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Abstract

Background: Echinococcosis is a complex zoonosis that has domestic and sylvatic lifecycles, and a range of different
intermediate and definitive host species. The complexities of its transmission and the sparse evidence on the effectiveness
of control strategies in diverse settings provide significant challenges for the design of effective public health policy against
this disease. Mathematical modelling is a useful tool for simulating control packages under locally specific transmission
conditions to inform optimal timing and frequency of phased interventions for cost-effective control of echinococcosis. The
aims of this review of 30 years of Echinococcus modelling were to discern the epidemiological mechanisms underpinning
models of Echinococcus granulosus and E. multilocularis transmission and to establish the need to include a human
transmission component in such models.

Methodology/Principal Findings: A search was conducted of all relevant articles published up until July 2012, identified
from the PubMED, Web of Knowledge and Medline databases and review of bibliographies of selected papers. Papers
eligible for inclusion were those describing the design of a new model, or modification of an existing mathematical model
of E. granulosus or E. multilocularis transmission. A total of 13 eligible papers were identified, five of which described
mathematical models of E. granulosus and eight that described E. multilocularis transmission. These models varied primarily
on the basis of six key mechanisms that all have the capacity to modulate model dynamics, qualitatively affecting
projections. These are: 1) the inclusion of a ‘latent’ class and/or time delay from host exposure to infectiousness; 2) an age
structure for animal hosts; 3) the presence of density-dependent constraints; 4) accounting for seasonality; 5) stochastic
parameters; and 6) inclusion of spatial and risk structures.

Conclusions/Significance: This review discusses the conditions under which these mechanisms may be important for
inclusion in models of Echinococcus transmission and proposes recommendations for the design of dynamic human models
of transmission. Accounting for the dynamic behaviour of the Echinococcus parasites in humans will be key to predicting
changes in the disease burden over time and to simulate control strategies that optimise public health impact.
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Introduction

Echinococcosis is a parasitic disease caused by the larvae of fox

and dog cestode worms of the genus Echinococcus. It is a complex

zoonosis that has domestic and sylvatic lifecycles, and a range of

different intermediate and definitive host species. The two most

clinically relevant species are E. granulosus and E. multilocularis,

which cause cystic and alveolar echinococcosis respectively.

Transmission of both is influenced by climate change and

anthropogenic environmental factors, mediated by changes in

animal population dynamics, spatial overlap of competent hosts

and the creation of favourable weather conditions for egg survival

[1–4]. Humans are incidental hosts and, in most cases, do not

contribute to continuance of the parasite life cycle, except under

unique circumstances [5]. However, they bear the burden of

serious morbidity and mortality as well as social and economic

consequences [6–8]. There is an effective vaccine for use in sheep

against E. granulosus [9], but there is currently no human vaccine,

and the disease is not readily detected until it is at an advanced

stage without expensive public health screening comprising

imaging studies (e.g. ultrasound) [10].

There is a lack of evidence for effective and sustainable control

strategies for E. granulosus or E. multilocularis across regions that vary

in endemicity and transmission conditions. Lessons learned from

previous infectious disease elimination campaigns indicate that

complex diseases cannot be successfully eliminated using a one-
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size-fits-all approach, but rather, that control strategies should be

tailored to local contexts [11,12]. The complexities of echinococ-

cosis, the diverse environmental conditions that support its

transmission, and the sparse evidence on the effectiveness of

control strategies in diverse settings, provide significant challenges

for policy makers attempting to make informed control decisions.

Such issues have given rise to the popularity of mathematical

modelling to simulate control packages under locally specific

transmission conditions. Importantly, modelling negates the

expense of trialling scenarios in the field and provides evidence

for optimal timing and frequency of phased control interventions.

Model output can also be integrated with economic analyses to

determine and compare the cost-effectiveness of different control

and elimination interventions, alone and as part of an integrated

approach.

