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TOSO promotes b-cell proliferation and protects
from apoptosis
G. Dharmadhikari a, M. Mühle b,1, F.T. Schulthess a,b, S. Laue a, J. Oberholzer c, F. Pattou d, J. Kerr-Conte d,
K. Maedler a,*
ABSTRACT
Decreased b-cell mass reflects a shift from quiescence/proliferation into apoptosis, it plays a crucial role in the pathophysiology of diabetes.
A major attempt to restore b-cell mass and normoglycemia is to improve b-cell survival. Here we show that switching off the Fas pathway
using Fas apoptotic inhibitory protein (Faim/TOSO), which regulates apoptosis upstream of caspase 8, blocked b-cell apoptosis and
increased proliferation in human islets. TOSO was clearly expressed in pancreatic b-cells and down-regulated in T2DM. TOSO expression
correlated with b-cell turnover; at conditions of improved survival, TOSO was induced. In contrast, TOSO downregulation induced b-cell
apoptosis. Although TOSO overexpression resulted in a 3-fold induction of proliferation, proliferating b-cells showed a very limited capacity
to undergo multiple rounds of replication. Our data suggest that TOSO is an important regulator of b-cell turnover and switches b-cell
apoptosis into proliferation.

& 2012 Elsevier GmbH. All rights reserved.
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INTRODUCTION

In both T1DM and T2DM, the major mechanism leading to decreased
b-cell mass is increased b-cell apoptosis [1–3]. In T1DM, b-cell
destruction occurs through immune mediated processes; mononuclear
cell infiltration in the pancreatic islets and interaction between antigen
presenting cells and T-cells lead to high local concentrations of
inflammatory cytokines, chemokines, reactive oxygen species (ROS)
and other inflammatory products [4,5]. Cytokines and chemokines
produced and secreted by activated macrophages, adipocytes and also
by pancreatic b-cells have been suggested to initiate b-cell apopto-
sis [6]. Two major pathways trigger the onset of T1DM; the perforin/
granzyme and the Fas/FasL system [7]. The Fas receptor (CD95), a 45-
kDa type I transmembrane protein, is activated through interactions
between antigen presenting b-cell and T-cells as well as through local
expression of inflammatory mediators, i.e. cytokines, chemokines and
other inflammatory compounds [5,7]. Fas binds to its ligand (FasL) and
thus, initiates b-cell apoptosis [5].
FasL, a type II transmembrane protein of 40 kDa that can be secreted
in a soluble form (26 kDa), is expressed primarily on activated T-
lymphocytes [8] and also on b-cells [9,10]. Fas and Fas ligand are
expressed in inflamed islets in pancreas sections of patients with
recent-onset T1DM [11] as well as in patients with poorly controlled
T2DM [9]. Triggering of Fas leads to the recruitment of Fas-associated
death domain protein (FADD) and caspase-8 to the receptor (see Fig. 4).
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Binding of caspase-8 results in its activation by autoproteolytic
cleavage and the release of the active subunits. The remaining
caspase-8 prodomain is replaced by uncleaved procaspase-8, which
then starts a new activation cycle.
A NOD mouse strain with a mutation in the Fas receptor, NOD lpr/lpr,
did not develop diabetes [12]. b-cells from NOD mice that express a
dominant-negative form of the Fas-associated death domain protein
