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SUMMARY
Mesenchymal stromal cells (MSCs) are multilineage progenitors with immunomodulatory properties, including expansion of immuno-

modulatory leukocytes such as regulatory T lymphocytes (Tregs) and tolerogenic dendritic cells.We report that humanMSCs can expand

CD14�CD11b+CD33+ human myeloid-derived suppressor cells (MDSCs). MSC-expanded MDSCs suppress allogeneic lymphocyte

proliferation, express arginase-1 and inducible nitric oxide synthase, and increase the number of Tregs. This expansion occurs through

the secretion of hepatocyte growth factor (HGF), with effects replicated by adding HGF singly and abrogated by HGF knockdown in

MSCs. In wild-type mice, the liver, which secretes high levels of HGF, contains high numbers of Gr-1+CD11b+ MDSCs, and injection

of HGF into mice significantly increases the number of MDSCs. Expansion of MDSCs by MSC-secreted HGF involves c-Met (its receptor)

and downstream phosphorylation of STAT3, a key factor in MDSC expansion. Our data further support the strong immunomodulatory

nature of MSCs and demonstrate the role of HGF, a mitogenic molecule, in the expansion of MDSCs.
INTRODUCTION

Multipotent mesenchymal stromal cells (MSCs) are a pop-

ulation of multilineage progenitor cells that were first iso-

lated from the bone marrow (Friedenstein, 1976; Pittenger

et al., 1999). These somatic progenitor cells harbor the

capacity to differentiate into adipocytes, osteoblasts, and

chondrocytes, as well as a number of extramesodermal

lineages (Prockop, 1997). Recent studies have demon-

strated that MSCs exert strong immunomodulatory effects

on multiple populations of leukocytes via various mecha-

nisms, including suppression of CD4 and CD8 lymphocyte

proliferation and responses, induction of T regulatory

lymphocytes (Tregs; a population of immunomodulatory

T cells), and secretion of immunosuppressive molecules

such as transforming growth factor-b (TGF-b) and indole-

amine-2,3-dioxygenase (IDO) (Uccelli et al., 2008). MSCs

also strongly suppress natural killer lymphocyte cytotox-

icity and affect dendritic cell (DC) maturation, e.g., by

inhibiting the differentiation of monocytes to immature

myeloid DCs and decreasing the effector functions of
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plasmacytoid DCs (Le Blanc and Mougiakakos, 2012;

Uccelli et al., 2008). Many of these components are

similar to the immunomodulatory armamentarium of the

immune system, which is important for preventing auto-

immunity and establishing tolerance (Guleria and Sayegh,

2007; Wing and Sakaguchi, 2010), with mechanisms

ranging from anti-inflammatory molecules such as TGF-b,

IDO, and interleukin-10 (IL-10) to leukocyte subpopula-

tions such as Tregs and tolerogenic DCs (Mellor and

Munn, 2004; Sakaguchi et al., 2006; Swiecki and Colonna,

2010).

As with many biological phenomena, immunomodula-

tion is a double-edged sword, and many of these tolero-

genic mechanisms appear to be manipulated by cancer

cells to create an immunoprivileged niche to further their

own growth (Rabinovich et al., 2007). One of the most

prominent immunomodulatory leukocyte subpopulations

in cancer consists of myeloid-derived suppressor cells

(MDSCs) (Ostrand-Rosenberg and Sinha, 2009). Derived

from myeloid precursors, MDSCs suppress immune

response by a number of mechanisms, such as suppressing
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cytotoxic lymphocyte effector functions and targeting

T cells by expressing the enzymes arginase 1 (ARG1) and

inducible nitric oxide synthase (iNOS), both ofwhich block

the production of the T cell CD3-z chain by metabolizing

L-arginine (Gabrilovich and Nagaraj, 2009; Gabrilovich

et al., 2012). Human and mouse studies have revealed

that chronic inflammation and proinflammatory media-

tors such granulocyte macrophage colony-stimulating

factor (GM-CSF), IL-1b, IL-6, and prostaglandin E2 (PGE2)

