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Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette
smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous
studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved
in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue.
Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored
the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial

K?J/words: cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 pM) resulted in dose-dependent
(Eilg':'le?te smoke loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin
pithelium

hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein
Michael addition responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell
¢-Jun N-terminal kinase supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation
GSH of the MAP kinases, extracellular regulated! kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and
activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated
with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of
acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38.
Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status
and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1
or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly
to acrolein-mediated activation of MAP kinases such as JNK, and may therefore be important in acrolein-
induced alterations in airway epithelial function, as a contributing mechanism in tobacco-related respiratory
disease.
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Introduction

Cigarette smoking is recognized to have profound human
health implications, and is strongly associated with the develop-
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pulmonary disease (COPD), lung cancer, and asthma [1-3]. The
main proximal target of inhaled CS is the respiratory epithelium,
and CS-mediated effects on the respiratory epithelium include
alterations in epithelial integrity [4,5], production of various
inflammatory cytokines [6,7], and induction of squamous or
mucus metaplasia [8,9], as major events that culminate in chronic
lung diseases associated with smoking. Although the mechanisms
involved in CS-related disease are highly complex, various lines of
evidence indicate the importance of electrophilic aldehydes such
as the o,B-unsaturated aldehyde, acrolein. Indeed, CS-related
epithelial injury or activation is often associated with alterations
in cellular glutathione (GSH) status, which are primarily due to its
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conjugation to acrolein or related electrophilic aldehydes in CS
[10,11]. Moreover, CS-mediated effects on epithelial integrity,
cytokine production, or mucus metaplasia can be replicated by
comparable exposure to acrolein [12]. Finally, genetic determi-
nants of chronic lung diseases such as COPD or lung cancer
include polymorphisms in one of the main enzymes involved in
acrolein metabolism, GSH S-transferase P1 [13,14], which is
prominently expressed within the respiratory epithelium [15].

The mechanisms by which acrolein affects biological systems are
still incompletely understood, but many of its biological effects have
been attributed to activation of mitogen-activated protein kinases
(MAPKSs), such as c-Jun N-terminal kinase (JNK) or p38 [16,17], which
mediate acrolein-induced epithelial chemokine production [18],
alterations in epithelial/endothelial integrity [19] or induction of
apoptosis/oncosis [16,20]. However, the precise mechanisms by
which acrolein activates these MAPK pathways still remain to be
identified. Acrolein is the simplest and most reactive o,-unsaturated
aldehyde and primarily reacts with biological targets by Michael
addition to nucleophilic amino acid residues (Cys, Lys, His) [21-24]
or DNA bases [22,25]. Proteomic studies indicate that acrolein
preferably reacts with protein cysteine residues, and thereby affects
enzymes involved in cellular redox signaling [26,27]. For example,
acrolein can directly alkylate selected cysteines within Kelch-like
ECH-associated protein 1(KEAP1), which promotes the activation of
nuclear erythroid-2 related factor 2 (Nrf2) and induces adaptive
responses to acrolein or other electrophiles by induction of antiox-
idant (electrophile) response element (ARE) genes [28-30].

Recent studies indicate that acrolein can interact with various
redox signaling proteins, including peroxiredoxins, thioredoxin
(Trx) and thioredoxin reductase (TrxR) [27,31-33]. TrxR is a
homodimeric selenoprotein that exists as two isoforms (cytosolic
TrxR1 and mitochondrial TrxR2) and utilizes reducing equivalents
from NADPH to reduce thioredoxin (Trx) 1 or Trx2 (and possibly
other substrates) using a mechanism that is dependent on the
selenocysteine (Sec)-containing C-terminal redox center, and
thereby plays a central role in controlling redox processes involved
in mitochondrial function or in regulating cell cycle and survival
pathways [34,35]. The biological significance of the unusual Sec
residue within TrxR is debated, but its unique electrochemical
properties and strong nucleophilic character make it a highly
susceptible target for alkylation by soft electrophiles such as
acrolein [21,34,36,37]. While such alkylation of Sec in TrxR inhibits
its Trx reductase activity [32,38], a number of studies have
indicated that adduction of electrophiles to Sec results in a
functionally altered protein with enhanced NADPH oxidase activity
and increased pro-apoptotic properties, and has been referred to as
“selenium compromised thioredoxin reductase-derived apoptotic
protein” (SecTRAP) [39,40]. Our recent studies established selective
alkylation of Sec within TrxR by acrolein, resulting in suppressed
Trx reductase activity [27], although it is still unclear whether
acrolein induces a similar gain-of-function of TrxR as was reported
for other electrophiles. Therefore, the present studies were designed
to address the importance of TrxR1 and its alkylation in cellular
responses to acrolein in bronchial epithelial cells, and our findings
indicate that TrxR1 controls the susceptibility of Trx1 to acrolein-
induced alkylation, and that alkylation of TrxR1/Trx1 actively
contributes to MAPK activation by acrolein and potentially to
functional alterations related to these signaling pathways.

