive dentistry places emphasis on the non-surgical management of dental decay by
treating lesions with agents such as fluoride to arrest decay, remineralize the site and restore
the enamel integrity before it cavitates. A central requirement for this strategy to be effective
is a means to detect early lesions and monitor their status. Clinical radiography shows poor
sensitivity for detecting early, shallow lesions [1] therefore clinical inspection based on
visual examination and probing with a sharp dental explorer is generally relied upon. The
subjectivity of clinical inspection has led to an intense effort to develop objective detection
techniques [2], [3]. Optical coherence tomography (OCT) is one of the candidate methods
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being developed for the non-subjective detection of early caries [4]-[11]. The method is
based on quantitative measurements of the back-scattered light intensity as a function of
depth into the enamel layer. OCT can probe the enamel subsurface of the tooth with a spatial
resolution in the micrometer range. Previous OCT investigations at 1310 nm have involved
the use of polarization-sensitive OCT to remove the strong surface reflection to allow
imaging of early caries [6-7]. In this study we have used an 850-nm as the probing
wavelength of our OCT system. This wavelength was used as it is how our commercially
available system (Humphrey OCT-2000 system, Humphrey Systems, Dublin, CA, USA) is
configured. Studies in the literature have successfully used OCT in the 800 nm range to
investigate biological tissues including ocular [12] and dental tissues [5, 8]. It is widely
known that shorter wavelengths (i.e. 850 nm) are more strongly scattered within biological
tissues than light with longer wavelengths (i.e. 1310 nm). This fact ensures a maximum
probing depth of only 1-2 mm’s within the dental tissue for the former but demineralization
appears and develops within the first 300-400 micrometers of the enamel, region well within
the probing capabilities of an 850-nm OCT system. The enhanced scattering corresponding
to the 850-nm probing beam could provide better sensitivity to demineralization-induced
changes of the optical properties in enamel. Previously we observed that the OCT signal at
850 nm was more highly attenuated in healthy enamel than in carious lesions, and the
measured OCT attenuation coefficients from the two groups formed distinct statistical
populations [4], [8]. A similar approach of looking at the shape of the decending A-scan
signal was used by Mujat et al. who used optical path-length spectroscopy to investigate
incipient lesions [8]. Other groups have examined the OCT reflective loss of in regions of
demineralization and correlated the observations with quantitative light-induced
fluorescence [9].

While the OCT attenuation coefficient appears to have good discriminatory power for
detecting incipient caries, the descending slope of the OCT A-scan needs to be selected and
then fit to provide an attenuation coefficient. In the presence of noise there can be ambiguity
over which region of the OCT A-scan to select for the fitting. This introduces uncertainty in
the calculation of the attenuation coefficient. In this article we compare the discriminatory
power of the attenuation coefficient derived from the descending slope of the OCT A-scan
with parameters that summarize the shape of the complete A-scan. In addition we examine
the potential of using a multivariate classification strategy that directly exploits the entire A-
scan or histograms of the A-scans as input information. These latter methods do not require
user intervention to select the descending slope of the A-scan which makes them more
amendable to automation. The diagnostic potential of these methods are tested on a set of
extracted teeth that have been inspected by dental practitioners.