Early models of E. granulosus and E. multilocularis [13,14]

described the basics of transmission and these have since been

adapted based on advances in epidemiological understanding

arising from field data from Australia, New Zealand, Europe, the

Middle East and central Asia [15]. Models can vary from simple

representations of the system to detailed epidemiological frame-

works with large numbers of parameters [16]. To date, Echinococcus

transmission models have focussed primarily on the life cycle in

animal definitive and intermediate hosts and have not included the

transmission pathway to humans. Although humans rarely

contribute to transmission [5] they are indeed a host and valuable

insight into the impact of interventions targeting both definitive

and intermediate hosts can be gained by their inclusion into

Echinococcus transmission models. While the risk of echinococcosis

in humans and the impact of control interventions (targeting

definitive hosts) on this risk have indeed been discussed in a

number of papers detailing animal models of E. multilocularis – it is

noteworthy that this has not been done for E. granulosus – this risk is

based on the assumption that the number of human cases is

proportional to the quantity of parasite eggs deposited in the

environment [17–19]. The assumption that human risk increases

linearly with increased prevalence of infected foxes is acknowl-

edged to be an over simplification [18], although this is still an

important indicator of risk. These E. multilocularis risk models also

do not account for heterogeneous human exposure arising from

varying spatial overlap of hosts, or socioeconomic and environ-

mental conditions affecting subpopulations of humans in endemic

areas. Furthermore, they are unable to simulate preventive

interventions targeting humans and hence the impact of these

on infection and subsequent morbidity and mortality.

Developing echinococcosis transmission models incorporating

both animal and human hosts will be important for exploring the

dynamics of transmission to humans [20], for predicting changes

in the human disease burden over time, and will be essential for

public health planning of control strategies. Much progress has

been made over the last 30 years in modelling the lifecycle of

Echinococcus spp. in animal hosts. The aims of this review were to

discern the epidemiological mechanisms underpinning models of

E. granulosus and E. multilocularis transmission and to propose

recommendations for the future design of dynamic models of E.

granulosus and E. multilocularis transmission that incorporate the

human host.

Methods

Search strategy
A search was conducted of all relevant articles published up

until July 2012, identified from the PubMED and Web of

Knowledge databases. Key terms used in the search strategy

included: ‘mathematical model OR models OR computer model

OR decision support system OR decision tree’ AND ‘echinococ-

cus OR echinococcosis OR E. granulosus OR E. multilocularis.’ The

search was limited to English language publications. Review of

bibliographies of papers was also carried out to ensure complete-

ness of inclusion of all relevant mathematical models.

Study selection
Papers eligible for inclusion were those describing the design of

a new model, or modification of an existing mathematical model

of E. granulosus or E. multilocularis transmission. Papers were

excluded if they described: statistical risk modelling rather than

dynamic, mechanistic modelling of Echinococcus spp. lifecycles;

processes at a microbiological level with focus on an individual

component of the life cycle; generic mathematical models of

parasitic disease transmission; or if they described the implemen-

tation of an existing model without recommendations for

modification of the model. In addition, review papers of models

described elsewhere were excluded. The process of study selection

is summarised in Figure 1. Appendices S1 and S2 provide

summaries of E. granulosus and E. multilocularis models included in

this review and their specific assumptions.

Results and Discussion

A total of 13 eligible papers were identified, five of which

described mathematical models of E. granulosus and eight that

described E. multilocularis transmission. These are predominantly

population-based compartmental models although some authors

have explored individual-level transmission dynamics. The

majority of models identified were fitted to field data on disease

prevalence in host species. However, two E. multilocularis models

[21,22] focussed on parasite biomass (i.e. compartments of the

model represent eggs in the environment, protoscoleces in small

mammals, and worms in foxes) rather than the infection status of

host populations. This was reported to be valuable for exploring

the components of the life-cycle of E. multilocularis that occur in the

environment, as well as in definitive and intermediate hosts [22].

While the modelling of parasite biomass has not been carried

out for E. granulosus to date, this may be relevant given the

possibility that more than one dog may feed on an infected sheep

and the probability of each becoming infected will be influenced

not only by the number of cysts but by the number of

Author Summary

Echinococcosis is a complex zoonosis for which there is
sparse evidence on the effectiveness of control strategies
in diverse settings. This presents significant challenges for
the design of effective public health policy against this
disease. Mathematical modelling is a useful tool for
simulating control packages under locally specific trans-
mission conditions to inform optimal timing and frequency
of phased interventions for cost-effective control of
echinococcosis. This systematic review of 30 years of
Echinococcus modelling discusses the importance of six
key epidemiological mechanisms underpinning models of
Echinococcus granulosus and E. multilocularis transmission
and establishes the need to include a human transmission
component. Accounting for the dynamic behaviour of the
Echinococcus parasites in humans will be key to predicting
changes in the disease burden over time and to simulate
control strategies that optimise public health impact.
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protoscoleces in each cyst. In modelling the dynamics of the egg,

larvae, and adult worm stages of Echinococcus spp. (i.e. parasite

biomass) in hosts and the environment, the reproductive number

derived is different in interpretation than models focussing on

infection status of host populations, in that it reflects the expected

number of mature parasites produced during the life-span of a

single parasite rather than the average number of secondary

infections arising from a single infected host [22].

