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Nearly 30 years have passed since the discovery of xanthine oxidoreductase (XOR) as a critical source of
reactive species in ischemia/reperfusion injury. Since then, numerous inflammatory disease processes
have been associated with elevated XOR activity and allied reactive species formation solidifying the
ideology that enhancement of XOR activity equates to negative clinical outcomes. However, recent
evidence may shatter this paradigm by describing a nitrate/nitrite reductase capacity for XOR whereby
XOR may be considered a crucial source of beneficial *®NO under ischemic/hypoxic/acidic conditions;
settings similar to those that limit the functional capacity of nitric oxide synthase. Herein, we review
XOR-catalyzed reactive species generation and identify key microenvironmental factors whose interplay
impacts the identity of the reactive species (oxidants vs. ®NO) produced. In doing so, we redefine existing
dogma and shed new light on an enzyme that has weathered the evolutionary process not as gadfly but a
crucial component in the maintenance of homeostasis.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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Introduction oxidation of xanthine to uric acid. XOR is a homodimer of ~300 kD

Xanthine oxidoreductase (XOR) is a molybdoflavin enzyme that
catalyzes the terminal two reactions in purine degradation in
primates; oxidation of hypoxanthine to xanthine and the subsequent

Abbreviations: GAGs, glycosaminoglycans; H,0,, hydrogen peroxide; I/R, ische-
mia/reperfusion; *NO, nitric oxide; NOS, nitric oxide synthase; 0,°~, superoxide;
ROS, reactive oxygen species; XDH, xanthine dehydrogenase; XO, xanthine oxidase;
XOR, xanthine oxidoreductase).
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with each subunit consisting of four redox centers: a molybdenum
cofactor (Mo-co), one FAD site and two Fe/S clusters, Fig. 1. The
Mo-co is the site of purine oxidation while NAD* and O, reduction
occur at the FAD. The two Fe/S clusters provide the conduit for
electron flux between the Mo-co and the FAD [1-3]. The enzyme is
transcribed as a single gene product, xanthine dehydrogenase (XDH)
where substrate-derived electrons reduce NAD* to NADH, Fig. 1A.
However, during inflammatory conditions, oxidation of key cysteine
residues (535 and 992) and/or limited proteolysis converts XDH to
xanthine oxidase (XO) [4]. In the oxidase form, affinity for NAD* at
the FAD is greatly decreased while affinity for oxygen is significantly
enhanced resulting in univalent and divalent electron transfer to O,
generating O,°~ and hydrogen peroxide (H,0,), respectively, Fig. 1B
[5]. This capacity to reduce O, led to XOR being identified as the first
source of biological 0,°~ formation and subsequently as a significant
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Fig. 1. XOR-Catalyzed Reactions. (A) For XDH, xanthine is oxidized to uric acid and
electrons transferred via 2 Fe/S centers to the FAD where NAD™ is reduced to NADH.
(B) For XO, xanthine is oxidized to uric acid and electrons are transferred to the FAD
where O, is reduced to 0,°~ and H,0,. Under normal O, tension and pH the Mo-co
would reside more often in the oxidized +6 (VI) valence as electrons are rapidly
transferred to O, at the FAD. (C) Nitrite (NO,~) undergoes a 1 electron reduction to
*NO at the Mo-cofactor of XO (electrons are donated directly to Mo by xanthine).
(D) NO;™ is reduced to °*NO at the of XO (electrons are supplied by NADH and
transferred retrograde reducing the Mo). Under low O, tensions and pH the Mo-co
would reside more often in the reduced +4 (IV) valence as electrons are more
slowly transferred to O-. This decrease in electron flux from the Mo-co to the FAD is
depicted in (C) as diminished arrows whereas in (D) NADH-mediated electron
donation at the FAD is out-competing O,-mediated electron withdrawal and thus
the arrows are reversed indicating flux from the FAD to the Mo-co.

source of reactive species mediating ischemia/reperfusion injury
[6,7]. As the redox field progressed, several additional enzymatic and
non-enzymatic sources of free radicals and reactive species have
been identified yet, to date, XOR remains the most pharmacologi-
cally targetable thus incentivizing extensive exploration of inhibition
strategies to address disease processes where elevated rates of
reactive species formation are contributory.