II. EXPERIMENTAL
A. Tooth samples & Clinical Assessment

Human molars and premolars (n=21) were acquired from consenting patients at the
University of Manitoba Dental Clinics who were undergoing extractions for orthodontic
reasons. Any remaining soft tissue on the teeth was removed by scaling and the teeth were
preserved in sterile filtered de-ionized water in order to prevent desiccation. Each ex vivo
tooth was independently assessed by two dental clinical investigators. Samples were
grouped into two categories: 1) caries-free samples were ones which had no visible
decalcification or demineralization; 2) teeth with early carious lesions had regions of
decalcification with intact surfaces and opacity of enamel that appeared as white spots when
teeth surfaces were dry. All samples were used for OCT measurements without further
treatment.
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B. Optical coherence tomography system
OCT images were recorded as described previously in [4] and [11] with a Humphrey
OCT-2000 system (Humphrey Systems, Dublin, CA, USA). The system uses a super-
luminescent light emitting diode with a central wavelength at 850 nm. The coherence length
of the source when measured in free-space was ~15 μm. This value has a role in determining
the axial resolution of the OCT system while the transverse resolution of this system was
~10 μm and is determined by the smallest rotation angle of the galvanometric mirror setup.
The embedded galvanometric mirror laterally moves the light beam from one point to the
next, steering the light beam to provide a succession of adjacent A-scans (depth scans).
Two-dimensional depth images (also known as B-scans) were formed by a straight-line
collection of adjacent A-scans. Each OCT image (or B-scan) consisted of 100 A-scans with
each A-scan being 500 pixels deep with a measured spatial resolution of 5.5×10−3 mm/pixel.
Each A-scan corresponds to one position of the focused beam on the tooth surface and the
distance between adjacent A-scans was 20 μm resulting in B-scans that were 2 mm wide.
An example of such an OCT image acquired from the distal surface of a tooth with a
demineralized area is presented in fig. 1A. Prior to starting the image acquisition, the light
beam was focused to the thinnest possible line on the sample surface with the samples
positioned such that the beam was nearly perpendicular to the surface across the width of the
scanned region, i.e. 2 mm. The total optical power on the sample was 750 μW. Samples
were imaged in an upright position by securing the apical root portion of the tooth to a
substrate with dental rope wax.

C. OCT image acquisition and data processing
OCT images were collected from regions of healthy enamel and regions of incipient (non-
cavitated) carious lesions. Images were acquired from the proximal surfaces (distal and
mesial surfaces) which are found between adjacent teeth. Because the focal depth of the
sample beam was almost an order of magnitude greater than the distances (generally less
than 2 mm) probed within the teeth, the OCT beam could be regarded as being collimated
along the extent of each individual A-scan. This experimental setup minimized the effect
focusing could have on the OCT signal intensity recorded as a function of optical distance
within the sample.

A standardized procedure was established in order to ensure experimental repeatability of
the OCT measurements. This procedure included fixing OCT system parameters, sample
positioning as well as ensuring normality of the probe beam to the scanned tooth surface.
From each tooth surface, triplicate sets of images were obtained.

The acquired OCT images were corrected for the inherent curvature of the tooth surface by
aligning the reflection peak from the enamel/air interface in each A-scan along the same
horizontal pixel line in the two-dimensional image. Having aligned images enable the use of
various filtering methods to improve the image quality. The spotty pattern observed across
the B-scan shown in fig. 1A is due in part to coherent speckle noise. This type of noise is
inherent to all interferometric imaging methods. In the present study, multiple scattering
within the tooth matrix generates speckle in the corresponding OCT image as a result of part
of the detected light experiencing changes in travel distance relative to the ballistic path as it
interacts with the tooth matrix [13], [14]. Quenching speckle noise is necessary in order for
OCT images to provide a reliable morphological representation of a highly scattering matrix
[15], [16]. An adaptive Frost filter [17] with a 1×5 exponentially damped convolution kernel
was used on all OCT images acquired for this study in order to reduce the coherent speckle
noise. The filtering was conducted along the horizontal direction, i.e. parallel to the tooth
surface. The filter smoothes the image by adapting itself to local statistics without removing
existing edges or sharp features. This method involves computing a set of weight values for

Sowa et al. Page 3

J Biophotonics. Author manuscript; available in PMC 2013 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



each pixel within the filter window surrounding each pixel. The effect of this smoothing
technique on OCT images can be observed in fig. 1B where the speckle intensity is reduced
and the extent of the carious lesion can be better visualized in comparison to fig. 1A, which
shows the raw OCT image.