Methods
Cell culture and treatments

Human bronchial epithelial (HBE1) cells (generously provided
by Dr. Reen Wu at the University of California, Davis [41]) were

cultured at 37 °C in 95% humidified air containing 5% CO, using
Dulbecco’s Modified Eagle’s Medium (DMEM/F-12) supplemented
with 50 U/mL penicillin, 50 pg/mL streptomycin, 10 ng/mL cho-
leratoxin (List Biological Laboratories, Inc.), 10 ng/mL epidermal
growth factor (Calbiochem), 15 pg/mL bovine pituitary extract,
0.5 mg/mL bovine serum albumin (Invitrogen), 5 pg/mL insulin,
5 pg/mL transferrin, and 0.1 pM dexamethasone (Sigma).

For experimentation, cells were plated at near-confluence in
12-well plates and placed in Hank’s Balanced Salt Solution (HBSS)
for treatments with acrolein (to avoid unwanted reactions of
acrolein with other constituents present with the culture media),
and collected after 30 min for various biochemical analyses, or
cells were placed in full culture media for continued incubation.
At indicated time points, cells were collected in appropriate lysis
buffer, and total protein was quantified using the BCA protein
assay kit (Pierce). Conditioned media was collected after 24 h for
analysis of cytokine secretion or cell viability.

Alteration and analysis of GSH

GSH was analyzed in cell lysates by derivatization with 2 mM
monobromobimane (mBrB), and analyzed by HPLC with fluores-
cence detection, as previously described [42]. Where indicated,
GSH levels were repressed by 24-h preincubation with 100 uM
buthionine sulfoximine (BSO), or augmented by 4-h pretreatment
with 5 mM glutathione ethyl ester (GEE) (Sigma), prior to acrolein
treatment.

Manipulation of TrxR1 status

To increase TrxR protein levels prior to acrolein treatment,
cells were cultured in the presence of 50 nM sodium selenite
(Na,SeOs; Sigma) for 5 days. Conversely, to suppress endogenous
TrxR1 levels, cells were seeded at 70% confluence in 24-well
plates and transfected with 50 nM TXNRD1 Smartpool siRNA
(Dharmacon) and DharmaFECT transfection reagent according to
manufacturer’s instructions. Media was replaced after 24 h and
cells were used for experimentation 60 h after transfection.

Measurement of TrxR activity by insulin assay

Cells were lysed in 50 mM Tris/Cl (pH 7.4) containing 1 mM
EDTA, and the reductase activity of TrxR was measured using a
previously described end-point insulin assay [43,44]. Protein
lysates (20 pg) were incubated with 2 mM NADPH, 20 uM E. coli
thioredoxin (Trx), and 1.5 mg/ml insulin for 60 min at 37 °C after
which the reaction was stopped with 8 M guanidine HCL contain-
ing 1 mM 5,5-dithiobis(2-nitrobenzoic) acid (DTNB). Formation
of 2-nitro-5-thiobenzoic acid (TNB) was measured at 412 nm
using a BioMate 5 spectrophotometer (Thermo Spectronic), and
Trx-dependent reductase activity was determined by calculating
the difference in activity with and without Trx.

Assessment of Trx 1 redox status by redox western blot

Analysis of Trx redox status was performed as previously
described [45]. Briefly, cell proteins were S-carboxymethylated
in lysis buffer (50 mM Tris/Cl, pH 8.3; 3 mM EDTA; 6 M Guanidine
HCL; 0.5% Triton X-100; 2% protease inhibitor) containing 5 mM
iodoacetic acid (IAA) at 37 °C for 30 min in the dark, cell lysates
were collected and filtered using centrifugal filter devices (3000
MWCO; Millipore) to remove excess IAA. Samples were mixed
with 2 x non-reducing sample buffer, containing 0.5 M Tris/Cl
(pH 6.8), 20% v/v glycerol, and 0.02% bromophenol blue, and
separated on 18% Native PAGE gels (Invitrogen, Carlsbad, CA) for
analysis of various oxidation states of Trx 1, by Western blotting
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using a polyclonal rabbit antibody against Trx 1 (1:2000, Cell
Signaling) and detection with SuperSignal West chemilumines-
cent substrate (Pierce). Band densities were quantified using
Image] software (http://imagej.nih.gov/ij/), and expressed as a
percentage of total Trx intensity for each treatment condition.

