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a b s t r a c t

Aging and age-related diseases are associated with cellular senescence that results in variable apoptosis

susceptibility to oxidative stress. Although fibroblast senescence has been associated with apoptosis

resistance, mechanisms for this have not been well defined. In this report, we studied epigenetic

mechanisms involving histone modifications that confer apoptosis resistance to senescent human

diploid fibroblasts (HDFs). HDFs that undergo replicative senescence display typical morphological

features, express senescence-associated b-galactosidase, and increased levels of the tumor suppressor

genes, p16, p21, and caveolin-1. Senescent HDFs are more resistant to oxidative stress (exogenous

H2O2)-induced apoptosis in comparison to non-senescent (control) HDFs; this is associated with

constitutively high levels of the anti-apoptotic gene, Bcl-2, and low expression of the pro-apoptotic

gene, Bax. Cellular senescence is characterized by global increases in H4K20 trimethylation and

decreases in H4K16 acetylation in association with increased activity of Suv420h2 histone methyl-

transferase (which targets H4K20), decreased activity of the histone acetyltransferase, Mof (which

targets H4K16), as well as decreased total histone acetyltransferase activity. In contrast to Bax gene,

chromatin immunoprecipitation studies demonstrate marked enrichment of the Bcl-2 gene with

H4K16Ac, and depletion with H4K20Me3, predicting active transcription of this gene in senescent

HDFs. These data indicate that both global and locus-specific histone modifications of chromatin

regulate altered Bcl-2:Bax gene expression in senescent fibroblasts, contributing to its apoptosis-

resistant phenotype.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Introduction

Cellular senescence is defined as a state of irreversible growth
arrest, which is protective against the development of cancer, but
may also contribute to age-related diseases [1]. Senescence of
cells may be triggered by a number of mechanisms, both intrinsic
(e.g. replicative) and extrinsic (e.g. stress-induced). While senes-
cence has classically been considered as tumor-suppressive
mechanism that promotes apoptosis of epithelial cells, the activa-
tion of a senescence program in certain cell types, such as
fibroblasts [2] and T-cells [3], may result in resistance to
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apoptosis. The accumulation of such cell types in mitotically
active, post-natal tissues may contribute to the pathogenesis of
certain age-related diseases, including fibrotic disorders [4,5].

Senescent fibroblasts have been reported to resist apoptosis by
the up-regulation of a number of anti-apoptotic genes such as
survivin [6], c-myb [7], major vault protein [8], and Bcl-2 [9,10].
However, whether epigenetic mechanisms control the expression
of pro- and anti-apoptotic genes in senescent fibroblasts have not
been defined. Cellular senescence, itself, is thought to have major
epigenetic underpinnings [11]. It has become increasingly clear
that chromatin-associated histone modifications are important
determinants of gene expression profiles that define senescent
phenotypes [12]. For example, histone deacetylase inhibitors have
been shown to induce a senescence-like state [13], suggesting
that alteration of histone acetylation is an important step leading
to senescence.

In this study, we investigated the response of human diploid
fibroblasts (HDFs) in low (non-senescent) and high (senescent)
passage cells that undergo replicative senescence to oxidative
stress (induced by exogenous hydrogen peroxide, H2O2). We
assessed their apoptosis susceptibility and explored epigenetic
ts reserved.
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mechanisms for the acquisition of an apoptosis-resistance in
senescent HDFs. Our data indicate an imbalance of the constitu-
tive expression Bcl-2 family proteins (Bcl-2 4Bax) that is related
to both global and chromatin-specific histone modifications.
Senescent HDFs are associated with globally increased repressive
histone modification (H4K20Me3), which is also enriched in
association with Bax; in contrast, although the active histone
modification (H4K16Ac) is globally decreased in senescent HDFs,
it is enriched in association with Bcl-2, consistent with a high Bcl-
2:Bax ratio in senescent HDFs. This study provides novel epige-
netic mechanisms that involve both global and chromatin-specific
histone modifications that lead to an imbalance in the expression
of Bcl-2 family proteins and apoptosis resistance in senescent
fibroblasts.
Materials and methods