D. A-scans and derived summary parameters
Fig. 2A exemplifies two individual A-scans selected from a filtered image. Prior to
analyzing these signals, the A-scans were scaled to have intensity values ranging from 0 to
1. The intensity normalized A-scans were analyzed directly and compared to two other
approaches, where parameters were derived directly from the A-scans. One procedure (fig.
2A) involves fitting an exponential function to the descending tail of the OCT A-scan [4].
The attenuation coefficient (α) corresponding to the exponential fit (i.e. the slope of the A-
scan represented on a logarithmic scale) can be evaluated and comparisons can be made
between values corresponding to OCT signal attenuation in sound and demineralized
enamel.

The rate of the decaying OCT signal is one of the parameters also reflected in the histogram
of the A-scan signal. Each histogram was determined by binning the intensity values from
the first 200 points of the normalized OCT A-scan into 12 bins spanning the intensity range
from 0 to 1. Histograms were generated by the Matlab function, hist (http://
www.mathworks.com). As an asymmetric, unimodal distribution, the lognormal distribution
provides a simple functional form that suitably fits the histograms obtained from the A-scans
probing enamel (see fig. 2B).

(1)

The lognormal fit to the counts, K(x), of the histogram of an OCT A-scan summarizes the
distribution of the signal in terms of a mean (μ) and standard deviation (σ). The lognormal
mean of the histogram increases for a more slowly decaying OCT A-scan while for a given
mean, the skewness of the histogram increases with σ and reflects the shape of the
distribution. The mean (μ) and the standard deviation (σ) of lognormal fit to the histogram
of the A-scan provides two summary parameters that we investigated as diagnostic markers
for the presence of caries.

The Matlab function, lognfit, was used to return maximum likelihood estimates of the mean
(μ) and standard deviation (σ) of the lognormal fit to the histogram. The chi-square
goodness-of-fit test was used to establish if the histograms obtained from OCT A-scans
could be adequately represented by a lognormal distribution. Chi-square test statistic was
generally less than the threshold chi-square value of the 0.05 significance level, χ2(0.05, 9)
= 16.9, and always less than the threshold value for the 0.01 significance level, χ2(0.01, 9) =
21.7, suggesting that the lognormal distribution modeled the histograms reasonably well.

E. Simulated A-scans for testing repeatability and susceptibility to noise
Monte Carlo methods were used to generate simulated OCT A-scans free from speckle
noise. The freely available MPI (message passing interface – Intel) library was used on a
Linux cluster for our Monte Carlo simulations. A C++ implementation of the Mersenne
Twister with a period length of (2^19337) −1 provided pseudo-random numbers for launch,
scattering and displacement operation. The random number generator for each process was
seeded with a unique value based on the rank of the process. A total of eighteen CPU’s
(AMD Opteron Processor 250) were used in our Monte Carlo simulations.
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A-scans from semi-infinite homogeneous isotropic (g = 0) and strongly forward (g= 0.9)
directed scattering media with a scattering coefficient of μs = 50 cm−1 were simulated. Each
photon ray was launched from a circular aperture whose radius corresponded to the physical
dimension of the focused beam of the OCT system used in our studies. Photons were
launched with spatial uniform density from the aperture and were given initial direction
cosines values of (0,0,1) - the axis system was arranged so that the x-y plane lies in the
source plane (i.e. parallel to the sample surface) and the positive z-axis is perpendicular to
this plane, along the propagation direction of the probe beam. The photons counted as being
detected were back-reflected and exited the scattering medium through the same circular
aperture that defined the photon source. To obtain a simulation of an A-scan, the number of
photons detected was binned as a function of distance traveled in the scattering medium. The
maximum of the resulting unimodal distribution was normalized to have a value of one.

In order to test the repeatability of the procedure to extract the summary parameters from
OCT A-scans with noise, varying levels (mean = 0, standard deviation = 0.1, 0.15 and 0.2)
of random Gaussian noise were added to the Monte Carlo-simulated A-scans. The
attenuation coefficient (α), the mean (μ) and the standard deviation (σ) of the lognormal fit
to the histogram were compared for the simulated A-scans with varying levels of Gaussian
noise.