are involved in the induction of these suppressor leuko-

cytes (Bunt et al., 2007; Serafini et al., 2004; Sinha et al.,

2007; Young and Wright, 1992). Although it is clear that

the tumor microenvironment is maintained by diverse

cell types, the role of secreted factors other than cytokines

and proinflammatory factors in the expansion of MDSCs

has largely been unexplored, with the exception of vascular

endothelial growth factor (Fricke et al., 2007; Shojaei et al.,

2007). We report that MDSCs can be expanded by MSC-

secreted hepatocyte growth factor (HGF), a potent mito-

genic growth factor.
RESULTS

MSCs Can Expand High Numbers of Functional

CD14�CD11b+CD33+ MDSCs from Peripheral Blood

Leukocytes

We hypothesized that the strong immunosuppressive

properties of diverse sources of MSCs extend to involve

the expansion of MDSCs. We first isolated and cultured

MSCs from placenta and bonemarrow, and then character-

ized the cells for surface marker expression and multi-

lineage differentiation potential. Both bone marrow and

placental MSCs are positive for surface expression of

CD73, CD105, and CD90, but negative for hematopoietic

markers such as the costimulatory molecules CD80 and

86 (Figure 1A; Chang et al., 2006; Uccelli et al., 2008; Yen

et al., 2005). Both populations of MSCs can differentiate

into osteoblastic, chondrogenic, and adipocytic lineages,

and thusmeet the criteria formultipotentMSCs (Figure 1B;

Dominici et al., 2006; Liu et al., 2011; Pittenger et al., 1999).

To test whetherMSCs can expandMDSCs, we cocultured

MSCs with human peripheral blood leukocytes (PBLs) and

assayed for MDSCs, which in the human system are most

commonly characterized as CD14�CD11b+CD33+ leuko-

cytes with a strong suppressor function (Ostrand-Rosen-

berg and Sinha, 2009; Poschke and Kiessling, 2012). We

found that both bone marrow and placental MSCs could

increase the number of CD14�CD11b+CD33+ cells from

PBLs (Figure 2A). Both cell percentage and numbers were

increased significantly after PBL coculture with MSCs,

with CD11b+ cells showing an increase from a baseline of

8.9% ± 0.6% (10,179 ± 926 cells; averages ± SEM) to
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19.2% ± 1.2% (19,508 ± 1,258 cells) after coculture with

MSCs, and CD14�CD11b+CD33+ cells increasing from

1.3% ± 0.1% (1,052 ± 90 cells) at baseline to 2.4% ± 0.2%

(2,343 ± 147 cells) after coculture with MSCs (Figure 2B).

To assess whether these MSC-expanded MDSCs were func-

tional, we sorted MSC-induced CD14�CD11b+CD33+ cells

and cocultured these cells with allogeneic proliferating

lymphocytes to assess for suppressive capacity. We found

that the MSC-expanded CD14�CD11b+CD33+ cells could

suppress lymphocyte proliferation in a dose-dependent

manner (Figure 2C). Human MDSCs are known to express

ARG1 and iNOS (Ochoa et al., 2007; Rodrı́guez and Ochoa,

2008), and we found that MSC-induced MDSCs also ex-

pressed these enzymes and at significantly higher cell

numbers compared with baseline (Figures 2D and 2E,

respectively). MDSCs have also been shown to express

IL-10 and TGFb in some reports (Poschke and Kiessling,

2012), but we did not find any expression of these mole-

cules at baseline or after MSC coculture (Figure S1A

available online). CD14�CD11b+CD33+ MDSCs have

been reported to induce Tregs (Dugast et al., 2008; Huang

et al., 2006), and we also found that MSC-induced

CD14�CD11b+CD33+ cells were able to induce high

numbers of CD4+CD25highCD127low Tregs from stimulated

PBL (Figures 2F and S1B). Thus, MSC-expanded

CD14�CD11b+CD33+ cells have multiple immunomodu-

latory functions.

Expansion of MDSCs by MSCs Is Mediated by

Secreted HGF

We next investigated the mechanisms involved in MSC

expansion of MDSCs. We found that the expansion of

MDSCs by MSCs was not affected by transwell separation

of cells, indicatig that cell-cell contact was not needed

and implicating secreted factors in this process (Figure 3A).