Cell Culture and H2O2 Exposures

Human diploid fibroblasts (HDFs; IMR-90 lung fibroblasts) were
purchased from Coriell Institute for Medical Research (Camden, NJ)
at the population doubling level (PDL) of 17. Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, Life Technologies,
Grand Island, NY) with 10% fetal bovine serum (FBS, Life Technol-
ogies) with 5% CO2 at 37 1C. Cells with PDL o30 were categorized
as low PDL (LPDL; non-senescent), while PDL between 47 and 55 as
high PDL (HPDL; senescent) [14]. PDL was calculated at each time of
passage with formula, PDL¼3.32(log (total viable cells at harvest/
total viable cells at seed)). Cells were seeded in 100 mm dishes at a
density of 2�106 cells/dish for 24 h, and then treated with 100 or
200 mM H2O2 for 2 hours; fresh cell culture medium was added and
cells analyzed at 24 h, unless otherwise specified [15].

Annexin V-FITC Apoptosis Assay

HDFs were assayed for apoptosis using an AnnexinV-FITC
apoptosis kit (MBLI, Woburn, WA), as previously described [16].
Briefly, after the cell treatment as above, at the end of 24 h
incubation, the cells are collected, resuspended in 500 ml binding
buffer from the kit. Annexin V-FITC and propidium iodide were
added (5 ml of each), followed by incubabtion at room tempera-
ture in dark and quantification by flow cytometry.

Casapse-3 Activity Assay

Caspase-3 activity assays were measured using an established
protocol and kit, according to manufacturer’s instructions (MBLI,
Woburn, WA). Briefly, the cells (1�106/ml) were induced apop-
tosis by H2O2 at 100 mM for 2 h, then incubated with cell culture
medium for 24 h prior to adding chilled 50 ml of lysis buffer on ice
for 10 min. Cell lysates were then centrifuged and the supernatant
collected and protein concentrations measured; 50 mg of protein
Table 1
Primer sequences for real-time PCR.

Name

Bcl-2 (ENSG00000171791) RT-PCR and

ChIP-PCR

Bax (ENSG00000087088) RT-PCR

ChIP-PCR

18S RT-PCR
was added in 50 ml of cell lysis buffer, 5 ml of substrate were
added and incubated at 37 1C for 60 min. Samples were read at
400-nm in a microtiter plate reader.

Senescence b-galactosidase Staining

Cellular senescence was assessed by using the Senescence
b-galactosidase staining kit (Cell Signaling, Beverly, MA).
Senescence-associated b-galactosidase (SA-b-gal)-positive cells
were counted at five random locations and three times in per
field using a Zeiss axiovert 200 M fluorescence/phase microscope
(Carl Zeiss International, Germany).

Quantitative Real-Time RT-PCR

Total RNA was extracted by RNeasy kit (Qiagen, Valencia, CA)
and transcribed to cDNA by reverse transcription using a cDNA
synthesis kit (Clontech, Mountain View, CA). All real-time RT-PCR
were performed in triplicate and normalized to 18S, as previously
described [17]. Primers used are listed in Table 1.

Antibodies and Immunoblotting

Antibodies against Bax (#5023), Bcl-2 (#2870), p21 (#2947),
Caveolin-1 (Cav-1, #3238), b-tubulin (#2128) and Lamin B1
(#9087) were from Cell Signaling, Beverly, MA. Antibody p16
(ab51243) was from Abcam, Cambridge, MA. Anti-bodies to Mof
(sc-271691) and Suv420h2 (sc-131078) were from Santa Cruz
Biotech. Antibodies against H4K16Ac and H4K20Me3 and used for
ChIP assays were from Active Motif, Carlsbad, CA.

Proteins were extracted by Allprep Kit (Qiagen), nuclear
proteins were extracted by using the EpiQuick Nuclear extraction
kit (Epigentek) as before [18]. Western blots were analyzed as
previously described [19]. Normalization was ensured by strip-
ping membranes after probing for the protein of interest, and then
re-probing with b-tubulin as control. Total histone H4 or Lamin
B1 were used as loading controls for nuclear extracts.

Chromatin Immunoprecipitation Assays

Chromatin immunoprecipitation (ChIP) assays were per-
formed as per manufacturer’s protocol (Epigentek, Brooklyn,
NY), with minor modifications [18]. ChIP-DNA was amplified by
real-time PCR with primers as noted in Table 1. Results are
normalized to input DNA.