F. Statistical analysis
Matched OCT attenuation coefficients and lognormal fit parameters were obtained from a
total of 754 A-scans, with 555 A-scans from regions of sound enamel while 199 were from
sites identified as having an incipient caries lesion. Scatter plots and Pearson product-
moment correlation coefficients were used to examine the strength of the linear relationship
between the three summary parameters.

Student’s t-tests were performed to test the null hypothesis that the means of the summary
parameters were equal for healthy and carious regions of enamel. A p<0.05 was used to
reject the null hypothesis.

Receiver operating characteristics (ROC) curves and the area under the curves (AUC) were
used to compare the discriminatory capacity of the summary parameters as well as
multivariate classification approaches using the normalized A-scan directly and the
histogram of the OCT A-scan. ROC curves are a graphical method that summarizes the
diagnostic capacity of a marker to distinguish between two sample populations [18]-[20].
The sensitivity and specificity of a diagnostic marker is often cited as a quality measure of
the marker. In order to calculate the sensitivity and the specificity for a test, a decision
threshold must first be specified. The ROC curve is an extension of this procedure where the
sensitivity and specificity of the marker is calculated as the decision threshold is varied
between −∞ to ∞. The ROC curve plots the sensitivity of the test (true positive fraction)
versus the 1 – specificity (false positive fraction). The area under the ROC curve, usually
abbreviated AUC, provides a measure of the diagnostic discrimination of a diagnostic test.
The ROC curve for a test with no discriminatory power lies along the diagonal plot and has
an AUC = 0.5. A perfect test has an AUC=1. The greater the AUC, the better overall
discriminatory capacity of the test. Therefore the AUC is often used to indicate the quality
of a marker for a diagnostic test. Nonparametric ROC curves were generated using a linear
scan algorithm [21] and nonparametric AUC was calculated using the Mann-Whitney U test
[18]-[20].

When determining the discriminatory capacity of the individual summary parameters,
attenuation coefficient (α) of the A-scan as well as the mean (μ) and standard deviation (σ)
of lognormal fit to the histogram of the A-scan, the classification models are univariate with
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no adjustable model parameters. However, the classification models directly using the A-
scans or the histogram of A-scan intensities or a combination of summary parameters are
multivariate in nature and require training to optimize model parameters followed by testing
of the model to ascertain the diagnostic value of the trained model. Support vector machines
(SVM), regularized linear classifiers that try to find a hyperplane that separates two classes
with widest margin [22], were used for multivariate classification. Linear SVM, as
implemented in a Matlab toolbox OSU-SVM (http://svm.sourceforge.net), was used for two-
class multivariate classification. A-scans, histograms of A-scans or a combination of the
summary parameters derived from A-scans labeled as arising from healthy enamel or a
region of carious enamel were used to train SVM models as well as for testing the predictive
ability of the models. A sample-out bootstrap cross validation strategy was used to train and
test SVM models. This strategy randomly selects data from a subset of the teeth investigated
and develops a surrogate classification model from this subset of data. The predictive ability
of this surrogate model was tested using the data from the teeth that were excluded from
building the surrogate model. A total of 2000 sample-out bootstrap samples were generated
and the general performance of the model is inferred by summing the test performance over
the surrogate models. Nonparametric ROC curves and AUC values were determined from
the test set samples ranked according to SVM prediction values. This cross-validation
procedure ensures that all the data is used for both training and testing of the model but each
surrogate model has an independent test and training data set thereby providing a nearly
unbiased estimate of the classifier error. The method also ensures that data from each tooth
exclusively appears in the test or training set over the various iterations of cross-validation.
For each of the multivariate models the mean AUC and the corresponding 95% confidence
intervals of the AUC were determined using the AUCs calculated over the 2000 test
partitions. For comparison with the multivariate models, percentile bootstrap confidence
intervals were calculated each of the univariate models again using 2000 bootstrap samples.