The models included in this review varied primarily on the basis

of six key features that were differentially incorporated in their

design. These are: 1) the inclusion of a ‘latent’ class (with time

delay from host exposure to infectiousness); 2) an age structure for

Figure 1. Flow chart of paper selection process to identify relevant mathematical models.
doi:10.1371/journal.pntd.0002386.g001
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definitive and/or intermediate hosts; 3) the presence of density-

dependent constraints; 4) accounting for seasonality; 5) stochastic

parameters; and 6) inclusion of a spatial and risk structures. The

conditions under which these mechanisms may be important for

inclusion in models of Echinococcus transmission are discussed.

Table 1 also summarizes the inclusion of these key elements in

each of the models.

Inclusion of a ‘latent’ class and delays
Maturation of E. granulosus and E. multilocularis worms in the

definitive host is thought to take approximately 6 weeks [8].

Maturation of cysts in intermediate hosts can differ not only

between the two species, but also between different intermediate

host species, particularly for E. granulosus. For example, maturation

time for E. multilocularis cysts in small mammals is estimated at 2–4

months, while for E. granulosus cyst maturation can take 8–9

months in wallabies but 2–6+ years in sheep [8,23,24]. Time

delays in parasite lifecycles tend to attenuate transmission potential

because they allow for the possibility of host death between

infection and infectiousness [25]. Time delays for parasite

maturation are usually incorporated into compartmental models

by the inclusion of a ‘latent’ class (i.e. an exposed but not yet

infectious class, also referred to as an ‘E’ class). This ‘latent’ class

was present in four of the eight E. multilocularis models for both

definitive and intermediate hosts [13,18,26,27]. Inclusion of a

‘latent’ class, however, does not always contribute qualitatively to

the dynamics of a model [25]. For example, a study that resulted

in the modification of the original E. multilocularis model of Roberts

and Aubert (1995) found that exclusion of the ‘E’ class did not alter

their conclusions and hence it was omitted and a simpler

Susceptible – Infectious (S-I) model used [28]. Therefore, inclusion

of a latent class may be more relevant for E. granulosus models,

particularly those involving the intermediate sheep host where it

takes years to reach cyst maturity and hence infectiousness. As

such, the importance of the inclusion of a ‘latent’ class is

dependent on the life expectancies of the hosts relative to the

latent period [25]. Not including the appropriate time delay in the

‘latent’ period when it is warranted (e.g. time to cyst maturation in

sheep) could result in an over-estimation of the proportion of

infectious hosts in the natural system at any given time [25]. This

would lead to inaccurate predictions of the impact of control

measures or a failure to accurately estimate the time to disease

elimination when simulating control strategies.

Age structure
Age stratification of hosts was incorporated into the design of

the very first E. granulosus model [14] and remained an important

component of all subsequent models. The intermediate host is

universally assumed to remain infected for life and, in the absence

of acquired immunity, subsequent exposure to parasite eggs results

in the accumulation of cysts in the host, producing a linear

relationship between age and the numbers of hydatid cysts [14,29–

32].

While the inclusion of an age structure might be assumed to be

less relevant for short-lived intermediate hosts of E. multilocularis

(e.g. the average lifespan of a vole is 7–8 months [33]), in reality,

the maturation of cysts occurs relatively quickly (2–4 months)

compared with E. granulosus (where growth of cysts is slow and

variable) [8]. Once an E. multilocularis cyst is established, a small

mammal such as a vole, remains infected for life, and hence

subsequent infections accumulate with increasing age [34].

Evidence of this was found in Arvicola terrestris in Switzerland,

where increasing prevalence of E. multilocularis was observed over

several age classes of voles trapped during the study period [34].