Statistical Analysis

Data are expressed as mean7standard deviation (SD). Student’s
t test and one-way ANOVA statistical analyses were performed using
SigmaStat 3.5. A p value of less than 0.05 was considered statistically
significant.
Sequence

F: 50-GAGTGGGATGCGGGAGATGTG-30

R: 50-CGGGATGCGGCTGTATGGG-30

F: 50-TCAGGATGCGTCCACCAAGAA-30

R: 50-TCTGCAGCTCCATGTTACTGTCCA-30

F: 50-GCACTTGCTAATTCCTTCTGCGCT-30

R: 50-ATGAGCATCTCCCGATAAGTGCCA-30

F: 50-GTCTGCCCTATCAACTTTCG-30

R:50-ATGTGGTAGCCGTTTCTCA-30
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Fig. 1. Morphology and expression of senescence markers in young and senescent cells.

LPDL or HPDL human diploid fibroblasts cells (HDFs) were seeded at an equal density (2�106 cells/100 mm dish) for 24 h. A, Cells are subjected to b-galactosidase (b-gal)

staining, and representative phase-contrast images were photographed at 40x magnification. B, The number of b-gal positive cells is expressed as the percentage of total

cells counted. Results are mean7SD of at least three independent experiments; npo0.001, HPDL vs. LPDL. C, Cell lysates in RIPA buffer were collected and subjected to

SDS-PAGE and immunoblotted for p16, p21 and Cav-1, and b-tubulin. D, Densitometric analyses of the western blots in ‘‘C’’. Results are mean7SD of at least three

independent experiments; npo0.05, comparing HPDL vs. LPDL.
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RESULTS

Senescent HDFs are resistant to apoptosis induced by H2O2

Replication-induced senescence was studied in a cell culture
model of human diploid fibroblasts (HDFs) that has been pre-
viously described [20,21], with minor modifications as described
in ‘‘Materials and Methods’’. The senescent phenotype of HDFs at
high population doubling level (HPDL) was compared to low
population doubling level (LPDL), using morphological and bio-
chemical approaches. HPDL cells demonstrated larger cell size
with flattened morphology and a number of filamentous cyto-
plasmic extensions in comparison to LPDL cells. HPDL-HDFs cells
were also slower growing and a high percentage of cells stained
positively for senescence-associated b-galactosidase (SA-b-gal)
activity (Fig. 1A and B). The expression of tumor suppressor
proteins associated with cellular senescence, p16, p21 and
caveolin-1 (Cav-1), were increased in the HPDL-HDFs (Fig. 1C
and D), confirming senescence-associated characteristics of these
cells in contrast to LPDL-HDFs cells.

Oxidative stress has been associated with fibrotic diseases,
including IPF [22,23]. We studied the apoptosis susceptibility of
control and senescent HDFs in response to exogenous hydrogen
peroxide (H2O2) at two different concentrations for 24 h, at which
no cytotoxicity was observed (data not shown). Flow cytometry
analyses with Annexin V-FITC demonstrated resistance to apop-
tosis in senescent HPDL-HDFs; while LPDL-HDFs (non-senescent)
cells demonstrated significant induction of apoptosis (�2-fold
and 3-fold increase in the % of cells staining for Annexin V in
response to 100 mM and 200 mM H2O2, respectively), there was no
significant induction in response to low-dose H2O2, and only
about 1.2-fold induction in response to the higher dose of H2O2 in
HPDL-HDFs (Fig. 2A). We also assessed the activation of caspase-3
in control and senescent HDFs in response to H2O2. The activity of
caspase-3 doubled in LPDL-HDFs, while there was no significant
increase noted in senescent HPDL-HDFs in response to H2O2

(Fig. 2B). These data support the concept that senescent fibro-
blasts acquire an apoptosis-resistant phenotype.
Differential expression of apoptosis-regulating Bcl-2 family genes in

senescent HDFs

Mechanisms for the acquisition of apoptosis resistance in
senescent HDFs are incompletely understood [9,10]. We explored
the potential differential expression and regulation of Bcl-2 family
genes in the resistance of senescent HDFs to H2O2-induced
apoptosis. The main location of pro-apoptotic gene Bax is in the
cytoplasm [24]. In the cytoplasmic fraction, Bax levels were
higher at baseline in LPDL-HDFs in comparison to HPDL-HDF; in
response to H2O2, apoptosis-susceptible control LPDL cells further
increased Bax expression, while senescent cells did not (Fig. 3A,
B). We also examined the expression of Bax mRNA under the
same conditions. The pattern for constitutive expression of Bax
mRNA was similar to that observed for protein levels (Fig. 3C),
supporting the likelihood that the major regulatory mechanism
for this difference in Bax expression was at level of the gene
expression. We did not detect a significant increase in Bax mRNA
in response to H2O2 exposure, suggesting potential post-
transcriptional mechanisms regulating H2O2-induced Bax protein
expression in response to oxidative stress.