Studies with semi-synthetic mTrxR

Full length semisynthetic mitochondrial TrxR-GCUG and a
truncated variant lacking the C-terminal CUG residues (mTrxRA3)
were prepared as described [46], and incubated at a final
concentration of 200 nM in 100 mM potassium phosphate buffer
containing 1 mM EDTA with 30 pM acrolein for 15 min. After
acrolein adduction, 20 nM mTrxR was incubated with 200 uM
NADPH (Sigma) and 20 uM E. coli thioredoxin, and the Sec-
dependent thioredoxin reductase activity was measured as a
result of NADPH consumption by absorbance at 340 nm. In
addition, NADPH oxidase activity, which may reflect activity at
the N-terminal cysteines within mTrxR [37,47], was addressed by
mixing 12 nM mTrxR with 200 uM NADPH and measurement of
NADPH consumption at 340 nm as previously described [48], in
the absence or presence of 1 mM a-lipoic acid (Sigma). The rate of
reaction was evaluated from the linear portion of the curve, and

expressed as AAs4o x 60571,

Detection of protein—acrolein adducts using biotin hydrazide labeling

Protein lysates (>300 pg) were mixed with 5mM biotin
hydrazide (Thermo Scientific) solubilized in DMSO at room
temperature for 2 h with constant rotation. This was followed
by the addition of 30 mM sodium cyanoborohydride (NaCNBHy;
Sigma) and incubation on ice for 60 min. Biotin-labeled proteins
were purified by avidin chromatography as described previously
[27,49,50]. Briefly, biotinylated lysates were washed three times
with 300 pL of 20 mM Tris/Cl pH 7.4 using centrifugal filter
devices (3000 MWCO; Millipore) at 10,000 rpm for 10 min, to
remove excess biotin hydrazide and NaCNBH,. Labeled proteins
were then isolated by affinity chromatography (batch method) by
the addition of 50 pL of a 50% suspension of high capacity
neutravidin agarose resin (Thermo Scientific). The beads were
washed six times with 0.2 M glycine pH 2.8, centrifuged between
each wash at <2500 rpm, then washed once with 20 mM Tris/Cl
pH 7.4. Proteins were eluted in 100 puL 2 x reducing sample buffer
and boiled at 95-100 °C for 5 min, and analyzed by 10% or 18%
SDS-PAGE and Western blotting.

Western blotting

Cells were lysed in buffer containing 1% Triton X-100, 250 mM
NaCl, 50 mM HEPES, 10% glycerol, 1.5 mM magnesium chloride
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(MgClI2), 1 mM polymethylsulfonyl chloride (PMSF), 1 mM ethy-
lene glycol tetraacetic acid (EGTA), 2 mM sodium orthovanadate
(Na3VOy), 10 pg/mL aprotinin, and 10 pg/mL leupeptin for protein
analysis. Following 15 min incubation on ice, cells were sonicated
for 20 pulses on ice using a sonic dismembrator (Fisher Scientific)
and centrifuged at 14,000 rpm, 4 °C for 5 min to remove cell
debris. Protein was quantified via the bicinchoninic acid assay
(BCA protein assay kit; Pierce). Aliquots containing 15 pg protein
were mixed with 2 x reducing sample buffer (containing 4% SDS,
20% glycerol, and 10% B-mercaptoethanol), and separated by SDS-
PAGE, transferred to nitrocellulose membranes, and blotted for
specific proteins with the following primary antibodies: TrxR1:
(1:1000, Abcam), Trx1 (1:2000, Cell Signaling), phospho SAPK/
JNK1/2 (1:1000, Cell Signaling), SAPK/JNK1/2 (1:1000, Cell Signal-
ing), phospho ERK1/2 (1:1000, Cell Signaling), ERK1/2 (1:1000,
Cell Signaling), phospho P-38 (1:1000, Cell Signaling), P-38
(1:1000, Cell Signaling), HO-1 (1:250, Biovision), NQO1 (1:1000,
Cell Signaling), B-actin (1:5000, Sigma). Primary antibodies were
detected using HRP-conjugated anti-rabbit or anti-mouse IgG and
visualized by SuperSignal West chemiluminescent substrate
(Pierce). Band densities were evaluated using Image] software,
and normalized to total levels of respective proteins or to -actin.