(FADD) were resistant to Fas induced cell death in vitro and in vivo.
Furthermore, deletion of Fas protects islets from the toxic effects of
cytokines [13] and of islet amyloid polypeptide (hIAPP) [14], which is
suggested to be a major contributor to b-cell failure in T2DM [15].
In line with this observation, there are numerous studies on isolated
rodent and human islets showing cytokine-induced Fas upregulation in
the b-cell [10,16–18]. On the other hand, islets from NOD lpr/lpr were
not protected against the autoimmune attack when transplanted into
diabetic wild type recipients [19]; and only very few Fas-expressing b-
cells were detected in islets of NOD mice at the onset of hyperglycemia
[20]. Also, Fas signaling is needed for insulin secretion as shown in
mice, pointing to a physiological role of the Fas receptor in b-cells. In
human islets, an inhibitor of Fas-induced apoptosis, termed cellular
FLICE (caspase-8)-inhibitory protein (FLIP) [21], was able to protect b-
cells from cell death and restored b-cell function even under
hyperglycemic conditions and in the presence of Fas. FLIP structurally
resembles caspase-8 and thus interferes with its recruitment to the
death-inducing signaling complex (DISC) and hence plays a critical role
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as an endogenous modulator of apoptosis [22]. Moreover, Fas signals
do not always result in apoptosis but can also trigger a pathway that
leads to proliferation [23]. Thereby, FLIP is pivotal in turning signals
from cell death into those for cell survival/proliferation [24]. In b-cells,
FLIP switched Fas activation from a death signal into a proliferation
signal, and this may potentially expand b-cell mass [25]. The
antagonistic anti-Fas antibody ZB4 inhibited the beneficial effect of
FLIP at elevated glucose, demonstrating that Fas receptor activation is
required for FLIP mediated proliferation. FLIP is also protective against
cytokine-induced activation of caspase-8-dependent apoptosis [26].
A further upstream regulator of Fas is the cell surface protein TOSO,
also named Fas apoptotic inhibitory protein (Faim3). It is expressed in
activated T-cells [27,28]. TOSO negatively regulates FasL- and TNFa-
induced apoptosis in lymphoma cell lines [29]. Also, a TOSO antibody
potentiates TNFa induced apoptosis [29]. TOSO overexpressing Jurkat
cells are resistant to Fas induced apoptosis through expression of FLIP
[27]. FLIP expression levels are down-regulated in TOSO-deficient
mice, causing these mice to be highly sensitive to Fas triggered
apoptosis [30].
Thus, TOSO would provide a promising tool to block Fas induced
apoptosis in b-cells, and its presence and function in human islets was
investigated in the present study. The advantage of TOSO would be to
regulate endogenous FLIP levels. These physiological FLIP levels are
often not achieved by FLIP overexpression, and higher FLIP levels could
even reverse its effect by induction of cell death. In the present study
we provide evidence for constitutive expression of TOSO in the human
b-cell and suggest a novel approach to prevent and treat diabetes by
switching Fas signaling from apoptosis to proliferation. However,
multiple rounds of self-duplication could not be achieved in human
b-cells, confirming previous observations, which show that human b-
cells have only a very limited capacity to self-duplicate [31].
MATERIAL AND METHODS