In contrast to Bax, the anti-apoptotic Bcl-2 protein was found
to be increased at baseline (control) in senescent vs. non-
senescent control LPDL-HDFs, without significant changes in
response to exogenous H2O2 at 24 h (Fig. 4A, B). Additionally,
we detected a further increase in Bcl-2 mRNA expression in HPDL
in response of H2O2 by real-time RT-PCR (Fig. 4C), suggesting an
earlier transcriptional response (relative to protein expression) or
independent post-transcriptional effects of H2O2 on protein
expression. Together, these data demonstrate both constitutive
and H2O2-inducible changes in Bax and Bcl-2 expression that
support an apoptosis-resistant phenotype of senescent HDFs.

Differential regulation of histone modifications in senescent HDFs

We hypothesized that epigenetic mechanisms involving histone
modifications account for the observed baseline expression and/or
inducible regulation of Bcl-2 family genes in senescent HDFs.
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Fig. 2. Differential responses of LPDL (non-senescent) and HPDL (senescent) HDFs to H2O2 induced apoptosis.

A, H2O2 at 100 mM or 200 mM was used to induce apoptosis in LPDL or HPDL. LPDL and HPDL fibroblasts were subjected to Annexin-V FITC assay 24 h after 2 h treatment of

H2O2. Percentage (mean7SD) of fibroblasts apoptosis are measured by flow cytometry, results are average of at least three independent experiments. B, Caspase-3 activity
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Fig. 3. Differential expression of the pro-apoptotic Bax gene/protein in LPDL and HPDL HDFs.

Cells were treated with or without H2O2 at 100 mM for 2 h then changed into fresh full medium for 24 h before collecting the protein lysates for western blots or RNA for

RT-PCR (see text for detailed information). A, Representative immunoblot of Bax protein expression in LPDL and HPDL. Protein lystates from cytoplasm of LPDL and HPDL

cells are subjected to immunoblots. Cytoplasm b-tubulin was used as a loading control. B, Densitometric analyses of the western blots in ‘‘A’’. Results are mean7SD of at

least three independent experiments; npo0.05, comparing HPDL vs. LPDL in its own group, ypo0.05, H2O2 treated LPDL vs. control LPDL. C, Real-time RT-PCR of Bax. LPDL
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Changes in chromatin structure have been implicated in mechanisms
of cellular senescence and aging [11]. In particular, histone H4 lysine
20 trimethylation (a repressive histone mark) and histone H4 lysine
16 acetylation (an active histone mark) are associated with aging
[11,25,26]. First, we examined the global expression of these histone
modifications. Expression of H4K20Me3 was increased, while that of
H4K16Ac was markedly reduced in senescent HDFs when compared
to the young HDFs (Fig. 5). Exogenous H2O2 treatment for 24 h
decreased the expression of both histone marks, which was greater
for the H4K16Ac mark; however, the magnitude (and direction) of
change was not different comparing non-senescent to senescent cells
(Fig. 5).

Next, we assessed if the expression of histone-associated
enzymes correlate with these modifications. Suv4–20h2 is a
histone methyltransferase that has been reported to mediate
methylation of H4K20 [27]. In nuclear extracts, expression of this
enzyme was constitutively higher in senescent cells (Fig. 6A, B),
while the response to H2O2, LPDL was not significantly changed,
while HPDL was decreased. This increased histone methyltrans-
ferase expression corresponds with the constitutively increased
trimethylation of H4K20 in senescent HDFs.
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Histone acetylation is controlled by the acetylation activity of
histone acetyltransferases (HATs) and deacetylation by histone
deacetylases (HDACs) [19]. Mof (males absent on the first), also
called MYST1, is an H4K16 acetyltransferase [28]. The expression
of Mof was found to be lower in HPDL than in LPDL; with H2O2

exposure, Mof expression is slightly increased in in LPDL, while it
is not changed in HPDL-HDFs (Fig. 6A and C). We also measured
total HAT activity in these cells at baseline condition; senescent
HDFs manifest constitutively lower total HAT activity when
compared to control HDFs (Fig. 6D).