We therefore analyzed the conditionedmediumofMSCs to

assess for relevant secreted molecules. MSCs secrete a

number of stromal-related factors, such as RANTES/CCL5,

HGF, and IL-6, the latter of which has been implicated in

the expansion of MDSCs (Bunt et al., 2007; Figure 3B).

However, using both blocking antibodies and small

interfering RNA (siRNA) knockdown studies, we did not

find that IL-6 contributed to the expansion of MDSCs by

MSCs (Figure S2).

It was previously reported that STAT3 is critical for the

expansion of MDSCs (Gabrilovich and Nagaraj, 2009).

STAT3 is also an importantmolecule in the signal transduc-

tion pathway of HGF (Trusolino et al., 2010), a molecule

that is known to be highly secreted by many cell types,

including MSCs (Di Nicola et al., 2002; Takai et al., 1997;

Trusolino et al., 2010). Since we also found that HGF was

highly secreted by MSCs (Figure 3B), we assessed whether

this molecule is involved in MSC expansion of MDSCs.
ors



Figure 1. Characterization of Bone
Marrow and Placental Multipotent MSCs
(A and B) Surface marker profile (A) and
trilineage differentiation phenotype (B) for
bone marrow (BM) multipotent MSCs and
placental MSCs (P-MSCs). Adipo, adipogenic
lineage (stained with oil red O to assess for
oil droplet formation); chondro, chondro-
genic lineage (stained with Alcian blue to
assess for the presence of glucosaminogly-
cans); osteo, osteogenic lineage (stained
with alizarin red to assess calcium deposi-
tion). Scale bar: 200 mm.
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We found that the addition of recombinant HGF alone

could result in the expansion of MDSCs, and this effect

was dose dependent up to a concentration of 30 ng/ml (Fig-

ure 3C), which is approximately the upper limit found in

MSC-conditioned medium (Figure 3B). HGF-expanded

MDSCs also expressed iNOS and ARG1, and at higher cell
Stem C
numbers compared with baseline (Figure 3D). Moreover,

HGF-expanded MDSCs can suppress allogeneic lympho-

cytes proliferation as well (Figure 3E). To further ascertain

the involvement of HGF in MSC expansion of MDSCs,

we suppressed the secretion of HGF by MSCs with siRNA.

Using siRNA specific for HGF, we were able to effectively
ell Reports j Vol. 1 j 139–151 j August 6, 2013 j ª2013 The Authors 141



Figure 2. Human MSCs Expand the Number of Functional CD14�CD11b+CD33+ MDSCs in Allogeneic PBLs
(A) Expansion of CD14�CD11b+CD33+ cells from PBLs by MSCs. Allogeneic PBLs (40 donors) were cocultured alone (top panel) or with MSCs
(lower panel; three donors of BM-MSCs and four donors of P-MSCs; representative dot plots/ histogram shown). PBLs were gated on forward

(legend continued on next page)
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suppress the secretion of the molecule by MSCs, and this

abrogated the expansion of MDSCs by MSCs (Figure 3F).

Thus, our data support that HGF secreted by MSCs is

involved in the expansion of MDSCs.

HGF is a well-known and important mitogen for cancer

cell growth (Mueller and Fusenig, 2004). Because MDSCs

play a critical role in creating the immunoprivileged niche

of tumors, we assessedwhether cancer cell lines that secrete

high levels of HGF could expand higher numbers of

MDSCs. We found that, indeed, the level of HGF secreted

by several cell lines correlated with the number of MDSCs

expanded (Figures 4A and 4B). We then assessed the role

of MSC-secreted HGF in the in vivo setting of the tumor

microenvironment. When mice were inoculated with tu-

mor cells admixed with MSCs silenced for HGF expression,

there was a significant reduction in tumor-associated

Gr-1+CD11b+ MDSCs (Figure 4C). Moreover, in both

wild-type C57BL/6 and BALB/c mice, we found that the

liver, an organ that is known to secrete high levels of

HGF, contained a significantly higher proportion of

Gr-1+CD11b+ MDSCs than the spleen (Figure 4D). Further-

more, when we inhibited the HGF/c-Met pathway in wild-

type mice by injecting PHA-665752 (a second-generation

c-Met inhibitor; Christensen et al., 2003), we observed a

significant decrease in hepatic, but not splenic, MDSCs,

even after we excluded other myeloid cells, such as macro-

phages and Kupffer cells (resident hepatic macrophages),

using the surface marker F4/80 (Kinoshita et al., 2010;