Islet culture
Human islets were isolated from pancreata of 8 healthy organ donors at
the University of Lille or University of Chicago and cultured in CMRL-
1066 medium as described previously [32]. Islets were cultured on
extracellular matrix coated dishes derived from bovine corneal
endothelial cells (Novamed Ltd., Jerusalem, Israel) for 4 days, allowing
the cells to attach to the dishes and spread [33] and exposed to 5.5,
11.1, or 33.3 mM glucose or 5.5 mM plus recombinant human IL-1b
(0.02–2 ng/ml, R&D Systems, Minneapolis, MN) or IFNg (1000 U/ml,
PeproTec, Rocky Hill, NJ, USA).

Transfection
At 2 days post-isolation and culture on extracellular matrix coated
dishes, isolated islets were exposed to transfection using Ca2þ–KRH
medium (KCl 4.74 mM, KH2PO4 1.19 mM, MgCl26H2O 1.19 mM, NaCl
119 mM, CaCl2 2.54 mM, NaHCO3 25 mM, HEPES 10 mM). After 1 h
incubation lipoplexes (Lipofectamine2000, Invitrogen, Carlsbad, CA,
USA)/DNA ratio 2.5:1, 3 mg CMV-TOSO, RIP-TOSO, or CMV-GFP control
plasmid DNA/100 islets or 50 nM siRNA to TOSO (RNAs of 21
nucleotides, designed to target human TOSO; ON-TARGETplus SMART-
pool human FAIM3), (Dharmacon, Lafayette CO, USA) and scramble
siRNA (Dharmacon) were added to transfect the cells as described
previously [34,35]. After additional 6 h incubation, CMRL 1066 medium
containing 20% FCS and L-Glutamine were added to the transfected
islets. Transfection efficiency was determined using RT PCR,
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immunocytochemistry and western blotting. TOSO plasmid was
obtained from the Full-Length Mammalian Gene Collection (invitrogen)
and cloned into the pIRES2-AcGFP1 vector (invitrogen) named CMV-
TOSO or into the pIT-HindIII-A-myc vector (kindly provided by T. Trüb,
University Hospital Zurich), named RIP-TOSO.

Cell culture and thymidine analog administration
Post-transfection, the culture medium was supplemented with
10 mmol/L of CldU (Sigma, St. Louis, MO, USA, cat#C6891) for 1 or
2 days followed by 10 mmol/L of IdU (MP Biomedicals, Illkirch, France,
cat#100357) for same time duration.

Glucose stimulated insulin secretion
Islets used to perform glucose-stimulated insulin secretion experiments
were kept in culture medium on matrix-coated plates. For acute insulin
release in response to glucose, islets were washed and pre-incubated
(30 min) in Krebs-Ringer bicarbonate buffer (KRB) containing 2.8 mM
glucose and 0.5% BSA. KRB was then replaced by KRB 2.8 mM
glucose for 1 h (basal), followed by an additional 1 h in KRB 16.7 mM
glucose (stimulated). Islets were extracted with 0.18 N HCl in 70%
ethanol for determination of insulin content. Islet insulin was deter-
mined using mouse insulin ELISA (ALPCO, Salem, NH, USA).

RNA extraction and RT-PCR analysis
Total RNA was isolated from cultured human islets as described
previously [32]. For quantitative analysis, we used the Applied
Biosystems StepOne Real-Time PCR system (Applied Biosystems,
Carlsbad, CA, USA) with a commercial kit (Power SYBR Green PCR
Master Mix; Applied Biosystems). Primers used: 50CATGAACACAGA
CCGGG30/50GAACTGGAGGGACCTTG-30 (human TOSO), 50GTTGGCCAGG
CTGGTGTCCAG30/50CTGTGATGAGCTGCTCAGGGTGG30 (human tubulin),
and 50TCACCCACACTGTGCCCATCTACGA30/50CAGCGGAACCGCTCATTGC
CAATGG30 (b-actin).

Western blot analysis
At the end of the incubation periods, islets were washed in ice-cold
PBS and lysed for 40 min on ice in 40 ml lysis buffer containing 20 mM
Tris acetate, 0.27 M sucrose, 1 mM EDTA, 1 mM EGTA, 50 mM NaF, 1%
Triton X-100, 5 mM sodium pyrophosphate and 10 mM b-glyceropho-
sphate. Prior to use, the lysis buffer was supplemented with Protease-
and Phosphatase-inhibitors (Pierce, Rockford, IL, USA). Equivalent
amounts of protein from each treatment group were run on a NuPAGE
4–12% Bis-Tris gel (Invitrogen) and electrically transferred onto PVDF
membranes. Membranes were incubated with rabbit anti-TOSO and
rabbit anti-FLIPL (C-19), (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA), and rabbit anti-b-actin (Cell Signaling Technology, Danvers, MA,
USA) antibodies, followed by horseradish-peroxidase-linked anti-
rabbit IgG.