III. RESULTS AND DISCUSSION
A. Diagnostic value of OCT A-scans and parameters derived from A-scans

Fig.1A is a representative image of an OCT 2-dimensional depth B-scan taken across a
region of carious enamel surrounded by sound enamel. In addition to the back-scattering of
light at the air-enamel interface there is significant subsurface light back-scattering at the
lesion site compared to the back-scattering occurring in sound enamel (see right edge of the
figure). Although there is visual detail in the morphological information obtained from this
image, from a clinical perspective it is useful to have parameters that can be used to non-
subjectively discriminate sound enamel from early incipient caries. Fig. 2A presents two
representative OCT A-scans at 850 nm with one A-scan obtained from a sound region and
the second A-scan from a site with incipient caries. There are distinct differences between
depth scans crossing sound and scans crossing demineralized regions. Compared to the
sound region, there is significant OCT signal penetrating further into the tooth matrix in
demineralized enamel with the A-scan showing a lower rate of attenuation with optical
depth. This translates into a smaller slope for the exponential fit of the descending portion of
the A-scan (fig. 2A) as well as a wider histogram of the A-scan profile (fig. 2B). The form
of the A-scan or the histogram of the A-scan can be investigated directly. In addition, the
difference in signal attenuation as captured by the attenuation coefficient (α) or wider
histogram of the A-scan as captured by the mean (μ) and standard deviation (σ) of the
lognormal fit to the histogram can potentially be used to identify incipient demineralized
regions beneath otherwise intact tooth surfaces.

The population means between the sound and carious regions of enamel are statistically
significantly different at p<0.01 for all three summary parameters (α, μ, σ) of the OCT A-
scan. The linear relationship between these summary parameters was examined using the
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Pearson product-moment correlation coefficient (see Table 1). None of the summary
parameters are highly correlated, with the attenuation coefficient and the mean of the
lognormal fit to the histogram having the highest absolute correlation (ρ = −0.53). The
modest correlation between the summary parameters suggests that they may each have a
different capacity to act as diagnostic markers for detection of demineralized regions.

Fig. 4 plots the non-parametric ROC curves for the three summary parameters derived from
the OCT A-scans acquired at 850 nm as well as the ROC curves for three multivariate
classification models: a) where the mean (μ) and standard deviation (σ) of the lognormal fit
to the histogram are considered in concert, b) where the histogram vector of the normalized
A-scan is used as input to the classification, and c) where the normalized A-scan is directly
classified. The AUCs for the various ROC curves are listed in Table 2. For comparison the
diagonal line on the ROC plot represents the ROC curve for a random diagnostic test, i.e.
one of no diagnostic utility (AUC=0.5). The ROC curves for all summary parameters are to
the left of the diagonal line and have an AUC > 0.5 indicating that they are better than
random classifiers. The ROC curve for the attenuation coefficient is closest to the left and
top borders of the plot with an AUC=0.992 suggesting that for this parameter the
distributions for caries and sound enamel are particularly well separated.

Taken individually, the summary parameters extracted from the lognormal fit to the
histogram show a much poorer capacity to discriminate between healthy and carious lesions
compared to the attenuation coefficient. The mean (μ) and standard deviation (σ) of the
lognormal fit have AUCs of 0.760 and 0.703, respectively. When combined, the diagnostic
capacity of the lognormal fit parameters improves considerably, AUC=0.841, but does not
attain the discriminatory capacity of the attenuation coefficient. The skew to the left upper
quadrant of the ROC curves associated with the parameters from the lognormal fit,
individually or in combination, indicate that they have the potential to be sensitive indicators
of caries but offer poor specificity.

Using the binned intensity values of the histogram directly as input to the classifier shows a
significant improvement in the discrimination (AUC=0.961) of caries from healthy enamel
compared to the use of the summary parameters derived from the lognormal fit to the
histogram. The ROC curve also shows that the classifier based on the A-scan histograms is
capable of being both highly sensitive and specific. For example, selecting a threshold that
gives 97% sensitivity for detecting caries, the classifier is 84.5% specific. These results
suggest that diagnostic information on the state of the enamel is latent within the histogram
of A-scan intensities but that the parameters derived from the lognormal fit to the histogram
only poorly capture this diagnostic information. Fitting the histograms with a more complex
distribution may provide summary parameters with better capacity to discriminate between
healthy and carious enamel. However, using the histogram vector as input to a multivariate
classifier appears to be a suitable and simple alternative.