In addition to HATS, the acetylation of histones is regulated by
HDACs. There are several HDACs that are reported to be involved
in the deacetylatione of H4K16Ac, including class III HDAC sirutin
1 [29] and other classes of HDACs [30]; however, a specific HDAC
that controls H4K16Ac has not been described. Nevertheless, our
finding of decreased Mof expression in HPDL is consistent with
the observed constitutive decrease in H4K16 acetylation in
senescent HDFs.

Histone modifications associated with differential expression of Bax

and Bcl-2 in senescent cells

Finally, we determined the relationships between the
observed differential regulation of Bax and Bcl-2 genes and their
association with H4K16 acetylation and H4K20 trimethylation in
non-senescent control and senescent cells. Using ChIP assays, the
repressive histone mark, H4K20Me3 associated with closed chro-
matin structure, is enriched with Bax in senescent cells; in
contrast, it is significantly depleted in association with the Bcl-2
gene in the same senescent cells (Fig. 7A). In contrast, we
observed the reverse pattern in association with H4K16Ac,
demonstrating marked enrichment with the Bcl-2 gene of this
‘‘active’’ histone mark in senescent HDFs (Fig. 7B). Thus, although
the H4K16Ac histone mark is globally reduced in senescent cells
(Fig. 5A), this finding predicts increased transcriptional activation
of Bcl-2. Together, these results suggest that histone marks
associated with open chromatin structure is associated with the
transcriptionally active anti-apoptosis gene, Bcl-2, in senescent
HDFs, which is constitutively expressed at a high level in
senescent HDFs; while the pro-apoptosis gene Bax is associated
with a marker of closed chromatin structure that predicts
decreased transcriptional activity in senescent HDFs.
Discussion

Cellular senescence represents a stress and tumor suppressive
response [31]. Senescent cells may accumulate in aging tissues,
contributing to diseases of aging if not to the intrinsic aging
process itself [32,33]. Fibrosis and cancer represent diseases in
which senescent fibroblasts within the tissue microenvironment
acquire resistance to apoptosis [5,34,35], although mechanisms
that link senescence to apoptosis resistance are not well defined.
In this study, we established a cell culture model of replicative
senescence that recapitulates the apoptosis-resistant phenotype
of senescent fibroblasts, as reported by others [6–10,36]. We
demonstrate altered constitutive expression of the Bcl-2 family
genes, Bcl-2 and Bax, favoring an apoptosis-resistant phenotype.
This pattern of gene expression is explained by histone modifica-
tions that are globally associated with replicative senescence
(reduced transcription of Bax), and by gene loci-specific chroma-
tin remodeling that predicts increased transcription of Bcl-2. This
is the first study to elucidate epigenetic mechanisms for
senescence-associated apoptosis resistance in lung fibroblasts.
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With increasing evidence showing that epigenetic mechan-
isms are key contributors to the aging and age-related diseases
[37], we explored the epigenetic basis for altered phenotype gene
expression patterns in senescent cells. Chromatin structure is
important in regulating gene expression; it is under dynamic
changes throughout life span [11]. One major mechanism for
epigenetic regulation is histone modification. Methylation and
acetylation of lysine residues on the tail of nucleosome core
histones has a critical role in regulating gene expression [38].
Histone 4 lysine 20 trimethylation has been reported to increase
with advancing age [25,39]; in contrast, it is commonly reduced
in cancer cells [39,40]. We observed increased H4K20Me3 in
senescent HDFs compared to non-senescent HDFs. The mechan-
isms for constitutively increased H4K20Me3 with aging are not
fully understood. The methyltransferase, Suv4–20h2, has been
reported to be relatively specific for histone H4 lysine 20
methylation [27]. Studies in cancer cells indicate loss of expres-
sion of this enzyme contributes to reduced H4K20 trimethylation
[38]. In our studies of senescent HDFs, we detected higher
expression of Suv4–20h2 that correlates with increased trimethy-
lation of H4K20. However, steady-state levels of methylation are
dependent on the relative activities of methyltransferases and
demethylases. We are not aware of specific H4K20 trimethylation
demethylase at this time [41]. Further studies on the activities of
these regulatory enzymes with loss/gain of function approaches
will provide additional insights into mechanisms that determine
the status of H4K20 trimethylation.