Lee et al., 1986; Figures 4E and S3). Critically, the HGF/

c-Met pathway appears to be responsible for the high

numbers and vast majority of hepatic Gr-1+CD11b+F4/

80� MDSCs, since c-Met inhibition resulted in a significant
scatter (FSC)/side scatter (SSC) (R1, 100,000 events for all analyses
CD33+ (R3).
(B) Quantification of percentage (left-side charts) and cell number (rig
MDSCs (lower graphs) before and after coculture with MSCs. Averages
PBL only.
(C) Suppressive function of MSC-induced MDSCs. Allogeneic PBLs (T, t
cell division and stimulated with anti-CD3/28 (a-CD3/28) without or
various E:T ratios. Flow-cytometric analysis was performed to asses
staining. The chart on the right is a quantitative summary of experime
y axis: percentage suppression of PBL proliferation by MSC-expand
E, effector cells.
(D and E) Expression of iNOS (D) and ARG1 (E) by MSC-expanded MDSCs
selected CD14� cells from PBLs (eight donors) were cultured alone (top
SSC (R1), analyzed for CD11b+ and CD33+ (R2), and further analyzed
unfilled black line: isotype control). Average cell numbers ± SEM ar
comparing CD14� + MSCs with CD14� only.
(F) Expansion of CD4+CD25high Tregs by MSC-expanded MDSCs. CD14�C
and cocultured with anti-CD3/28-stimulated allogeneic PBLs (three d
T cells. The chart on the right is a quantitative summary of the experim
with anti-CD3/28-activated PBL (leftmost bar).
See also Figure S1.
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loss of�70% of this population (Figure 4E), which was not

observed for splenic MDSCs. These results are highly sug-

gestive of a critical role for HGF in maintaining the high

numbers of MDSCs in the liver. To further validate the

in vivo relevance of our findings, we injected recombinant

HGF intravenously into wild-type C57BL/6 mice. After

3 days, we found a significant increase of Gr-1+CD11b+

MDSCs in the bone marrow (where myeloid cells are

most abundant; Gabrilovich et al., 2012) of thesemice (Fig-

ure 4F), indicating that HGF can expand MDSCs in an

in vivo setting. Collectively, these results indicate the rele-

vance of HGF in tumor-associated MDSCs and in vivo

settings.

Expansion of MDSCs by HGF Is Mediated by the HGF

Receptor c-Met and Increased Phosphorylation of

STAT3

To investigate the mechanism behind HGF-mediated

expansion of MDSCs, we checked for expression of c-Met,

the cognate receptor for HGF (Cecchi et al., 2010; Trusolino

et al., 2010), on MDSCs. We found that CD14� leukocytes

and MDSCs constitutively expressed low levels of c-Met

(Figures 5A and S4), and when c-Met on PBLs was blocked

with neutralizing antibodies, the expansion of MDSCs by

HGF was abrogated (Figure 5B). To investigate whether

the effects of the HGF/c-Met axis were mediated through

STAT3, we checked for HGF-induced STAT3 phosphoryla-

tion, which indicates activation of the pathway, inMDSCs.

We found that exogenous addition of HGF induced an

increase over baseline levels of phosphorylated STAT3

(pSTAT3), most consistently and significantly at 1 hr after

treatment (Figures 5C and S5). Moreover, when the
), analyzed for CD14� and CD11b+ (R2), and further analyzed for

ht-side charts) of PBL CD11b+ (upper graphs) or CD14�CD11b+CD33+

± SEM; 57 independent experiments; ***p < 0.001 compared with

arget cells; eight donors) were stained with CFSE for assessment of
with the addition of MSC-expanded MDSCs (from three donors) at
s PBL cell proliferation/division as evidenced by decreasing CFSE
ntal results; x axis: ratio of MSC-expanded MDSCs to activated PBL;
ed MDSCs; eight independent experiments; *p < 0.05 for trend.