Measurement of cell toxicity

Loss of cell viability was evaluated by analysis of lactate
dehydrogenase (LDH) in conditioned media using LDH Cytotoxi-
city Detection Kit (Takara Bio Inc.), and expressed as a percentage
of total cellular LDH which was estimated by cell lysis in 2% Triton
X-100.

Statistical analyses

Data for each group were statistically analyzed via t-test or
analysis of variance (ANOVA) depending on the amount of
groups/experiment and significance was assigned at a cut off of
p <0.05.

Results

Acrolein exposure inactivates TrxR independent of GSH depletion
and in association with alkylation

To analyze the effects of acrolein exposure of HBE1 cells on
various cellular redox systems, cells were treated with 3-30 uM
acrolein for 30 min, and GSH levels and TrxR activity were
determined. As shown in Fig. 1A, acrolein induces depletion of
cellular GSH and inhibition of TrxR activity in a dose-dependent
manner, but the effects on TrxR were more pronounced at lower
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Fig. 1. Acrolein-induced redox alterations in HBE1 cells. HBE1 cells were treated with acrolein at indicated concentrations for 30 min after which TrxR activity and GSH
levels were measured as described in the Methods section (A). HBE1 cells were pretreated with BSO (24 h) or GEE (4 h) prior to acrolein treatment of indicated for 30 min,
after which GSH levels (B) and TrxR1 activity (C) were measured. Results are expressed as mean + SEM, n=4. *: p < 0.05, **: p <0.01 compared to control.
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concentrations. To determine whether cellular GSH status affects
the sensitivity of TrxR to acrolein, GSH levels were augmented by
pretreatment with GEE or depleted by BSO (Fig. 1B). However,
neither treatment significantly affected acrolein-dependent inhi-
bition of TrxR (Fig. 1C).

We also evaluated the effects of acrolein on Trx1 oxidation
using redox western blots, which indicated increased formation of
higher MW Trx1 bands, most likely reflecting partially and fully
oxidized forms of Trx1, in response to acrolein (Fig. 2A). Alteration
of cellular GSH levels using either BSO or GEE did not affect basal
Trx1 oxidation status, but enhanced acrolein-dependent Trx1
oxidation was observed in BSO pretreated cells, whereas the
extent of acrolein-induced Trx1 was reduced in GEE pretreated
cells (Fig. 2B). We realize that these Trx1 redox blots do not
distinguish between Trx1 oxidation or alkylation, but our findings
indicate that acrolein-induced Trx1 oxidation/alkylation depends
on initial GSH status, in contrast to TrxR1 inactivation which
occurred regardless of initial GSH status. These findings are
consistent with the notion that TrxR is highly susceptible to
inhibition by acrolein, compared to other cellular redox systems.

Acrolein inhibits thioredoxin reductase activity but enhances NADPH
oxidase activity of mTrxR

Based on previous studies suggesting the ability of alkylating
agents to induce a gain-of-function in TrxR [39], we investigated
the effects of acrolein on semisynthetic full-length mitochondrial
TrxR (mTrxR-GCUG) and a truncated version (mTrxRA3) that
lacks the C-terminal CUG motif including Sec (U), and is relatively
resistant to alkylation by acrolein [27]. As shown in Fig. 3A,

acrolein treatment significantly inhibits thioredoxin reductase
activity (measured using the insulin assay) in full-length
mTrxR-GCUG, whereas truncated mTrxRA3 had little activity as
it lacks the C-terminal Sec residue. In contrast, analysis of NADPH
oxidase activity in the presence of alternative substrates such as
o-lipoic acid, which do not require the C-terminal Sec residue
[47], indicated that acrolein significantly enhanced NADPH
oxidase activity of mTrxR-GCUG (Fig. 3B). The fact that the
comparable activity of mTrxRA3 towards a-lipoic acid was not
significantly affected by acrolein under similar conditions (Fig. 3B)
is consistent with selective reaction of acrolein with the
C-terminal Sec within the full-length enzyme which is absent in
mTrxRA3 [27]. Presumably, Sec alkylation within the full-length
enzyme may induce a conformational change that favors its
ability to reduce alternative substrates such as a-lipoic acid
(A. P. Lothrop and R. ]J. Hondal, unpublished). Overall, these data
indicate that acrolein not only inhibits the reductase activity of
TrxR but also induces a “gain-of-function” illustrated by
enhanced NADPH oxidase activity in the presence of a-lipoic acid.