Other histone modifications may also be relevant to the
process of aging, including acetylation of histone. Reduced
H4K16 acetylation is strongly correlated with cellular senescence
[42]. Our data demonstrates decreased levels of H4K16 acetyla-
tion in senescent HDFs. This observation is consistent with
studies in mice that show hypoacetylation of H4K16 with
increased age [42]. There may be some species-dependent differ-
ences, as increased acetylation levels of H4K16, which depends on
SIRT2, has been reported in yeast [26]; thus, this highlights
important differences between yeast and mammalian aging.
Histone acetylation is associated with active transcription; it is
balanced by the activities of HATs and HDACs [38]. A number of
families of HATs and HDACs have been identified [43]. The roles of
specific enzymes that control acetylation of H4K16 are not well
defined. The histone acetyltransferase, MOF, has been reported to
be responsible for the acetylation status of H4K16 [44]. In our
studies, we demonstrated the lower expression of Mof in senes-
cent cells when compared to the non-senescent cells, we also
examined total HAT activity in senescent vs. non-senescent cells,
and detected significantly lower total histone acetyltransferases
activity in senescent HDFs. However, with exposure to H2O2,
increased Mof expression was noticed in LPDL HDFs (Fig. 6), but
the H4K16Ac is lower (Fig. 5). Though low Mof and total HAT
activity may account for the observed reduced acetylation of
H4K16 in senescent cells, the status of acetylated H4K16 may also
related to higher activity of HDACs. There are four classes and
total about 18 different HDACs [45]. A few HDACs reported
involved in the deacetylation activity of H4K16 [29,30], but none
specific HDACs have been clarified to have a major role. Besides
other HDACs, the class III HDAC, SIRT1, [29], has been reported to
participate in the deacetylation of H4K16 [46]. We noticed
increased SIRT1 expression in the nuclear extract of senescent
cells, while in the whole cell lysates, its expression is decreased in
senescent cells (data not shown), which indicating nucleocyto-
plasmic shuttling [47,48] and increased activation in senescent
cells. Since SIRT1 has a very complex and controversial role in
aging [49,50], also it deacetylates several transcription factors
[47,48] in addition to histones, thus the role of SIRT1 did not
explore further in this study.

Histone acetylation usually enhances gene transcription, while
histone methylation may determine transcriptional repression or
activation, depending on the particular lysine residue that is
methylated. H4K20Me3 is associated with transcriptional repres-
sion [40], and H4K16 acetylation with active transcription [42].
We examined if the baseline difference in gene expression of the
apoptosis-regulating genes, Bcl-2 and Bax, may be determined by
the status of trimethylation and acetylation of H4K20 and H4K16,
respectively. Despite the finding that senescent HDFs are globally
reduced in H4K16 acetylation, which predicts overall decreased
gene expression, ChIP analysis demonstrated that the anti-
apoptotic gene, Bcl-2, is significantly enriched in association with
this active mark, corresponding with its high expression in
senescent cells. In contrast, the association of the pro-apoptotic
gene, Bax, with H4K16Ac (active mark) is reduced, while it is
enriched for the repressive mark, H4K20Me3; this corresponds
with its lower expression in senescent HDFs. These studies
provide the first evidence for epigenetic mechanisms for the
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dysregulated expression of apoptosis-regulating genes and apop-
tosis resistance in senescent HDFs.

Histone modification accounts for only one component of the
‘‘aging epigenome’’. Other layers of epigenetic regulation, such as
DNA methylation and microRNAs, may also contribute to
mechanisms of altered gene expression in aging and age-related
diseases. Cells may acquire a combination of these epigenetic
modifications during cellular senescence and aging, which may
affect the expression of specific genes that result in different
aging phenotypes. Although we do not fully understand the
environmental factors that influence this process, epigenetic
modifications are more reversible than genetic alterations. Thus,
interventions aimed to reverse epigenetic alterations may have
greater potential to treat age-related diseases, including fibrosis
and cancer.
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