(five donors of MSCs; representative histograms shown). Negatively
panels) or with MSCs (lower panels). CD14� cells were gated on FSC/
for either (D) iNOS or (E) ARG1 (shaded gray areas in histogram;
e indicated in the upper-right corner of the histogram; *p < 0.05

D11b+CD33+ MSC-expanded MDSCs (three donors) were FACS sorted
onors) at various ratios and assessed for induction of CD4+CD25high

ental results of three independent experiments. *p < 0.05 compared
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STAT3 inhibitor cpd188 was added in the presence of exog-

enous HGF, the expansion of MDSCs was abrogated in a

dose-dependent fashion (Figure 5D). Thus, HGF mediates

the expansion of MDSCs by binding to its receptor,

c-Met, which leads to increased phosphorylation of

STAT3 (Fig. 6).
DISCUSSION

Recent reports have highlighted MDSCs as a prominent

leukocyte subpopulation involved not only in tumor-asso-

ciated immune suppression but also in regulation of the

immune system at large (Almand et al., 2001; Gabrilovich

and Nagaraj, 2009; Rodrı́guez and Ochoa, 2008). Previous

data have shown that a number of proinflammatory medi-

ators are important inducers of these cells, but there has

been no report regarding the involvement of tumor-associ-

ated mitogenic growth factors in the process. Our data link

HGF secreted by MSCs to the expansion of MDSCs. Our

findings can help to explain the strong association of

MDSCs with tumors, since it is well established that in

the tumor microenvironment, HGF is highly secreted by

both the cancer cells themselves and the supporting

stromal cells, promoting cell survival and tumor growth

(Cecchi et al., 2010; Mueller and Fusenig, 2004). While

HGF has been implicated in immunoregulatory responses

(Benkhoucha et al., 2010; Di Nicola et al., 2002), and the

liver, which naturally secretes high levels of HGF, was

reported to have some immunological functions (Sheth

and Bankey, 2001), the specific molecular mechanisms un-

derlying these observations have been largely unexplored

and the reported effects have not been consistently repli-

cated (Le Blanc et al., 2003). Our finding that high numbers
Figure 3. MSC Expansion of MDSCs Is Mediated by Secreted HGF
(A) MSC expansion of MDSCs is mediated by secreted factors. Alloge
contact (MSC; three donors) or separated by transwell (TW) and asse
experiments; *p < 0.05 compared with PBL only; n.s., not significant
(B) Highly secreted factors of MSCs (four donors) as assessed by q
stromal-derived factor.
(C and D) Exogenous addition of recombinant HGF to PBLs (five donors
expression of iNOS (top panel) and ARG1 (lower panel) in HGF-expand
using negatively selected CD14� cells that were first gated on FSC/SSC
for either iNOS (top histogram, shaded gray area) or ARG1 expression
control; p = 0.051 for comparison of average number of CD14�CD11b+C
compared with 409 ± 46 with HGF treatment); p < 0.05 for ARG1 expres
HGF treatment).
(E) Suppression of anti-CD3/28-stimulated PBL proliferation by HGF
staining for cell division (n = 3; a representative chart is shown).
(F) Knockdown of HGF secretion in MSCs with HGF-specific siRNA abro
cocultured with MSCs (three donors) transfected with either NT siR
compared with MSCs only (leftmost bar) or PBLs only (rightmost bar)
See also Figure S2.
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of hepatic MDSCs in mice can be significantly altered by

disruption of the HGF/c-Met pathway sheds some mecha-

nistic light on this issue, and, overall, our data demonstrate

that HGF mediates the expansion of functional MDSCs by

engaging c-Met, its receptor, and increasing the phosphor-

ylation of STAT3, one of its downstream molecules.