Therefore, the age structure of voles and other small mammals

may be an important element for inclusion in models of E.

multilocularis. However, including an intermediate host age

structure in E. multilocularis models may mask detection of seasonal

variation in infection pressure as the age distribution of small

mammals can vary considerably between seasons [34]. The use of

absolute age estimates has been suggested as a method for

overcoming this limitation [34]. This involves determining the

date of birth of each small mammal based on its age and trapping

day, which is then used to assign mean day temperatures and

precipitation (which influence egg survival in the external

environment) to each day of life for each animal and to simulate

seasonal variation in infection pressure [34].

Age stratification in the definitive host population has also been

a characteristic of some E. granulosus models [31,32]. Age-related

differences in parasite intensity or prevalence in naturally infected

populations of dogs have been reported and are suggested to be

related to the acquisition of temporary immunity (discussed in the

following section) rather than to any age-related difference in

infection pressure [31,32]. Age stratification of the definitive host is

thought to be particularly important when there is likely to be a

high turnover in the dog population as this will result in increases

in the numbers of younger, more susceptible dogs which may

increase infection pressure on human hosts [31]. However, this is

dependent on the level of endemicity as classic age-prevalence

curves of E. granulosus indicate that very young dogs may not

survive long enough to become infectious [35]. The inclusion of an

age structure in the definitive (fox) host when modelling E.

multilocularis occurred as a result of field data showing higher worm

burdens in juvenile foxes compared with adult foxes in Hokkaido,

Japan [27] and is also thought to allow the model to more

realistically reflect population dynamics by assigning different

death rates to hosts of varying age [17,27].

Density-dependence mechanisms
Density-dependent constraints are factors that regulate popula-

tion growth [36], and have been shown to be critical in simulating

the population biology and control of parasites [37]. The absence

of expression of density-dependent constraints in a mathematical

model of Echinococcus spp. makes elimination of parasite species

theoretically easy. However, it has been acknowledged that this

may not be the case in a natural setting [13,20,38]. In the models

included in this review, the density-dependent constraints

discussed are related to host demography (i.e. the population

density of definitive and intermediate hosts) and natural immunity

(which regulates parasite abundance). Decisions regarding the

inclusion or exclusion of such structural assumptions may have a

marked effect on disease projections and the impact and cost-

effectiveness of control strategies [39].

Demography. Very few models included in this review

incorporated the effects of fluctuations in population density of

definitive or intermediate hosts on transmission dynamics. We

assume a constant population size is valid for short duration

diseases that have limited effects on host mortality [40]. However,

for endemic diseases present in populations that change substan-

tially, there is a complex relationship between population

demographics and disease dynamics that can have important

epidemiological effects that should not be ignored [40]. In all

models of E. granulosus, transmission is assumed to take place in a

closed community (with deaths of hosts replaced with susceptible

newborns). This may be a reasonable assumption for regions

where dog and sheep populations are relatively stable. However,

future models applied to developing country contexts may need to

consider the effect of the rapidly increasing demand for livestock

Mathematical Modelling of Echinococcus

PLOS Neglected Tropical Diseases | www.plosntds.org 5 August 2013 | Volume 7 | Issue 8 | e2386



products resulting in expansion of livestock industries and

investment in more efficient slaughtering infrastructure [41,42].

For E. multilocularis models, sylvatic host populations that would

be expected to fluctuate seasonally have the potential to

significantly influence transmission intensity. Two E. multilocularis

models from Japan therefore accounted for seasonally dynamic

host populations because the primary definitive host, the red fox

(Vulpes vulpes), and intermediate host, the grey-sided vole

(Clethrionomys rufocanus), showed marked seasonal variations in

population size [17,27]. However, it is argued by others that

introducing seasonally dynamic host populations would add

unnecessary complexity and provide results that are unlikely to

be quantitatively influenced [13], particularly if the overall annual

growth rate of host populations is negligible. Other influences on

host dynamics that have been identified as potentially important

for inclusion in E. multilocularis models are contexts where there are

1) higher rates of death of juvenile foxes; 2) definitive host

migration (such as in the arctic fox of the tundra zone of Eurasia

and North America); and 3) large scale small mammal population

variations due to changes in habitat composition (e.g. resulting

from anthropogenic environmental influences such as deforesta-

tion and overgrazing) [17,27,43].