Immunocytochemistry
Pancreatic sections from 8 healthy controls (4 lean and 4 obese) and
from 7 patients (3 lean and 4 obese) with T2DM were obtained from the
National Disease Research Interchange (NDRI), approval for the studies
were granted by the Ethical Commission of Bremen University. For
detection of b-cell TOSO expression insulin and TOSO staining were
performed, 3 sections/pancreas were incubated in blocking buffer
containing 0.2% Tween 20, 3% IgG-free Bovine serum albumin (BSA),
0.5% Triton X-100 for 1 h RT and overnight at 4 1C with rabbit anti-
TOSO (Santa Cruz). Subsequently, all sections were double-stained for
insulin and detected by donkey anti-guinea pig FITC-conjugated
ularmetabolism.com 71
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antibody (Dako, Hamburg, Germany). To evaluate TOSO antibody
specificity, the antibody was pre-incubated for 1 h at 37 1C with TOSO
blocking peptide (Santa Cruz). Intensity and saturation of the staining
was measured using Adobe Photoshop& Extended analysis software
after an adapted model used by Pham et al. [36], expressed per islet
area and normalized to the background signal.
For lineage tracing experiments, cultured islets were fixed in 4%
paraformaldehyde for 30 min RT; permeabilized by 0.5% Triton-X-100
for 4 min RT and incubated in freshly diluted 1.5 N HCl for 40 min RT.
After blocking for 1 h RT, staining for IdU and insulin was carried with
by incubating with mouse anti-BrdU antisera (1:100) (Dako) and guinea
pig anti-insulin (1:100) (Cat#18-0067; Zymed Laboratories Inc., San
Francisco, CA, USA) overnight at 4 1C. The dishes were washed in a
low salt TBST Buffer (36 mM Tris, 50 mM NaCl, 0.5% Tween-20; pH
8.0) and then in PBS. For CldU staining, dishes were incubated with Rat
anti BrdU (Dako) (1:100; diluted in antibody dilution buffer) overnight at
4 1C. Incubation with secondary antibodies was carried out using AMCA
donkey anti-Guinea Pig (1:100), Cy3 donkey anti-rat (1:100 and FITC
donkey anti-mouse (1:100) at RT for 1 h).
For detection of b-cell apoptosis and proliferation, insulin and TUNEL or
Ki67 staining (In Situ Cell Death Detection Kit, TMR red; Roche
Diagnostics, Mannheim, Germany) were performed as described
previously [37]. Fluorescent dishes were analyzed using Nikon
MEA53200 (Nikon GmbH, Dusseldorf, Germany) microscope and
images were acquired using NIS-Elements software (Nikon).

Statistical analysis
Samples were evaluated in a randomized manner by 2 investigators
(G.D, S.L.) who were blinded to the treatment conditions. Data are
presented as means7SE and were analyzed by Student’s t-tests. To
account for multiplicity in the treated cells in vitro, a Bonferroni
correction was used.
RESULTS

TOSO is down-regulated in diabetes and correlates positively with b-
cell proliferation and negatively with b-cell apoptosis
To identify cell type specific TOSO localization in the human pancreas,
we assessed TOSO expression in pancreatic sections from autopsy
from lean and obese non-diabetic patients and from patients with
T2DM. The specificity of the antibody was confirmed by pre-incubation
with TOSO blocking peptide as a negative control (Fig. 1A, right panel).
Constitutive expression of TOSO was detected in insulin producing b-
cells in human pancreatic sections. TOSO was expressed in both lean
and obese non-diabetic patients but depleted in lean and obese
patients with T2DM (Fig. 1A). Quantification of the staining showed a
2.1-fold and 8.6-fold decrease in intensity and saturation in lean
patients with T2DM vs. lean controls and a 3.5- and 9.9-fold decrease
in intensity and saturation in obese patients with T2DM vs. obese
controls, respectively (Fig. 1B).
To investigate whether such changes in TOSO expression occur during
the process of the switch from proliferation into apoptosis, we analyzed
TOSO expression in isolated human islets in response to short-term
(12 h, Fig. 1C) and long-term (72 h, Fig. 1D) incubation with elevated
glucose concentrations, 2 distinct conditions when glucose induced
proliferation (Fig. 1F) or apoptosis (Fig. 1G).
TOSO was up-regulated dependent on glucose concentrations during
12 h of exposure; in contrast, TOSO was down regulated to almost
undetectable levels after long-term incubation of the islets for 72 h
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(Fig. 1D), a condition where glucose induced b-cell apoptosis (Fig. 1G).
Previously we have found that the cytokine IL-1b has also a dual
physiological role on the regulation of b-cell function and survival
[38,39], it induces proliferation at low and apoptosis at high
concentrations (Fig. 1H). In line with these findings, low-dose IL-1b
induced TOSO expression while high-dose almost depleted TOSO mRNA
expression (Fig. 1E).