Oxidant formation

Most reports refer to XO as a source of 0,°” and assume H,0,
formation is a result of spontaneous dismutation of 0,°". This
premise is completely invalid as attainment of 100% O,°~ genera-
tion requires XO turnover at pH 10.0 in an environment of 100% O,
[8]. However, under room air and pH 7.4, XO transfers over 72% of
its substrate-derived electrons to O, divalently to generate H,0,
and thus 28% to 0,°  formation. This observation is critically
important as it clearly demonstrates that, under conditions
approaching those encountered in vivo, H,0; is the major reactive
product of XO-catalyzed O, reduction [8,9]. The prime determinate
of the relative quantities of O,*” and H,0, generated by XO is O,
tension. For example, at pH 7.4 and 10% O, XO generates ~26%
0,°" and thus ~74% H,0, whereas at 1% O,, XO forms ~90% H,0,
and only ~10% 0,°7, Fig. 2 [9]. In addition to O, tension, pH and
purine concentration also play a significant role in divalent versus
univalent electron transfer to O,. The reaction of hypoxanthine/
xanthine at the Mo-co of XO is based-catalyzed with a pH

optimum of 8.9 and a K,=~6.5uM. Under normal physiologic
conditions, hypoxanthine + xanthine levels in humans are ~1-
3 uM; however, under hypoxic/inflammatory conditions these
levels have been reported as high as 50-100 uM while pH con-
comitantly drops below 7.0 [10-12]. When this occurs, total purine
(hypoxanthine+xanthine) concentration is well above the K, and
thus will not significantly impact either rates of electron deposition
at the Mo-co or resultant transfer to the FAD. However, acidic pH
will significantly retard purine-Mo-co reaction thereby reducing
the electron flux rate which favors divalent transfer to O, to
generate H,0,. Therefore, under ischemic and/or hypoxic condi-
tions, where both O, levels and pH are reduced, H,0, formation is
favored suggesting that XO activity may be influential in numerous
signaling cascades where H,0, has been noted to participate.
However, this hypoxia-mediated proclivity for H,O, production
cannot overshadow the fact that rates of O,®” formation by XO
under these same conditions are sufficient to mediate alterations in
vascular function by reducing *NO bioavailability via direct reaction
(°*NO + 0,°"—-0ONOO") [13-15].

While the post-translational conversion of XDH to XO has
become synonymous with conversion from a source of reducing
equivalents to a source of reactive oxygen species (ROS), it is
important to recognize that under certain circumstances XDH
effectively reduces O, to generate ROS. Although NAD* is the
preferred electron acceptor for XDH, when levels of this substrate
are low XDH will utilize O, [16]. These conditions include hypoxia
either localized, regional or systemic where O,-dependent altera-
tions in cellular respiration lead to decreased mitochondrial NADH
oxidation and thus significant diminution of NAD* levels [17]. This
being said, care should be taken not to exclusively associate XDH
with the form of XOR that does not produce ROS.

X0-endothelial interaction

In humans, XOR is ubiquitously expressed with the liver and
intestines displaying the highest specific activity [18]. Hypoxia as
well as inflammatory cytokines (TNF-a, IL-1B, IFN-y), induce XDH
expression in tissues and vascular endothelial cells where it is
released to the circulation, Fig. 2 [18,19]. Circulating XDH is rapidly
(<1 min) converted to XO where it avidly binds to negatively
charged glycosaminoglycans (GAGs) on the apical surface of
vascular endothelial cells [20,21]. This XO-endothelium interaction
is exemplified in animal models and clinical studies of cardiovas-
cular disease where intravenous administration of heparin results
in a substantive increase in plasma XO activity, suggesting
heparin-mediated mobilization of XO from vascular endothelial
GAGs [21-23]. While XO exhibits a net negative charge at physiolo-
gical pH, pockets of cationic amino acid motifs on the surface of the
protein result in high affinity for GAGs (K;=6nM) [21,24,25].
Binding to and sequestration of XO on GAGs: (1) amplifies local XO
concentration and subsequent ROS generation; (2) alters XO kinetic
properties further shifting oxidant formation from 0,° to H,0,
and (3) confers significant resistance to inhibition from the
pyrazalopyrimidine-based inhibitors, allo/oxypurinol [26]. For exam-
ple, when compared to XO in free in solution, XO-GAG association
decreases substrate binding affinity and thus: (1) increases the K, for
xanthine over 3-fold (6.5 —21.2 uM); (2) reduces O,°*~ production by
34% favoring H,0, formation and (3) induces a 5-fold increase in
the K; for allo/oxypurinol (85—451nM) [26]. Taken together,
inflammation-mediated up-regulation of XDH, export to the circula-
tion, rapid conversion to XO and sequestration by the endothelium
coalesce to generate a vascular milieu favoring increased rates of
reactive species generation that can participate in mediating the loss
of homeostasis, Fig. 2. This deleterious action of XO has been noted in
various reports of vascular and cardiopulmonary diseases including