The immunomodulatory properties of MSCs have been

highlighted as being therapeutic for autoimmune diseases

and other immune-related diseases such as graft-versus-

host disease (Abdi et al., 2008; Djouad et al., 2009; Keating,

2012; Le Blanc et al., 2008). As exciting as these findings

are, some researchers have noted that the same immuno-

modulatory effects of MSCs can allow for the growth of

tumors (Djouad et al., 2003). However, whether MSCs

definitively enhance or inhibit tumor growth and cancer

progression is still unresolved, since differences in the

experimental design, cancer histologic cell type, and MSC

isolation technique used can all affect the experimental

outcome (Klopp et al., 2011; Yen and Yen, 2008).Moreover,

to date, studies on MSC and cancer interactions have

largely focused on the homing of MSCs to tumors, rather

than the immunological aspects of MSCs (Elzaouk et al.,

2006; Studeny et al., 2002; Xin et al., 2007). Although a

considerable amount of data support MSC expansion of

Tregs (Uccelli et al., 2008), and these immunosuppressive

T lymphocytes are also found in tumors, MDSCs appear

to play a more crucial role in maintaining the profound

immune suppression of the tumor niche (Almand et al.,

2001; Ostrand-Rosenberg and Sinha, 2009; Sinha et al.,

2005; Young and Wright, 1992). Our data suggest that

through HGF and the consequent expansion of MDSCs,

MSCs may play a role in maintaining tumor growth.

While the association of MDSCs in a wide range of

cancers has been known for some time, the mechanisms
neic PBLs (five donors) were cocultured with MSCs either in direct
ssed for expansion of CD14�CD11b+CD33+ MDSCs; five independent
.
uantitative cytokine array. LAP, latency-associated peptide; SDF,

) increases the (C) percentage of MDSCs (*p < 0.05 for trend) and (D)
ed MDSCs (five donors; representative charts shown) as assessed by
(R1), analyzed for CD11b+ and CD33+ (R2), and then further analyzed
(bottom histogram, shaded gray area). Unfilled black line: isotype
D33+ cells (±SEM) expressing iNOS (367 ± 39 without HGF treatment
sion (312 ± 53 without HGF treatment compared with 396 ± 56 with

-expanded MDSCs as assessed by flow-cytometric analysis of CFSE

gates the expansion of MDSCs. Allogeneic PBLs (seven donors) were
NA or siHGF and assessed for CD14�CD11b+CD33+ cells. *p < 0.05
; n.s., not significant (NT siRNA compared with siHGF).
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Figure 4. Cancer Cell-Secreted HGF and
In Vivo Manipulation of HGF Expression
in Mice Significantly Alter MDSC Numbers
(A and B) Level of HGF secretion by MSCs,
MG63 (osteosarcoma cell line), human em-
bryonic stem cell-derived mesenchymal
progenitors (EMPs), and JEG-3 (choriocar-
cinoma cell line) (A), and fold expansion of
MDSCs (B) after coculture of the four cell
types with PBLs (three donors; three inde-
pendent experiments; *p < 0.05 for trend).
(C) Knockdown of HGF expression in MSCs
significantly decreases tumor-associated
Gr-1+CD11b+ cells. Tumor growth was
induced in nude mice by inoculating human
colon cancer cells admixed with MSCs
transfected with either control NT siRNA
(n = 5 mice) or siHGF (n = 5 mice). Tumor-
associated leukocytes were assessed for Gr-
1+CD11b+ cells by flow-cytometric analysis
(see Experimental Proceduresfor detailed
description); *p < 0.05, NT siRNA compared
with siHGF.
(D) Gr-1+CD11b+ cells (%) in the spleen and
liver of C57BL/6 (B6) and BALB/c mice (n =
3 mice for each group); *p < 0.05, % of cells
in liver compared with spleen.
(E) Treatment of C57BL/6 mice with the
c-Met inhibitor PHA-665752 (c-Met inh)
significantly decreases hepatic but not
splenic Gr-1+CD11b+F4/80� cells (shown as
a percentage of Gr-1+CD11b+ cells; aver-
age ± SEM; n = 3 mice for each group). *p <
0.05 for c-Met inhibitor treatment versus no
treatment (see Experimental Procedures for
a detailed description).
(F) Tail-vein injection of recombinant HGF
(100 ng) into C57BL/6 mice and assessment
of Gr-1+CD11b+ cells (fold change) in the
peripheral blood, spleen, and bone marrow
1 day and 3 days after injection (n = 6 mice
for each group); *p < 0.05 compared with
day 0.
See also Figure S3.
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involved in expansion of these immunomodulatory cells