TOSO improves b-cell survival and function under diabetogenic
conditions
To understand the physiological role of TOSO depletion in diabetes on
the b-cell, the expression of TOSO was silenced in isolated human
islets by using specific siRNAs. TOSO levels resulting from its
overexpression and depletion were analyzed by immunocytochemistry
(Fig. 2A), RT-PCR (Fig. 2D) and Western blotting (Fig. 2E). Protein was
almost undetectable in islets upon siRNA treatment and RNA was 4.3-
fold down-regulated (Fig. 2D), while overexpression was achieved in
almost all islet cells even under elevated glucose or IL-1b/IFNg
exposure (Fig. 2A).
TOSO depletion resulted in a 3.3-fold induction of b-cell apoptosis,
similar to cytokine exposure for 4 days (3.5-fold induction, Fig. 2A
and B).
Also, b-cell apoptosis was 4-fold increased by the cytokine mix IL-1b/
IFNg and 3.5-fold by 33.3 mM glucose, which was prevented by CMV-
TOSO overexpression.
On the other hand, TOSO overexpression induced a 2.6-fold increase in
b-cell proliferation, as assessed by the mitotic marker Ki67 (Fig. 2C).
b-cell proliferation decreased upon cytokine and elevated glucose
treatment, which was back to basal levels upon TOSO overexpression.
The pro-survival effect of TOSO expression was hypothesized to be due
to the regulation of cFLIP, which leads to inhibition of apoptotic Fas
signaling and acts as a switch to proliferation. Hence, we analyzed the
levels of FLIP upon depletion and overexpression of TOSO. To address
the effect of paracrine signaling, overexpression was carried out either
specifically in the b-cells by using a rat insulin promoter driven
expression plasmid (RIP-TOSO), or in all islet cell types using a
cytomegalovirus driven plasmid (CMV-TOSO). Western blot analysis
confirmed the efficient silencing and overexpression of TOSO at the
protein level (Fig. 2E). Depletion of TOSO caused reduced FLIP
expression; and, similarly, the increased amount of TOSO induced FLIP
expression (Fig. 2E). b-cell proliferation was analyzed using the Ki67
antibody as shown in Fig. 2C, and was confirmed to be increased upon
both b-cell specific and universal induction of TOSO expression, thus
emphasizing its signaling in b-cells themselves (Fig. 2F).
The effect of the varying levels of TOSO expression on b-cell function
was analyzed by carrying out glucose stimulated insulin secretion
(GSIS) after depletion or overexpression of TOSO in presence and
absence of diabetic stimuli. Elevated glucose and cytokines completely
abolished GSIS, and also TOSO depletion resulted in a 2.2-fold
(po0.05) reduction in the stimulatory index at basal conditions, but
had no additive effect in islets exposed to diabetic milieu (Fig. 2G and
H) at elevated glucose (33.3 mM) or the cytokine mixture. In contrast,
TOSO overexpression improved GSIS 3.1-fold at elevated glucose levels
and 1.4-fold (po0.05) at cytokine treatment (Fig. 2I and J), while at
basal condition at 5.5 mM glucose, it had no effect.