In the two models that accounted for variation in host

population densities, fluctuations resulted from age- and season-

dependent variations in birth and death rates, and annual growth

rates of both definitive and intermediate hosts were assumed to be

stable [17,27]. A reported disadvantage of models assuming

annual growth proportional to population size is that they fail to

account for finite resources that eventually limit growth [44]. It has

therefore been suggested that, to account for the carrying capacity

of the local environment, density- dependent restrictions should be

placed on population growth if it is to be included in dynamic

transmission models [44]. While not having yet been applied to

Echinococcus spp. models, accounting for density-dependent popu-

lation growth rates of intermediate and definitive hosts would be

most relevant to the sylvatic cycle of E. multilocularis. This could be

achieved with the simple inclusion of logistic population growth.

Alternatively, maintaining the assumption of constant rodent

population density could be justified by the argument that different

species of hosts have asynchronous fluctuation patterns in their

densities which roughly provides a stable overall presence of

intermediate hosts [28]. Understanding the biodiversity of

intermediate hosts of E. multilocularis in a specific area as well as

their life expectancies will be particularly important before making

assumptions about whether or not it will be necessary to account

for varying population density in the model [22].

Natural immunity. Modelling of E. granulosus data to date

has consistently suggested a lack of regulation of the parasite

population by intermediate host natural immunity [14,30], and

this assumption is consistent across all models included in this

review. In contrast, the presence of natural immunity in the

definitive host has been debated in the literature. Earlier

mathematical models fitted to data from Australia [14] and China

[35] assessed the presence (if any) of acquired immunity in the

definitive host as having negligible impact on prevalence of E.

granulosus in these hosts. This conclusion may have been a

consequence of insufficient definitive hosts surviving long enough

to become infectious and contribute to transmission, low infection

pressure in these settings, or the inadequate sampling methods

used which failed to capture sufficient numbers of older dogs

[14,32,35]. In contrast, later models fitted to data from Tunisia

[45], Kazakhstan [46], China [47] and Morocco [48] indicated

the presence of a density-dependent feedback mechanism in high

prevalence areas suggesting that immunity to E. granulosus is

acquired by definitive hosts. The acquisition of immunity is further

supported by experimental data that have shown cellular and

humoral immune responses in dogs and resistance to re-infection

following multiple exposures and suppression of egg production

following single high dose exposure to E. granulosus [24,47,49–51].

A similar mechanism is thought to occur with E. multilocularis.

Results from fox dissections showed juvenile foxes had a greater

abundance of worms than adults and field data from a focal area

of high E. multilocularis prevalence were found to comply best with

models that account for foxes acquiring partial immunity [26,27].

It is unclear whether control programs that focus on de-worming

of foxes (with praziquantel) alter the immune competence of the

fox [26]. In addition, the presence of acquired immunity in foxes

in high endemic areas and its absence in low endemic areas

suggests that attempts at controlling parasite transmission (without

achieving elimination) may be attenuated by simultaneous

reductions in the development of acquired immunity. Therefore,

future modelling of interventions should test the effect of including

an endemicity threshold, below which the immunity-related

density-dependent feedback mechanism in the definitive host is

inactivated. To date this has not been incorporated in mathemat-

ical models of E. granulosus and E. multilocularis.

Seasonality. Egg survival time in the environment has been

found to impact the duration of control programs required for

disease elimination [22,26]. Seasonal conditions that favour egg

survival (namely cool temperature and humidity that characterise

winter in central Europe and other endemic regions) may lead to

their accumulation in the environment resulting in a higher

infection pressure during this period compared with the rest of the

year [17,27,29,34]. One E. granulosus model and two E. multi-

locularis models addressed the issue of seasonality [29]. Authors

modelling E. granulosus found that prevalences of the disease in

simulations accounting for seasonality, were not dissimilar to those

produced without the inclusion of seasonal effects [29]. However,

these authors admit that their use of seasonal averages may not be

as important as intra-seasonal variations of temperature and

precipitation, which were not accounted for in their simulation

model, as changes in soil moisture/humidity, direct sunlight and

high temperatures are known influences on the number of viable

eggs in the environment and hence the infection pressure in

susceptible intermediate hosts [29,52,53]. Therefore, accounting

for intra-seasonal variations in temperature and precipitation may

be an important consideration for future models of both E.

granulosus and E. multilocularis.