N. Cantu-Medellin, E.E. Kelley / Redox Biology 1 (2013) 353-358 355

sulfhydryl

Hypoxia
and/or
inflammatory
cytokines

10% O, [05]

oxidation

xanthine + O, ‘R

XDH +> 2 —, \/\

proteolytic
modification

X0 X0 X0 _xo

Xanthine

<>

uric acid

Fig. 2. Hypoxic/inflammatory induction of XOR and vascular consequences. (Top) Inflammatory cytokines and/or hypoxia induce XDH transcription and resultant protein
expression. In vascular endothelial cells XDH is exported to the circulation where it is rapidly converted to XO by plasma proteases. However, cellular export is not requisite
for XDH conversion to XO as enhanced oxidative stress within the endothelium can induce oxidation of critical cysteine residues that mediate reversible conversion to XO.
Once in the circulation, negatively charged glycosaminoglycans (GAGs) on the luminal surface of the endothelium bind and sequester XO by high affinity (Ky;=6 nM)
interaction with pockets of cationic amino acids on the surface of the enzyme. This sequestration amplifies local XO levels creating a vascular milieu whereby, in the presence
of hypoxanthine and/or xanthine, enhanced rates of 0,°~ and H,0, formation ensue. (Bottom) A key determinate regulating the relative amounts of O,*~ and H,0, generated
by XO is the concentration of molecular O,. Shown is a cartoon representing the change in relative percentages of 0,*~ and H,0, formed by XO at 10% O, (~130 uM 03)
compared to 1% O, (~13 uM O,). This range of O, tension is critically important as it represents from well above to 50% below the K,,-O, at the FAD-cofactor of 27 uM or ~ 2%
0,. As the O, tension drops below this K;,, value the FAD-cofactor assumes more time in the fully reduced FADH, state where, upon reaction with O,, divalent electron
transfer is preferred. This process assumes constant electron from the Mo-co (e.g. [hypoxanthine+xanthine] above the 6.5 uM K,, at the Mo-co) which would be expected
under conditions similar to those encountered in the lumen of an ischemic/hypoxic vessel. In addition, it is critical to note that XO-GAG association as well as acidic pH
serves to further favor H,0, formation. Taken together, moderate to severe hypoxia induces XDH expression, export and conversion to XO that is subsequently captured by

GAGs in an environment the primed for catalyzing the formation of H,0, as well as a little 0,°".

heart failure, chronic obstructive pulmonary disease (COPD), pul-
monary hypertension, sickle cell disease and Type I and II diabetes
[14,27-30].

XOR knockouts and inhibition strategies

For an enzyme whose activity was described in 1889 followed
by it being named xanthine oxidase in 1901 and first purified in
1939, surprisingly little detail is known regarding its regulation
and subsequent interplay with biomolecular pathways when
compared to other enzymes with much more recent history [31].
Potential reasons for this discrepancy in understanding include:
(1) lethality of global XDH knockouts; (2) absence of reports
utilizing tissue-specific conditional knockouts; (3) side-effects
resulting from pharmacological knockdown with tungsten supple-
mentation; (4) promiscuity of the active site resulting in ambiguity
regarding both substrate identity and inhibition by compounds
designed to specifically target other molybdopterin enzymes and
(5) resistance to inhibition by allo/oxypurinol conferred by binding
to vascular endothelial GAGs. Attempts to establish homozygous
knockouts of XDH in mice have resulted in the death of pups
before 30 days of age due to kidney fibrosis and failure attributed
to excessive hypoxanthine deposition [32,33]. Similar effects were