TOSO overexpression induces early proliferation in b-cells
Sequential thymidine analog labeling is a recent and effective method
for lineage tracing of proliferating cells, previously used in vivo to show
the lack of any specialized b-cell progenitors in mice [40]. We
OLISM 1 (2012) 70–78 & 2012 Elsevier GmbH. All rights reserved. www.molecularmetabolism.com
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Fig. 1: TOSO is downregulated in T2DM and correlates positively with b-cell proliferation and negatively with b-cell apoptosis. (A,B) Representative co-staining for TOSO in red and insulin in green in human pancreatic sections from poorly controlled lean (n¼4) and

obese (n¼3) patients with T2DM and lean (n¼4) and obese (n¼4) non-diabetic controls. From each pancreas, 3 sections were stained and analyzed and measurements for intensity and saturation are given as signal divided by islet area and normalized to

background. Small symbols show means of all analyzed islets/pancreas, large symbols show means7SE of all pancreases/group. (C–H) Human pancreatic islets were cultured on extracellular matrix-coated dishes and exposed to increasing concentrations of glucose

(5.5–33.3 mM) for 12 (C,F) and 72 (D,G) h or to IL-1b (0.01–2 ng/ml) for 72 h (E,H). TOSO mRNA expression was analyzed by RT-PCR and expressed as relative changes of control and compared to Tubulin levels (C–E). In parallel, proliferation was measured by

the Ki67 antibody stained in red and apoptosis analyzed by the TUNEL assay (F–H). Islets were triple-stained for insulin and counterstained for DAPI (not shown). Results are means7SE of the percentage of Ki67- and TUNEL-positive b-cells. The average number of

b-cells counted was 8150 for each treatment group in 3 separate experiments from 3 different organ donors.
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Fig. 2: TOSO improves b-cell survival and function under diabetogenic conditions. Human pancreatic islets were cultured on extracellular matrix-coated dishes and exposed to increasing concentrations of glucose (5.5–33.3 mM) or the cytokine mixture IL-

1b (2 ng/ml) and IFNg (1000 U/ml) for 72 h with or without depletion of TOSO by siTOSO or overexpression by CMV-TOSO transfection. TOSO was analyzed in each condition by immunostaining of Bouin-fixed paraffin-embedded islet pellets. As control,

TOSO peptide was incubated with TOSO antibody before staining. Representative co-staining for TOSO in red and insulin in green are shown (A). Apoptosis was analyzed by the TUNEL assay in islet sections (B) and proliferation by the Ki67 antibody (C). Islets

were triple-stained for insulin and counterstained for DAPI (not shown). Results are means7SE of the percentage of Ki67- and TUNEL-positive b-cells. (D) TOSO mRNA expression was analyzed by RT-PCR and expressed as relative changes of control and

compared to Tubulin levels. (E) Western blot analysis was performed 3 days after transfection with siRNA specific for TOSO, RIP-TOSO or CMV-TOSO plasmids. The same blot was analyzed for TOSO, c-FLIP (full length) and actin after stripping. (F) In parallel

experiments, b-cell proliferation was assessed in islet pellets by double-staining for Ki67 and insulin. (B,C,F). The average number of b-cells counted was 7450 for each treatment group in 3 separate experiments from 3 different organ donors. (G–J)

Glucose stimulated insulin secretion assays were performed after the 72 h culture period. (G,I) Basal (2.8 mM) and glucose stimulated (16.7 mM) insulin secretion was normalized to whole islet insulin content, respectively and expressed as percent change of

basal conditions at 5.5 mM glucose. (H,J) Stimulatory index denotes the amount of glucose stimulated (16.7 mM glucose) divided by the amount of basal insulin secretion. Data are shown as mean7SE from 3 islet isolations from 3 different donors.