In addition to their potential influence on egg survival time,

seasonal effects on E. multilocularis host population behaviour may

also influence transmission [17,27]. There is evidence of seasonal

variations in fox predation behaviour with higher predation rates

found during autumn when small mammal density is usually

higher than in other seasons [34,54–56]. This corroborates the

theory of increased accumulation of E. multilocularis eggs during the

winter months following the 2–3 months of parasite development

within infected foxes before they shed eggs into the environment

[34]. The lowest level of fox predation is assumed to occur during

the winter months when excessive depth of snow limits small

mammal availability [17]. Hence, in two E. multilocularis models, a

feeding habit function (average number of small mammals

ingested per day) was introduced which is dependent on snowfall

and small mammal density [17,27]. Therefore, accounting for

seasonal mechanisms is reported to be important, particularly for

E. multilocularis models, as they allow more precise analysis of

transmission patterns and are valuable for informing the

development of more targeted, cost-effective control strategies

[17].

Mathematical Modelling of Echinococcus

PLOS Neglected Tropical Diseases | www.plosntds.org 6 August 2013 | Volume 7 | Issue 8 | e2386



Stochastic parameters
Accounting for stochasticity in parameter values is particularly

important when modelling small populations or low disease

prevalence where such an effect could produce local extinction or

‘fadeout’ of a disease [25,57]. In addition, modelling stochasticity

allows predictions to capture variability in the epidemic profile in

order to better understand the potential for disease persistence and

the likely accuracy of the forecasts made, so as to better inform control

and elimination strategies [57]. Two of the five E. granulosus models

and three of the eight E. multilocularis models considered in this review

incorporated stochasticity in their parameter values [17,26,27,30,46].

The authors of these models reported that parameter variability was

captured in instances where there was: an absence of evidence for

specific parameter values, unexplained variability in parameter values

from surveillance data or reported in the scientific literature, and

when there was uncertainty regarding the capture rate of interme-

diate and definitive hosts (i.e. capture rate is calculated using an

estimate of the total size of the host population) [17,30]. In the

reviewed E. multilocularis models, some specific parameters that were

modelled stochastically included: fox population dynamics, worm

burden in foxes, average number of eggs excreted per day by infected

foxes, number of infected small mammals harbouring fertile cysts, and

the basic infectious contact rate [17,26,27].

In the E. granulosus models, some specific parameters for which

values could only be estimated from data or that displayed wide

variability included: overall or age stratified infection pressure to

both intermediate and definitive hosts, life expectancy of the

parasite in dogs, time to maturity of cysts in sheep, age of feeding

of sheep to dogs and the acquisition and loss of immunity in dogs

[30,32]. In addition, there can be considerable uncertainty in

baseline dog surveillance data obtained to inform parameter

values for the definitive host model due to the absence of accurate

dog population figures and hence uncertain capture rate of dogs

[30]. In such circumstances, Monte-Carlo simulation allows this

uncertainty to be quantified by modelling the variability and

predicting best- and worst-case scenarios [30].

Spatial or risk structure
Spatial aggregation and heterogeneous exposure risk are two

characteristics of E. granulosus and E. multilocularis transmission that

are not frequently accounted for in the mathematical modelling of

echinococcosis. Spatial aggregation can occur as a result of over-

dispersion of the parasite in host populations, where a small

proportion of animals harbour most of the parasite population,

and there is heterogeneous distribution of Echinococcus eggs in the

environment, both of which influence exposure risk to animal and

human hosts [58]. Exposure risk can also be influenced by the

spatial overlap of hosts. Explicit inclusion of spatial and contact

structures can improve predictions of Echinococcus transmission at

the population level as well as in the generation of risk mapping in

order to target interventions. The inclusion of explicit spatial and

contact structures is best achieved by more sophisticated

simulation models that are able to assign a constrained set of

exposure conditions to each individual in a host population [59].

Explicit inclusion of risk structure has only been partially realised

in one of the five E. granulosus models, where the authors assigned a

random contact rate to each individual sheep at birth and hence

the model reflects heterogeneous infection of sheep in the

population at any given time [29]. In addition, one of the eight

E. multilocularis models assigned spatially explicit conditions to each

fox in the population and modelled them individually to explore

factors that contribute to the heterogeneous distribution of infected

foxes and to explain the rapid resurgence of the disease following

cessation of control measures [26].