Involvement of TrxR1 in acrolein-mediated Trx1 oxidation and
alkylation

Based on our observations that TrxR1 is highly sensitive to
acrolein compared to e.g. GSH and that acrolein may induce a
“gain-of-function” in TrxR by direct alkylation to its Sec residue,
we wished to determine whether alkylation of TrxR may directly
contribute to acrolein-induced cytotoxicity or cell activation.
To address this, we used two different approaches to either augment
or suppress TrxR levels in HBE1 cells, and evaluated its effects on
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Fig. 2. Acrolein-dependent Trx oxidation depends on GSH status. HBE1 cells were pretreated with BSO (24 h) or GEE (4 h) prior to acrolein treatment for 30 min, and Trx1
redox status was determined by S-carboxymethylation and non-reducing native PAGE. Representative redox Western blots are shown in (A) and relative band densities of
partially oxidized Trx are summarized in (B). Results are expressed as mean + SEM, n=4. *: p < 0.05, **: p <0.01 compared to control.
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acrolein-induced TrxR alkylation, Trx status and cytotoxicity.
First, since TrxR expression is regulated by selenium availability
[51-53], we cultured HBE1 cells in media supplemented with
selenite (at non-toxic concentrations ranging from 20 to 100 nM),
and determined that supplementation with 50 nM for 5 days
resulted in optimal increased in TrxR1 protein and activity (Fig.
S1). As illustrated in Fig. 4A and B, selenite-supplemented HBE1
cells contained about 2-fold more TrxR1 protein and also con-
tained correspondingly increased levels of alkylated TrxR after
acrolein treatment, compared with non-supplemented HBE1 cells
(Fig. 4C). We realize that selenium supplementation may also
affect expression of other selenoproteins such as glutathione
peroxidases [54,55], and therefore cannot conclusively state that
effects of selenium supplementation are exclusively due to
increases in TrxR expression. As a converse approach, we sup-
pressed TrxR1 using siRNA which resulted in approx. 80% knock-
down of TrxR1 protein (Fig. 4D and E), with comparable increases
in alkylated TrxR1 after acrolein treatment (Fig. 4F). Therefore,
manipulation of TrxR1 levels resulted in corresponding changes in
alkylated TrxR after acrolein exposure, allowing us to determine
whether cellular changes induced by acrolein may be related to
alkylation of TrxR.

Although selenite supplementation of HBE1 cells did not affect
overall GSH levels (not shown), it appeared to alter Trx1 redox
status to a more reduced state (Fig. 5A and B). Conversely, siRNA
silencing of TrxR1 appeared to result in slightly more oxidized
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Trx1 status, compared to NT-siRNA transfection (Fig. 5C and D).
However, neither selenite supplementation nor TXNRD1 siRNA
silencing appeared to significantly affect acrolein-induced oxida-
tion/alkylation of Trx1, as the relative amounts of partially or fully
oxidized Trx1 after treatment with 10-30 pM acrolein were
highly similar (Fig. 5B and D). Because the electrophoretic
mobility shift in Trx1 may also be due to alkylation rather than
oxidation, we used biotin hydrazide labeling and neutravidin
chromatography to more directly evaluate Trx1 alkylation in
these cases. As illustrated in Fig. 6A and C, acrolein treatment
resulted in significantly enhanced Trx1 alkylation in selenite-
supplemented cells compared to non-supplemented cells,
whereas markedly reduced Trx1 alkylation was observed in
acrolein-treated TXNRD1 siRNA transfected cells compared to
control transfected cells (Fig. 6B and D). Importantly, these
changes in Trx1 alkylation were not related to altered overall
Trx1 levels, and are most likely related to alterations in initial
Trx1 redox status by either selenite supplementation or siRNA
silencing (Fig. 5). Thus, the ability of acrolein to alkylate Trx1
appears to depend on the presence of TrxR1 and its impact on the
reduction status of Trx1.