po0.05 to 5.5 mM glucose control,**po0.05 to 33.3 mM glucose control, #po0.05 to IL/IF control.
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and double positive cells are shown in orange (merged). Arrows show positive cells. In islets, only few double-positive cells were detected (D, panel d). (E,F) Triple staining for CldU in red, IdU in green (nucleus) and insulin in green (cytosol). Single-positive

cells are shown (arrows). *po0.05 to 5.5 mM glucose lacZ transfected control.
optimized the protocol to be used to detect multiple rounds of
proliferation in vitro using immunocytochemistry.
To assess the nature of increased proliferation of b-cells upon TOSO
overexpression, sequential thymidine analog labeling was carried out
after overexpression of TOSO driven by the rat insulin promoter (RIP-
TOSO) or cytomegalovirus promoter (CMV-TOSO). On day 1 and 2 after
the RIP/CMV-TOSO transfection, we incorporated 10 mmol/L of the
thymidine analogs 5-chloro-2-deoxyuridine (CldU) and 5-iodo-2-
deoxyuridine (IdU), respectively for 1 day (Fig. 3A) into the islet culture
medium. To exclude an effect of the expression changes of TOSO after
overexpression and to take into account the number of days after
transfection, analogs were also incorporated on day 2 and day 4 after
transfection in a parallel experiment (Fig. 3B). The incorporation
of the analogs, and thus the proliferation, was visualized using
immunocytochemistry.
After quantification, it was observed that under control conditions, the
extent of proliferation during administration of both the analogs was
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similar (Fig. 3A and B). In the TOSO transfected islets, there was an
about 2-fold induction in b-cell proliferation (2.4-fold and 3.0-fold by
RIP- and CMV-TOSO, respectively when CldU was administered over
1 day, Fig. 3A, and 3.1-fold and 4.3-fold by RIP- and CMV-TOSO,
respectively when CldU was administered over 2 days, Fig. 3B). The
percentage of b-cells undergoing proliferation during the administration
of the second analog IdU was significantly less than that during the first
CldU administration (1.5-fold and 1.7-fold decrease during IdU
compared to CldU by RIP- and CMV-TOSO, respectively when analogs
were administered over 1 day, Fig. 3A, and 2.0-fold and 2.8-fold
increase during IdU administration by RIP- and CMV-TOSO, respectively
when analogs were administered over 2 days, Fig. 3B). A very small
percentage (0.04–0.08%) of co-labeled cells were observed in the
TOSO transfected samples as compared to 0.01% in the control
(Fig. 3A and B), suggesting a very limited capacity of b-cells to undergo
multiple rounds of proliferation. To eliminate the possibility of
preferential analog uptake, the sequence of analogs was reversed
ularmetabolism.com 75
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and the data obtained was found to be consistent (data not shown).
Also, for taking into account the number of days after transfection,
2 different administration time durations were implemented, 2 days or
1 day per analog, which consistently showed that TOSO overexpression
led to an induction of an early round of proliferation in the b-cells
(Fig. 3A and B).
As a proof of principle, lineage tracing was carried out in HeLa cells
and proliferating differentially labeled cells could be observed (Fig. 3C).
Fig. 3D–F shows fluorescent microscopic images of a very limited
number of cells inside the islets carrying the thymidine analog labels.
Co-staining for insulin confirms the analysis in b-cells (Fig. 3E and F).
DISCUSSION