Modelling to understand spatial aggregation. A study on

the effect of age, spatio-temporal and season-related factors on the

prevalence of E. multilocularis in Zurich, Switzerland found that

transmission is primarily influenced by spatial factors that create

micro-foci of high infection pressure [34]. Several hypotheses exist

to explain this spatial aggregation. Firstly, it has been suggested

that over-dispersion of parasites in the fox population results in a

spatially clustered depositing of eggs in faeces within the home

range of the small proportion of infected foxes (with scats

distributed either homogeneously or heterogeneously within that

range) [26,58]. In addition, spatial clustering may also result from

the heterogeneous distribution of small mammal populations or

the increased predation by foxes of infected animals because of

their reduced mobility (due in part to destruction of liver tissue

from expanding cysts) which would result in constant re-infection

of foxes occupying that territory [26,58]. Finally, spatial aggregation

may be explained by differential mortality of Echinococcus eggs in the

environment as a result of landscape characteristics that influence

egg survival (e.g. egg survival is generally best in cool, humid areas

such as riverbanks). This would result in heterogeneous availability

of viable eggs which infect only the subpopulation of small

mammals occupying that habitat [26,58].

There have been some important findings reported from

previous spatial models. Using a spatially explicit simulation

model of E. multilocularis, Hansen et al. (2004) suggested that

landscape characteristics that differentially influence egg survival

lead to heterogeneous availability of infectious eggs and thus a

clumped distribution of infected intermediate hosts. This indicates

that while seasonality may be an important influence on E.

multilocularis risk to intermediate hosts (as discussed previously) it

does not completely explain the heterogeneity. This E. multilocularis

model was the first to be rigorously and quantitatively validated

across a wide range of parameter variations expected in the

natural system to determine the robustness of, and to differentiate

between, different model scenarios [58]. Inclusion of a spatial

structure in Echinococcus modelling has also been useful to

demonstrate growth and spatial parasite spread, quantify human

risk based on spatial overlap of hosts, and has been found to more

closely reproduce surveillance data than non-spatial equivalent

models [19,21]. Despite these valuable insights, the development

and practical use of spatially explicit models are still quite nascent. In

future, such models may benefit, in the case of E. multilocularis, from

differentiation between urban and rural foxes given the potential

differences in their population density and size of their home ranges

[27]. Existing spatially explicit models can be modified to represent

real landscapes and be better used to support local-level decision

making for control strategies [26]. In addition, when compared with

mass screening, spatially explicit modelling offers a cost-efficient

method of locating emerging micro-foci of transmission [1].

Modelling to understand risk. The mass action principle is

a feature of almost all models included in this review. This assumes

that there is homogenous mixing of host populations and equal

opportunity for each host to come in contact with infectious

materials, which may not be an appropriate assumption for

accurately modelling Echinococcus transmission [26]. Considering

the definitive host for E. granulosus, human behavioural factors play

an important role in the exposure of dogs to infectious material,

either through poor dog control and hence increased scavenging

behaviour, or by deliberately feeding dogs the offal from infected

intermediate hosts [60]. Since human behaviour is influenced by

social, cultural and economic factors, accounting for heteroge-

neous risk in models of E. granulosus is potentially important but

will be difficult without establishing a mechanism by which human

influences on contact patterns between dogs and infected hosts can
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be simulated robustly. Considering contact risk between the

intermediate host and infectious eggs in the environment, data sets

from Jordan [61] and Kazakhstan [32] have been used to model

the acquisition of E. granulosus infection. It was shown that clumped

sources of infection (parasite eggs in dog faeces) results in

heterogeneity of acquisition by intermediate hosts which is

hypothesised to be a result of behavioural differences between

pasturing sheep or due to differences in their immune system [62].

In addition, to more accurately reflect heterogeneous risk of

infection in the human population one E. multilocularis model divided

the egg production stage in foxes into two classes according to

output; low and high egg producing classes [17]. Accounting for

heterogeneity in contact between intermediate hosts and infectious

eggs in the environment will be important for modelling the

transmission dynamics of both E. granulosus and E. multilocularis [62].