Effects of TrxR on acrolein-mediated cytotoxity

Since alkylation of TrxR by other electrophiles has been reported
to enhance its pro-apoptotic properties [39], we determined whether
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Fig. 4. Alterations in TrxR by selenite supplementation or siRNA silencing. HBE1 cells were supplemented with 50 nM selenite (A, B and C) or transfected with TXNRD1 or
NT siRNA (D, E and F), and treated with 30 pM acrolein for 30 min for Western blot analysis of total TrxR1 protein levels or B-actin in whole cell lysates (B and E),
or analysis of acrolein-modified TrxR1 which was determined after labeling with biotin hydrazide and analysis of avidin-purified proteins by Western blot for TrxR1
(C and F). Densitometry of Western blots was analyzed and results are expressed as mean + SEM. *: p < 0.05, **: p < 0.01 compared to non-supplemented or NT-siRNA controls.



270 M.,J. Randall et al. / Redox Biology 1 (2013) 265-275

A

5

£ Fully Oxidized
g . = e |Partially Oxidized
D e | Fully Reduced

z

. Fully Oxidized
= Partially Oxidized
©

» '. - Fully Reduced

0 3 10 30
[Acrolein] (uM)

C

<<

z & |Fully Oxidized
2 - - - Partially Oxidized
Z & = Fully Reduced
<

Z

% w» | Fully Oxidized
= - = - Partially Oxidized
% Fully Reduced
x

[

0 3 10 30
[Acrolein] (uM)

— # Selenite
= ++ No Supplement
= o 80
B &
=
T s Y]
> -
o2
.. 6 401
38
b= 20
©
o [ >
omm-E—— - )
0 10 20 30
[Acrolein] (uM)
¥ 1007
(=
T
N 80
T O i
E& . f
— 60
> 8
8 2
E %5 407
- &
& 20
>
S
w 0 T T
0 10 20
[Acrolein] (uM)

<+ NT-siRNA Partially Oxidized
£ TXNRD1 siRNA Partially Oxidized

@ NT-siRNA Oxidized

4 TXNRD1 siRNA Oxidized

Fig. 5. Effects of TrxR1 alterations on acrolein-induced Trx1 oxidation/alkylation. HBE1 cells were supplemented with selenite or transfected with TXNRD1 siRNA and
treated with acrolein for 30 min, and the oxidation/alkylation status of Trx1 was determined by redox Western blot (A and C). Graphs show relative band densities of
partially and/or fully oxidized Trx1 (B and D). Results are expressed as mean + SEM, n=4. *: p <0.05, **: p < 0.01 non-supplemented or NT-siRNA controls.

______ —— — |Biotinylated
Trx1
s e S0 SR IS G . wese S S s [T ]
- —— —— — —— —— — — | $-2C1iN
0 30 0 30
No Supplement Selenite
[Acrolein] (M)
E .
150 u
z £
2 8100+
E S
- O
2§
3 E so
X s
£

Control Acrolein Confrol Acrolein

No Supplement Selenite

L ———— e ——— —— -

O

Relative Intensity
(normalized to control)
£

0 30 0 30

NT-siRNA  TXNRD1siRNA

[Acrolein] (M)

b

mi Im

Biotinylated
Trx1

Trx1

B-actin

Control Acrolein Control Acrolein

NT-siRNA TXNRD1 siRNA

Fig. 6. Alterations in Trx1 by selenite supplementation or siRNA silencing. HBE1 cells were supplemented with 50 nM selenite (A) or transfected with TXNRD1 or NT siRNA
(B), and treated with 30 uM acrolein for 30 min for Western blot analysis of total Trx1 protein levels or f-actin in whole cell lysates, or analysis of acrolein-modified TrxR1
which was determined after labeling with biotin hydrazide and analysis of avidin-purified proteins by Western blot for Trx1. Graphs show relative band densities of
Biotinylated Trx1 (C, D). Results are expressed as mean + SEM. *: p < 0.05, **: p < 0.01 compared to non-supplemented or NT-siRNA controls.



M.,J. Randall et al. / Redox Biology 1 (2013) 265-275 271

TrxR and its alkylation may also be required for the pro-apoptotic
properties of acrolein [20]. To test this, selenite-supplemented
or TXNRD1 siRNA transfected HBE1 cells were treated with acrolein
for 30 min and incubated for up to 24 h for analysis of cell viability
using LDH release. No significant cytotoxicity was observed in
non-supplemented or selenite-supplemented HBE1 cells by acrolein
concentrations up to 30 min, and acrolein-induced loss of viability
in siRNA transfected HBE1 cells was nearly identical between
TXNRD1 siRNA and NT-siRNA transfected cells (Fig. S2). These data
suggest that inhibition or alkylation of TrxR1 does not contribute
significantly to the cytotoxic properties of acrolein under these
conditions.