obtained with heterozygous XDH knockouts where both nutrient
absorption and kidney failure resulted in death in a similar
timeframe as XDH™/". These unfortunate side-effects have relegated
investigators to utilize allo/oxypurinol-based inhibition or global
XOR knockdown with dietary tungsten (W) supplementation
for proof-of-principle experimentation. Dietary supplementation
with sodium tungstate (NaW) results in replacement of the active
site Mo with W producing an enzyme that is inactive with respect
to hypo/xanthine oxidation to uric acid. However, it is important to
note that W-mediated inactivation of the Mo-co does not affect the
capacity of the FAD in XOR to be reduced by NADH and subse-
quently react with and reduce O, to produce 0,* and H,0,. In
addition, treatment with NaW also inactivates other members of
the molybdopterin family including aldehyde oxidase, sulfite oxi-
dase and mitochondrial amidoxime reducing component 1
(MARC1) which can lead to significant ambiguity regarding inter-
pretation of results. On the other hand, inhibition of XOR with
allo/oxypurinol is also not optimal as: (1) allopurinol can mediate
effects on other purine catabolic pathways including those resulting
in alteration of adenosine levels [34]; (2) reaction of allopurinol
with XO induces enzyme turnover resulting in 0,* and H,0,
formation [35] and (3) plasma allo/oxypurinol concentrations
(100400 puM) well above those tolerated clinically (30-90 pM) are
incapable of fully inhibiting XO when it is sequestered by vascular
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Fig. 3. Hypoxic conversion of XOR from oxidant to *NO production. Hypoxia mediates the alteration of microenvironmental factors that coalesce to both facilitate the
conversion of XO from oxidant to ®*NO production and diminish the capacity of eNOS to catalyze *NO formation as well as enhance its potential to uncouple and produce
0,°". These factors include: (1) acidic pH; (2) elevation of NADH levels; (3) oxidation of biopterin and, of course; (4) diminution of O, tension. Nitrite reduction at the Mo-co
of XO is acid catalyzed with a pH optimum ~ 6-6.5 while xanthine oxidation the Mo-co is base catalyzed with a pH optimum=8.9. Therefore, lower pH confers a reduction in
affinity for xanthine while increasing affinity for NO,™. Thus, lower pH results in an environmental setting more favorable for NO,™ to compete with xanthine for the Mo-co.
This shift in affinity away from xanthine and toward NO, is further augmented by reduction in O, tension to values below the K;,-O, at the FAD (27 uM or ~2% O,). Once
this occurs, electron withdrawal from the FAD slows resulting in the Mo-co assuming a more reduced state (Mo-co IV, see Fig. 1C and D) which is crucial for two reasons:
(1) NO;™ reduction requires a reduced Mo-co and (2) xanthine oxidation requires an oxidized Mo-co. Therefore, O, tensions at or below 2% further assist the ability of NO,™ to
compete with xanthine for reaction at the Mo-co. As seen in Fig. 1D, hypoxia-mediated elevation of NADH levels can also further augment the potential for NO,™ reduction at
the Mo-co by competing with O, for reaction at the FAD. In this case, NADH-FAD reaction results in reduction of the FAD to FADH, inducing Mo-co reduction by retrograde
electron flux as well as inhibition of O,-mediated electron withdrawal. On the other hand, this same inflammatory setting negatively impacts *NO formation by eNOS. For
example, as O, tensions fall below 2% (27 uM): (1) O, becomes limiting as a substrate for eNOS-catalyzed *NO production where the K,,;,-O, for eNOS=23 M and (2) acid pH
coupled with elevated levels of oxidants drive eNOS uncoupling and the propensity for eNOS-mediated 0,°~ generation (depicted above the cell on the right in small font).
Taken together, diminution of O, tension, acidic pH, elevation of NADH levels, and oxidation of biopterin converge to generate an environment whereby the burden for *°NO
production shifts from eNOS to XOR. Furthermore, the critical O, concentration where this shift or “switch” is triggered is assumed to be near 2% where the K,,-O, values for
both XO and eNOS collide (depicted by a pivot point in the cartoon). However, it is crucial to note that if this process is to be of biological relevance then: (1) NO,™ and/or
NOs~ levels must be significantly elevated by dietary or pharmacologic supplementation and (2) the proposed interplay between the components of these concerted

reactions must be vigorously pursued and validated.