Similarly, classifying the normalized A-scans directly appears to be a plausible strategy that
yields the same diagnostic performance as using the histograms of the A-scans. The two
ROC curves are virtually superimposible with nearly the same AUC

B. Noise impunity of summary parameters derived from OCT A-scans
As discussed above, it appears that various parameters can potentially serve as diagnostic
markers that can be extracted from the OCT images for distinguishing sound enamel from
demineralized regions. We explored the possible advantages and limitations that would
guide the choice for the most suitable parameter. One possible factor is the noise level of the
OCT A-scans. Fig. 3 displays the variation in the OCT attenuation coefficient (α) as well as
the mean (μ) and standard deviation (σ) of the lognormal fit to the histogram of the OCT A-
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scans where varying levels (using standard deviations of 0.1, 0.15 and 0.2) of random
Gaussian noise were added to simulated A-scans. In order to compare the noise
characteristics of the three summary parameters, the standard deviation was expressed as a
percentage of the mean value of the summary parameter for a particular level of added
noise. The OCT attenuation coefficient as well as the mean (μ) of the lognormal fit to the
histogram show a greater sensitivity to noise compared to the parameter σ that summarizes
the width of the histogram fit to the A-scan. In addition, on average, the μ parameter
increases with increasing A-scan noise. These simulation results suggest that attenuation
coefficient and μ summary parameters derived from OCT A-scans are less robust to noise
compared to the standard deviation (σ) of the lognormal fit to the histogram of the OCT A-
scans.

IV. Conclusion
OCT imaging at 850 nm is being explored as a method for detecting early caries. When
visually comparing OCT images (B-scans) of enamel, the OCT signal is highly attenuated in
regions of sound enamel while there is significantly more subsurface OCT back-scattered
signal from demineralized regions. We attribute this to the higher porosity of demineralized
enamel [23]. To quantify this observation we have analyzed the OCT signal as a function of
depth into the enamel. The diagnostic potential of using the A-scan vector, the histogram of
the A-scan intensities and three summary parameters (α, μ, σ) derived from the A-scan were
compared. Our studies also examine the descending A-scan profile to derive the attenuation
coefficient of the OCT signal that quantifies the OCT signal as a function of depth into the
enamel subsurface. We observe that this value is higher in sound enamel since the intact
tissue quenches the OCT signal, bringing it to the noise floor, within a shorter depth when
compared to the OCT signal from more porous demineralized regions. Mujat et al. also
observed that deeper lesions have greater optical path-length as compared to shallow lesions
[8]. However, in contrast, they found that sound enamel had an even larger optical path-
length. It is unclear why their trend was observed given their explanation for the slower
decay in deeper lesions. Thus our results might seem contradictory to those reported by
Mujat et al. One possible source for this discrepancy is the different wavelengths used in the
studies. Mujat et al’s study used a low coherence interferometer operating at 1300 nm while
our study used a 830 nm source. The optical properties of enamel will differ between these
two wavelength ranges. Furthermore, it should be highlighted that the OCT attenuation
coefficient parameter, used in our study should not to be confused with the scattering
coefficient of the tissue.

The OCT attenuation coefficient derived from the descending slope of the A-scan has an
excellent capacity to discriminate between caries and healthy enamel and has a moderate
sensitivity to the level of noise of the A-scan. The noise sensitivity seems related to the
consistency in selecting the starting and ending points of the descending slope of the A-scan
for the fit. The parameters that characterize the lognormal fit to the histogram of the A-scan
intensities have the potential of being sensitive indicators for caries but convey poor
specificity. In addition reliably extracting the mean parameter for the lognormal fit from
noisy A-scans is problematic. These features detract from the utility of using the lognormal
parameters of the A-scan histogram or their combination as sensitive and specific markers
for early caries.