Involvement of TrxR1 in acrolein-induced MAPK signaling

Since acrolein is capable of activating various MAPKs [16,18],
which may involve oxidation of Trx1 and dissociation from
apoptosis signal-regulated kinase (ASK1) [26] or potentially the
activation of oxidant mechanisms by alkylation of TrxR [39,40],
we next explored the impact of selenite supplementation and
TrxR1 siRNA silencing on the ability of acrolein to activate JNK1/2,
ERK1/2, and p38. As expected, acrolein dose-dependently induces
activation of JNK, ERK, and p38 in HBE1 cells, as indicated by
phosphorylation of ERK at concentrations as low as 3 uM and
phosphorylation of JNK and p38 at 10-30 uM (Figs. 7 and 8).
Interestingly, the ability of acrolein to induce the phosphorylation
of these MAPK appeared to be increased in selenite-supplemented
cells (Fig. 7A), which was statistically significant in case of JNK
(Fig. 7B and C). Conversely, acrolein-mediated phosphorylation of
especially JNK1, but also ERK and p38, was suppressed in TXNRD1
siRNA transfected cells compared to NT-siRNA transfected cells

(Fig. 8). Together, these data indicate that acrolein-induced
activation of MAPK, primarily JNK1 and p38, is dependent on
the presence of TrxR and is likely related to alkylation of TrxR1
and/or Trx1.

To address the possibility that TrxR1 alkylation might promote
MAPK activation by increased NADPH oxidase activation and
production of O3~ and H,0,, we performed some experiments
in the presence of two scavengers of H,O, and/or 05, ebselen
(10 M) or EUK134 (50 uM). However, both compounds them-
selves increased basal levels of ]NK phosphorylation, and did not
appear to significantly prevent JNK phosphorylation after subse-
quent exposure to acrolein (Fig. S3), although both compounds
were shown to inhibit H,0,-dependent signaling under similar
conditions [56,57]. Therefore, the ability of acrolein to activate
JNK does not appear to involve H,0, or O3

TrxR1 does not mediate acrolein-dependent induction of phase Il
responses

Acrolein and related aldehydes can induce the expression of
anti-inflammatory or phase Il enzymes through activation of the
antioxidant response element (ARE), and recent studies indicate
that this may also involve MAPK pathways [29]. We therefore
tested the effects of selenite supplemention or TrxR1 silencing on
acrolein-mediated induction of two ARE genes, heme oxygenase 1
(HO-1) and NADPH:quinone oxidoreductase 1 (NQO1). However,
although acrolein-induced dose-dependent increases in HO-1
expression in HBE1 cells, this was not affected by selenite
supplementation or TrxR1 silencing (Fig. 9A and C). Somewhat
surprisingly, acrolein did not appear to significantly affect NQO1
expression, irrespective of TrxR1 status (Fig. 9B and D). Therefore,
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acrolein-mediated adduction of TrxR1 and/or Trx1 does not signi-
ficantly impact on induction of ARE-regulated genes.

Discussion

Chronic lung diseases such as COPD and asthma have been
strongly associated with cigarette smoking [2,3] and based on
studies with thiol-based antioxidants, the adverse effects of
smoking are largely mediated by thiol-reactive substances within
tobacco smoke, of which acrolein is among the most abundant
and reactive [10,58]. Our present studies were based on recent
observations that TrxR is highly sensitive to direct modification
by acrolein due to its highly nucleophilic Sec residue [26,27], and
that functional alterations due to such alkylation by electrophiles
can contribute to their cytotoxic properties or other cellular
effects [34,39]. We confirmed that acrolein readily inactivates
thioredoxin reductase activity in HBE1 cells, independent of
depletion of GSH or other redox alterations, and corresponding
with direct alkylation of TrxR1. Using purified semisynthetic
mTrxR, we also demonstrated that acrolein-induced inhibition
of thioredoxin reductase activity is associated with enhanced
NADPH-dependent reductase activity towards other substrates,
which does not require the C-terminal Sec residue [47]. Although
such findings with mitochondrial mTrxR (TrxR2) may not be fully
applicable to cytosolic TrxR1, because of potential structural
differences and the presumption that the C-terminal tail in mTrxR
exhibits greater flexibility and might thereby facilitate reduction
of a larger variety of substrates at the N-terminal dithiol region if
Sec is alkylated, they are consistent with other recent findings
with TrxR1 indicating that electrophilic addition to Sec results in

reduced thioredoxin reductase activity and increased NADPH
oxidase-like activity [59,60].