More than a decade ago, Hitoshi et al. cloned and characterized a novel
immunoglobulin domain-containing type I transmembrane protein,
TOSO, exhibiting potent pathway-specific anti-apoptotic effects in
hematopoietic cells [27]. TOSO inhibited apoptosis induced by Fas-,
TNFa-, FADD-, and PMA/ionomycin; but not staurosporine- or
ceramide-induced apoptosis. The mechanism of inhibition and its
specificity were hypothesized to be due to inhibition of caspase-8
processing through induction of cFLIP expression. The name TOSO was
given after a Japanese liquor that is drunk on New Year’s Day to
celebrate long life and eternal youth [27], reflecting its pro-survival
effect.
The role of TOSO in maintaining cFLIP expression during Fas mediated
apoptosis of lymphocytes and hepatocytes has been elucidated using
TOSO� /� mice [30]. B-cells and thymocytes from these mice show
increased sensitivity to Fas-triggered apoptosis, and these mice suffer
greater mortality and exhibit exacerbated liver damage in response to
Fas engagement in vivo. TOSO modulates Fas-mediated apoptosis by
influencing the expression of c-FLIP and regulating the physical binding
of caspase-8 to Fas receptor.
The anti-apoptotic function of TOSO depends on ubiquitination of an
adapter kinase, RIP1, and involves the recruitment of the death adapter
FADD to a TOSO/RIP1 protein complex. Upon activation by FasL and
TNFa, TOSO promotes the activation of pro-survival signaling pathways
and protects from liver damage [29]. TLR activation leads to decreased
TOSO expression shown in leukemic B-cells [41].
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The activation of inflammatory pathways has been discovered as a
causal event for b-cell destruction in diabetes [42,43], which is also
mediated by TLR activation [32,44].
Thereby, not only pro-inflammatory compounds are activated (e.g. IL-
1b, Fas), but also the anti-inflammatory cytokine interleukin-1 receptor
antagonist and the anti-apoptotic cFLIP are down-regulated in b-cells
in diabetes [9,42,45], and also TOSO downregulation was reported in
response to TLR activation [41].
Thus, attempts to block Fas-induced apoptosis and the activation of
pro-inflammatory cytokines could be a strategy to prevent diabetes.
Here we show down-regulation of another protective factor in T2DM,
and its loss promotes b-cell destruction.
TOSO expression correlated positively with b-cell proliferation; both the
proliferation-inducing treatments i.e. acute high glucose and low dose
IL-1b positively regulated TOSO expression. On the other hand, pro-
apoptotic stimuli i.e. chronic elevated glucose and high dose IL-1b
almost depleted TOSO mRNA expression. Thus, depletion of TOSO
coincides with activation of b-cell apoptosis under conditions of stress.
TOSO, when overexpressed, not only rescued b-cells from apoptosis
but also triggered proliferation. This pro-survival signaling has also
been observed in TOSO overexpressing Jurkat cells in which CD95L-
and TNFa stimulation readily induced the activation of Erk1/2 [29].
While TNFa potentiates cell death, it is insufficient to cause apoptosis
in b-cells [46]. Since TOSO promotes the TNFa induced signaling
cascade, it is possible, that TNFa would induce b-cell apoptosis in the
absence of TOSO, but there is no experimental proof for this hypothesis
so far.
Intact Fas receptor signaling is also necessary for b-cell secretory
function [47]. Hence, we investigated whether TOSO expression can
also contribute to glucose stimulated insulin secretion. While TOSO
overexpression was not effective at basal glucose levels, our results
show that TOSO protected the inhibition of insulin secretion by elevated
glucose and cytokines and restored b-cell function.
Mature human b-cells have only a very limited capacity to undergo
proliferation [31]. To control and to foster b-cell proliferation has
become a long-term goal in b-cell research. With the goal to find a
subpopulation of b-cells with a higher proliferative capacity, we
overexpressed TOSO and investigated the nature of the induced
proliferation by using the technique of sequential thymidine analog
labeling, previously developed in mice by Teta et al. [40].
OLISM 1 (2012) 70–78 & 2012 Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



We optimized the method so that it could be used in a similar fashion
in vitro in human islets, to detect multiple rounds of proliferation. TOSO
overexpression induced an early round of proliferation in the isolated
human islets, irrespective of any effect of sequence of analog
administration or time after transfection, however, only in a very
limited number of islets (maximum 0.08%), more than one round of
proliferation was observed during the 6-d culture period. Such limited
proliferation capacity is in confirmation with the results from mouse b-
cells in vivo [40,48].
CONCLUSIONS

In summary, TOSO is a novel anti-apoptotic protein, which interferes
with the Fas triggered apoptosis by regulating FLIP and thereby
initiating a pro-survival signaling cascade (see Fig. 4 for our model).
Thus, TOSO hints to be a promising therapeutic target to rescue b-cells
from apoptosis induced by elevated glucose and cytokines and, hence,
intervening in the progression of diabetes. However, with the means of
TOSO, we were unable to develop a b-cell, which would undergo
multiple rounds of replication during culture.
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