An alternative and promising strategy uses the histograms of the normalized A-scans or the
normalized A-scans directly as inputs to a multivariate classifier. These approaches have
comparable diagnostic performance but show a marginally inferior diagnostic performance
compared to the attenuation coefficient.
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Our results indicate that when carefully chosen, the attenuation coefficient has excellent
capacity to discriminate between sound and carious regions of human dental enamel.
However, determining the attenuation coefficient requires that the descending slope of the
A-scan must be first selected and then fitted thereby imparting a degree of subjectivity in
determining its value particularly when faced with noisy A-scans. Thus corroboration of the
diagnosis by the direct analysis of the A-scan or its intensity histogram may be beneficial
and more amenable to automation.

Acknowledgments
We thank the Graduate Orthodontic Program and the Oral Surgery Clinic at the Faculty of Dentistry, University of
Manitoba for assisting in tooth sample collection for this study. Also we thank Dr. Cecilia Dong (Department of
Restorative Dentistry, University of Manitoba, Winnipeg, MB) and Dr. Blaine Cleghorn (Department of Dental
Clinic Sciences, Dalhousie University, Halifax, NS) for assisting us with the clinical inspection of the samples.

Funding was provided through a grant from the U.S. National Institutes of Health-National Institute of Dental and
Craniofacial Research (R01DE017889).

References
[1]. Dodds MW. Nat. Med. 1996; 2:283. [PubMed: 8612224]

[2]. Hall A, Girkin JM. J. Dent. Res. 2004; 83:C89–C94. [PubMed: 15286130]

[3]. Stookey GK, Gonzalez-Cabezas C. J. Dent Educ. 2001; 65:1001–1006. [PubMed: 11699969]

[4]. Popescu DP, Sowa MG, Hewko MD, Choo-Smith L-P. J. Biomed. Opt. 2008; 13:054053.
[PubMed: 19021433]

[5]. Baumgartner A, Dichtl S, Hitzenberger CK, Sattmann H, Robl B, Moritz A, Fercher AF, Sperr W.
Caries Res. 2000; 34:59–69. [PubMed: 10601786]

[6]. Fried D, Xie J, Shafi S, Featherstone JD, Breunig TM, Le C. J. Biomed. Opt. 2002; 7:618–627.
[PubMed: 12421130]

[7]. Ngaotheppitak P, Darling CL, Fried D. Lasers Surg. Med. 2005; 37:78–88. [PubMed: 15889402]

[8]. Mujat C, van der Veen MH, Ruben JL, ten Bosch JJ, Dogariu A. Appl. Opt. 2003; 42:2979–2986.
[PubMed: 12790448]

[9]. Amaechi BT, Podoleanu A, Higham SM, Jackson DA. J. Biomed. Opt. 2003; 8:642–47. [PubMed:
14563202]

[10]. Ko AC-T, Choo-Smith L-P, Hewko M, Leonardi L, Sowa MG, Dong CCS, Williams P, Cleghorn
B. J. Biomed. Opt. 2005; 10:031118. [PubMed: 16229643]

[11]. Sowa MG, Popescu DP, Werner J, Hewko MD, Ko AC-T, Payette J, Dong CCS, Cleghorn B,
Choo-Smith L-P. Anal. Bioanal. Chem. 2007; 387:1613–1619. [PubMed: 17082878]

[12]. Wollstein G, Paunescu LA, Ko TH, Fujimoto JG, Kowalevicz A, Hartl I, Beaton S, Ishikawa H,
Mattox C, Singh O, Duker J, Drexler W, Shuman JS. Ophthalmol. 2005; 112:229–37.