We used two independent approaches to modulate TrxR1
expression levels in HBE1 cells to address the potential cellular
consequences of TrxR1 alkylation. While these approaches did not
significantly affect the overall cytotoxic effects of acrolein, they
demonstrated that the ability of acrolein to activate various MAPK
pathways, most notably JNK and p38, depend on the presence of
TrxR1, suggesting that these pathways may be activated by a
gain-of-function in TrxR1 due to its alkylation. One potential
consequence of such a gain-of-function is increased production of
05~ and H;0, due to enhanced NADPH oxidase activity [59,60],
which may in turn be responsible for activation of JNK or p38
[61]. In an attempt address this possibility, we used two chemical
catalysts of H,0,/05;~ decomposition, ebselen and EUK134, but
neither compound clearly affected acrolein-induced JNK phos-
phorylation (Fig. S3). Thus, our findings suggest that activation of
these signaling pathways may not involve H,0,/O;~ production
as a result of TrxR1 alkylation, but rather depend on alternative
functional consequences of such alkylation.

Alterations in TrxR1 activity might also affect acrolein-
dependent signaling by more indirect effects on Trx redox status.
While our studies did not indicate a significant impact of TrxR1
status on acrolein-dependent alterations in overall Trx1 redox
status, direct alkylation of Trx by acrolein was proportional to
initial TrxR1 expression levels, most likely related to correspond-
ing changes in Trx redox status and relative availability of
reduced Trx for alkylation. Indeed, various lines of evidence
suggest a direct role for acrolein-induced Trx1 alkylation in
downstream signaling events. For example, acrolein modification
of Trx1 was recently linked to increased monocyte adhesion to
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endothelial cells, although the proximal signaling events in this
adhesion were not examined [31]. More recently, Trx1 alkylation
was suggested to promote dissociation of Trx1 from ASK1, which
may lead to its activation and subsequent MAPK phosphorylation
[26]. Our findings are consistent with such a notion, since
alterations in acrolein-dependent MAPK signaling in relation to
TrxR1 status were found to be proportional to the extent of
alkylated Trx1, although they were also proportional to the
amount of alkylated TrxR1, which may itself induce functional
alterations. Future studies will be required to more definitively
distinguish between these two scenarios.

We have attempted to address potential functional conse-
quences of enhanced MAPK activation in relation to TrxR/Trx
alkylation. While our studies did not indicate significant conse-
quences of TrxR1 status for acrolein-mediated cytotoxicity, acti-
vation of MAPK pathways have also been implicated in acrolein-
dependent induction of anti-inflammatory or phase II responses
[29], epithelial production of cytokines such as interleukin-8 or
thymic stromal lymphopoietin (TSLP) [7,18], or altered epithelial
barrier integrity [62]. However, we did not observe significant
effects of TrxR1 status on acrolein-dependent induction of anti-
inflammatory responses such as HO-1, probably because such
induction is initiated primarily by alkylation of Keapl and
activation of Nrf2, which is independent of TrxR1. Also, in
apparent contrast with previous studies [7,18], we did not
observe significant induction of either IL-8 or TSLP by acrolein
under these conditions in HBE1 cells (results not shown). Unfor-
tunately, we were not able to evaluate consequences for epithelial
barrier function by e.g. transepithelial electrical resistance,
because the HBE1 cell line is not suitable for this purpose. The
potential involvement of TrxR1 in acrolein-mediated alterations

in epithelial integrity will therefore have to be addressed in future
studies in more appropriate airway epithelial systems.

In summary, our data suggest that the effects of acrolein on
airway epithelial biology may be mediated in part by direct adduc-
tion to TrxR1 and/or Trx1, which appears to directly impact on
acrolein-mediated activation of MAPKSs, specifically JNK and p38.
Although we did not definitively demonstrate a consequence for
airway epithelial biology, our findings are likely to be relevant for
epithelial alterations in smoking-related diseases such as COPD and
asthma, and may implicate TrxR or Trx as potential therapeutic
targets in treatment or management of these diseases.

Appendix A. Supplementary Information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org.10.1016/j.ultramic.2011.01.
020.
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