are just beginning to be unraveled. IL-6 has been reported

to mediate the expansion of MDSCs, and this cytokine is

known to be secreted by both MSCs and stromal cells

(Hung et al., 2007; Nemunaitis et al., 1989). However, in

this work, we did not find IL-6 to be involved. This may

be due to the lower levels of this cytokine and the masking

of its effects by themuchhigher levels ofHGF in our system

(see Figure 3B). Moreover, the strong association of MDSCs

with cancer suggests that multiple and redundant path-

ways are likely involved (Ostrand-Rosenberg and Sinha,
146 Stem Cell Reports j Vol. 1 j 139–151 j August 6, 2013 j ª2013 The Auth
2009; Gabrilovich and Nagaraj, 2009). There is consensus,

however, that STAT3 may be the final transcription factor

involved in the expansion of MDSCs. Our finding that

STAT3 activation is involved in HGF-mediated MDSC

expansion further supports the importance of this mole-

cule in inflammation and cancer (Yu et al., 2009).

In summary, we found that HGF secreted by MSCs can

lead to the expansion of MDSCs. MDSCs expanded by

coculture with MSCs or addition of HGF are functional,

expressing iNOS and ARG1, as well as harboring suppres-

sive function and inducing Tregs. Mechanistically, the
ors



(legend on next page)
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Figure 6. Summary of MSC-Mediated
Expansion of Functional MDSCs
HGF secreted by MSCs binds to its cognate
receptor, c-Met, expressed on CD14� PBLs.
This leads to increased pSTAT3, a critical
transcription factor in MDSC expansion.
Both MSC- and HGF-expanded MDSCs are
functional, expressing ARG1 and iNOS, and
inhibit allogeneic lymphocyte proliferation
while increasing the number of immuno-
modulatory Tregs.
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MSC-mediated expansion of MDSCs occurs via the HGF/

c-Met axis, with the downstream involvement of STAT3.

Our findings not only further demonstrate the strong

immunoregulatory nature of MSCs, but also show the

involvement of a mitogenic, noninflammatory molecule

in the expansion of MDSCs.
EXPERIMENTAL PROCEDURES

Cell Culture
Human MSCs from bone marrow and placenta were cultured and

expanded as we previously described (Chang et al., 2006; Yen et al.,

2005). Human bone marrowMSCs were purchased from Cambrex

and cultured according to manufacturer’s instructions. For human

placental MSCs, term placentas (38–40 weeks of gestation) from
Figure 5. Expansion of MDSCs by HGF Is Mediated via c-Met, Its R
(A) Expression of c-Met on MDSCs as assessed by flow-cytometric analy
CD11b+ and CD33+ (R2), and then further analyzed for c-Met expression
the flow-cytometric analysis diagrams shown are representative). Rig
0.05 compared with isotype control (Ctrl).
(B) Involvement of c-Met in HGF-mediated expansion of MDSCs. PBLs (
c-Met blocking antibodies (anti-c-Met), treated with recombinant H
cells. PBLs were first gated on FSC/SSC (R1), analyzed for CD14� and
percentages and cell numbers ± SEM are indicated in dot plot diagram
on the right are quantitative summaries of the percentages (top right
*p < 0.05 compared with PBL only or anti-c-Met.
(C) Involvement of STAT3 in HGF-mediated expansion of MDSCs. Reco
leukocytes (eight donors) that were stained for CD11b, CD33, and pSTA
and HGF-treated cells (red unfilled line) were collected for assessmen
isotype control); average cell numbers ± SEM for control (C) and HGF t
right is a quantitative summary of eight independent experiments; *
(D) STAT3 inhibition abrogates HGF-mediated expansion of MDSCs. Re
without addition of cpd188 (STAT3 inhibitor) at the indicated doses
FSC/SSC (R1), analyzed for CD14� and CD11b+ (R2), and then further an
are indicated in dot plot diagrams (1.37% ± 0.22% and 717 ± 108 cells
the percentages (top right) and cell numbers (bottom right) of CD14
compared with PBL only; b, p < 0.05 for trend; n.s., not significant f
See also Figures S4 and S5.
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healthy donor mothers were obtained with informed consent

according to the procedures of the institutional review board.

The cells were isolated as previously described (Yen et al., 2005).