GAGs [26,35]. As a result of these limitations we have recently
identified febuxostat (Uloric) to be more optimal for exploring
contributions of XOR both in vivo and tissue culture. For example,
febuxostat concentrations (25-50 nM) well below the reported
plasma Cpex (15 uM) for the clinic demonstrate over 3 orders
of magnitude greater potency than allopurinol (K;=0.9 nM vs.
1.6 uM), are not affected by XOR-vascular GAG association and
do not alter other purine catabolism pathways [34,35]. In toto,
these findings clearly demonstrate the potential benefit of using
febuxostat to interrogate XOR-dependence in various experimental
models.

XOR-catalyzed *NO production

For decades, the dogma in the field has been as described
above; specifically that inflammation/hypoxia-induced enhance-
ment of XO activity equates to elevated rates of XO-derived ROS
generation, propagation/exacerbation of the disease process and
ultimately poor clinical outcomes. This correlation has been
substantiated in several disease models where XO inhibition leads
to a reduction in symptoms and measurable restoration of func-
tion. However, recent reports have posed a bold challenge to the

standing paradigm by demonstrating a nitrate/nitrite (NO;™)
reductase function for XOR (1le” reduction of NO,™ to °NO)
suggesting XOR to be a source of beneficial ®°NO under these same
hypoxic/inflammatory conditions. In essence, these observations
directly countervail a substantive body of literature indicating XO
inhibition to be beneficial and as such affirm the need to more
closely interrogate XOR-catalyzed reactions and potential factors
that alter product formation. For example, reduction of NO,™ to
°NO is indeed catalyzed by purified XO under anoxic conditions
when electrons are supplied by either xanthine or NADH [36-38].
Nitrite reduction occurs at the reduced Mo-co (Mo-co IV) and
electrons driving this reaction can be supplied directly by xanthine
(Fig. 1C) or indirectly by NADH via electron donation at the FAD
with subsequent retrograde flow to the Mo-co, Fig. 1D [39]. At this
point, it is critical to note that work with the purified enzyme has
revealed two issues requiring resolution before the biological
relevance of XOR-derived *NO can be substantiated. First, the
NO,~ reductase activity of XOR is inhibited by O, which results
from oxidation of the Mo-co mediated by electron withdrawal
from the FAD [40]. Second, the affinity for NO,~ at the Mo-co of
XOR is 3 orders of magnitude less than for xanthine (K-
NO, =2.5mM vs. K;,-xanthine=6.5 uM) [38]. Despite these for-
midable issues, several reports demonstrate significant reduction
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in or ablation of salutary outcomes attributable to NO,~ treatment
upon inhibition of XOR activity with allo/oxypurinol affirming the
need for more vigorous investigation to fully elucidate this
reductive process. For example, systemic inhibition of XOR activity
has diminished protective effects of NO,~ treatment in models of
intimal hyperplasia [41], lung injury [42,43], myocardial infarction
[44], pulmonary hypertension [45] and ischemia/reperfusion (I/R)-
induced damage [46-49]. It is also important to note that plasma
levels of NO,™ are reported to be enhanced in an XOR-dependent
manner by treatment with nitrate (NO3~) where XOR serves first
as a NOs~ reductase (NO3 +1e”—-NO,") and ultimately a NO,~
reductase (NO, +1e”—°NO). This XO-catalyzed process was
described over 50 years ago [50] and recently expanded to
in vivo models [51]. In these experiments treatment of germ-free
mice (void of bacterial NO3~ reductases) with NO3™ resulted in
elevation of plasma NO,™ levels that were not observed when mice
received co-treatment with allopurinol and thus are consistent
with previous biochemical reports demonstrating NO3™~ reductase
activity for XOR [52]. In the aggregate, there is a new body of
evidence suggesting a protective role for XOR under hypoxic and
inflammatory conditions in the presence of elevated levels of
NO,~, summarized in Fig. 3. However, several key issues remain
unclear regarding the microenvironmental conditions necessary
for operative and biologically relevant nitrite reductase activity of
XOR in vivo and were recently extensively reviewed [53].

Although XOR has been studied for 114 years, it is clear from
the information provided herein that we have only begun to
understand the complexity regarding the interplay between cru-
cial microenvironmental factors and the identity/generation of
XOR-derived reactive products as well as their impact on cellular
signaling both in normal and pathophysiology. Suffice it to say the
long-standing dogma identifying XDH as a housekeeping enzyme
and XO as a mediator of negative clinical outcomes is beginning to
crumble as we uncover new roles for XOR in the network of
adaptive responses that serve to maintain homeostasis.
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