Given that parasites in general are well known to affect their host’s

behaviour in order to potentiate transmission, inclusion of hetero-

geneous contact patterns in the modelling of E. multilocularis may be

an important consideration [63–66]. Of the E. multilocularis models

surveyed, only one considered whether or not there is increased

susceptibility of infected small mammals to predation [28]. Currently

there is limited evidence to support this hypothesis but these authors

suggested the possibility that reduced mobility of the infected

intermediate host arises from rapid proliferation of the metacestode

stage resulting in an extended abdomen and thus increasing their

vulnerability to predation [28]. In this model, increased susceptibility

of infected small mammals to predation was accounted for by

increasing the likelihood that individual prey taken by a predator will

be infectious [28]. This enhances species resilience and implies that

upon cessation of control activities there would be a rapid return to

pre-control prevalence levels [26,28]. Parasite-induced vulnerability

to predation of the intermediate host has also been suggested in the

E. granulosus wolf-moose transmission cycle with the escape

behaviour of the moose thought to be modified by the presence of

cystic echinococcosis in the lungs [67]. However, little empirical

evidence exists to determine the relationship between intermediate

host hydatid infection, predation risk and transmission rates.

Over-dispersion of the parasite in both definitive and interme-

diate hosts was accounted for in almost all models included in this

review by modelling aggregation using a negative binomial

distribution. However, it has been argued that while the negative

binomial function represents a convenient method for fitting

highly aggregated abundance data to models of endemic equilib-

rium, its use in dynamic modelling of parasite control scenarios is

inappropriate due to the loss of biological tractability [68]. More

recent modelling of E. granulosus has shown that a compound mixed

Poisson process with a zero-truncated negative binomial distribution

provides a more adequate fit for the acquisition of cysts from

aggregated infectious material (parasite eggs within dog faeces) and

heterogeneous exposure within the pasturing sheep population [29].

In addition, a shot noise process (an extension of the compound

Poisson process), which allows death of parasites in a host to be

modelled, was found to provide good fit to the aggregated

distribution of E. granulosus parasites in dogs [29].

Conclusions and recommendations for future modelling
approaches

Empirical evidence for effective and sustainable strategies for

the control of E. granulosus and E. multilocularis transmission is

sparse despite the serious health, social and economic conse-

quences of echinococcosis [6–8]. The diverse conditions that

support transmission provide a challenge for the design of cost

effective control strategies across diverse settings. While mathe-

matical models are useful tools in such situations, current

Echinococcus models do not specifically include the human

transmission pathway, nor do they allow for the simulation of

interventions (targeting both animal definitive and intermediate

hosts and the human host) to assess the impact on human

infection. In addition, they do not account for heterogeneous

exposure risk in humans that arises from variable spatial overlap of

hosts and local environmental conditions that influence transmis-

sion. Therefore, in order to design optimal public health strategies

to control and eliminate echinococcosis, inclusion of a human

transmission component to E. granulosus and E. multilocularis will be

essential. The following recommendations are proposed for

modelling transmission in general and for those that also

incorporate the human transmission pathway:

1. Deterministic compartmental models are useful for modelling

average transmission behaviour in large host populations. Low

prevalence of infection (often in small mammal host popula-

tions) and complex processes that lead to highly aggregated

disease reservoirs and non-random mixing (e.g. heterogeneous

contact patterns of susceptible hosts with infectious materials),

justify the inclusion of stochastic, individual-level effects in

echinococcosis models [39] and this would constitute our

recommendation for modelling frameworks of future analyses.

2. Given that both E. granulosus and E. multilocularis are highly focal

in their transmission, coupling of disease mapping with

infection dynamics would have great value in developing an

understanding of echinococcosis epidemiology. Increased

spatial awareness in the transmission of both parasites may

improve efforts at targeting infection hotspots in low prevalence

contexts, thereby benefiting the cost effectiveness of control.

3. Incorporating a human component will not only serve to

improve public health understanding of these two zoonotic

diseases, but will also provide a method of ameliorating a key

shortcoming described in almost all studies reviewed, namely,

the paucity of infection data. As highlighted by this review, the

key mechanisms important for inclusion in models of E.

granulosus and E. multilocularis will necessarily be dependent on

the context in which the model’s use is intended and the local

characteristics of the host populations and environmental

conditions that are likely to influence transmission. Building

complexity into the models should be driven by local context

rather than using a standardized approach.

While model complexity does not necessarily equate to realistic

predictions, particularly in the absence of reliable parameter data

[69], precision in replication of the fundamental natural mecha-

nisms of disease transmission in specific contexts and with the

inclusion of transmission to humans, will allow Echinococcus spp.

models to become useful public health tools for informing the

development of targeted, cost-effective control strategies.
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