[13]. Schmitt JM, Knüttel A, Yadlovski M, Eckhaus MA. Phys. Med. Biol. 1994; 39:1705–1720.
[PubMed: 15551540]

[14]. Karamata B, Laubscher M, Leutenegger M, Bourquin S, Lasser T, Lambelet P. J. Opt. Soc. Am.
A. 2005; 22:1369–1379.

[15]. Bashkansky M, Reintjes J. Opt. Lett. 2000; 25:545–547. [PubMed: 18064106]

[16]. Popescu DP, Hewko MD, Sowa MG. Opt. Comm. 2006; 269:247–251.

[17]. Frost VS, Stiles JA, Shanmugan KS, Holtzman JC. IEEE Trans. Pattern Anal. Mach. Intell. 1982;
PAMI-4:157–166. [PubMed: 21869022]

[18]. Zhou, X-H.; Obuchowski, NA.; McClish, DK. Statistical Methods in Diagnostic Medicine.
Wiley-Interscience; New York: 2002.

[19]. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. J. Biomed. Inform. 2005; 38:404–415.
[PubMed: 16198999]

[20]. Brown CD, Davis HT. Chemom. Intell.t Lab. Syst. 2006; 80:24–38.

[21]. Provost F, Fawcett T. Mach. Learn. 2001; 42:203–231.

Sowa et al. Page 9

J Biophotonics. Author manuscript; available in PMC 2013 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[22]. Vapnik, V. The nature of statistical learning theory. Springer-Verlag; New York: 1999.

[23]. Robinson C, Shore RC, Brookes SJ, Strafford S, Wood SR, Kirkham J. Crit. Rev. Oral Biol.
Med. 2000; 11:481–495. [PubMed: 11132767]

Sowa et al. Page 10

J Biophotonics. Author manuscript; available in PMC 2013 August 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
A) A representative two-dimensional OCT image (B-scan) at 850 nm showing part of the
distal region of a tooth with incipient demineralization. B) Result of applying an adaptive
Frost filter with a 1×5 exponentially damped convolution kernel for smoothing the speckle
noise of the B-scan shown in (A).
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Fig. 2.
A) Representative A-scan depth profiles from regions of sound enamel and carious enamel.
The fitting the exponential decaying slope of the OCT A-scans to derive the optical
attenuation coefficient parameter (α) are illustrated with the solid lines. (a.u. = arbitrary
units)
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B) Histograms of the A-scan signal from sound and carious enamel along with the
lognormal fit to the histogram.
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Fig. 3.
Analysis of the sensitivity of the summary parameters (α, μ, σ) to noise in the OCT A-scan.
Random Gaussian noise (standard deviations of 0.1, 0.15 and 0.2) was added to simulated
A-scans and the relative repeatability of OCT attenuation coefficient (α) as well as the mean
(u) and standard deviation (σ) of the lognormal fit to the histogram of the OCT A-scan were
determined.
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Fig. 4.
Receiver operating characteristics (ROC) curves showing the capacity of using the OCT A-
scan and various parameters derived from the A-scan to discriminate between regions of
healthy and carious enamel.
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Table 1

Pearson product moment correlation coefficients Pearson product moment correlation coefficients between
three summary parameters, the attenuation coefficient (α) as well as the mean (μ) and standard deviation (σ)
of the lognormal fit to the histogram of the A-scan derived from 850 nm OCT A-scans of human dental
enamel.

μ Σ α

μ 0.24 −0.53

σ 0.24 −0.26

α −0.53 −0.26
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Table 2

Area under the curve (AUC) of the receiver operating characteristics (ROC) curve for the OCT A-scan and
various parameters derived from the A-scan to discriminate between regions of healthy and carious enamel.
Percentile bootstrap 95% confidence interval (CI) reported.

Model parameter(s) Model dimension AUC Lower 95% CI Upper 95% CI

α 1 0.992 0.985 0.996

μ 1 0.760 0.713 0.807

σ 1 0.703 0.655 0.747

μ and σ 2 0.841 0.752 0.925

histogram 12 0.961 0.924 0.990

A-scan 200 0.962 0.910 0.980
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