Differentiation studies were carried out as previously described

(Chang et al., 2006; Liu et al., 2011; Yen et al., 2005). Human

PBLs were isolated from the buffy coat of healthy donor blood

samples (Taiwan Blood Services Foundation, Taipei Blood Center,

Taipei, Taiwan) obtained with informed consent according to the

procedures of the institutional review board, and cultured as

previously described (Chang et al., 2006; Liu et al., 2011).

Immunophenotyping
Flow-cytometric analyses of cell surfacemarkers were performed as

previously described (Chang et al., 2006; Liu et al., 2011; Yen et al.,

2005). All antibodies were purchased from BD Biosciences, except

for CD33 and CD11b (BioLegend), ARG1 (R&D Systems), iNOS
eceptor, and Increased Phosphorylation of STAT3
sis. PBLs (six donors) were first gated on FSC/SSC (R1), analyzed for
(shaded gray area in histogram; unfilled black line: isotype control;
ht chart: quantification of mean fluorescent intensity (MFI); *p <

six donors) were blocked with isotype control antibodies (IsoAb) or
GF (20 ng/ml), and assessed for expansion of CD14�CD11b+CD33+

CD11b+ (R2), and then further analyzed for CD33+ (R3). Average
s (1.54% ± 0.20% and 1,544 ± 201 cells for isotype control). Charts
) and cell numbers (bottom right) of six independent experiments;

mbinant HGF (20 ng/ml) was added to negatively selected CD14�

T3. Control cells (no HGF treatment; black unfilled line in histogram)
t by flow cytometry at the indicated time points (shaded gray area:
reatment (H) are indicated below the histograms. The chart on the
p < 0.05 and **p < 0.005.
combinant HGF (20 ng/ml) was added to PBLs (six donors) with and
and assessed by flow cytometry for MDSCs, with PBLs first gated on
alyzed for CD33+ (R3). Average percentages and cell numbers ± SEM
for 5 mM cpd188). Charts on the right are quantitative summaries of
�CD11b+CD33+ cells for six independent experiments. a, p < 0.05
or 10 mM cpd188 compared with PBL only.
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(Abcam), and c-Met (eBiosciences). All analyses were done on a BD

FACSCalibur flow-cytometric system (BD Biosciences).

Expansion of MDSCs
PBLs were cocultured withMSCs or cancer cell lines (10:1 ratio) for

3 days and then assessed for CD14�CD11b+CD33+ cells, which

also served as the cell surface markers for fluorescence-activated

cell sorting (FACS) of MDSCs with the BD Aria Cell Sorter (BD Bio-

sciences). Instead of PBLs, some experiments were performed with

CD14� cells negatively selected with the use of magnetic beads

(Miltenyi Biotec) according to the manufacturer’s instructions.

Transwell studies were performed as previously described using

24-well transwell inserts (0.4 mm pores; BD Falcon) with MSCs

cultured on the culture plates below and PBLs cultured in the

inserts (Liu et al., 2011). Recombinant humanHGF (R&D Systems)

was added to PBLs at the indicated doses.

MDSC Suppression Analysis
Assessment of PBL cell division was performed as previously

described (Chang et al., 2006). Briefly, allogeneic PBLs were labeled

with 2.5 mmol/l of the fluorescent dye carboxyfluorescein succini-

midyl ester (CFSE; Molecular Probes/GIBCO-Invitrogen) for

10 min and then stimulated with anti-CD3/CD28 beads (GIBCO-

Invitrogen). MSC-expandedMDSCswere FACS sorted for homoge-

neity and then cocultured with stimulated allogeneic PBL for

3 days at various effector-to-target (E:T) ratios. Flow-cytometric

analysis was performed to assess for PBL cell division in terms of

CFSE dye intensity.

Quantification of HGF Secretion
Supernatants were collected from cell cultures for detection of HGF

with the use of a commercially available ELISA kit (R&D Systems)

according to the manufacturer’s instructions.

RNAi Experiments
siRNAs specific for IL-6 and HGF were purchased from GIBCO-

Invitrogen, and knockdown experiments were conducted accord-

ing to the manufacturer’s instructions. The efficiency of siRNA

knockdown of MSC-secreted factors was verified by ELISA.

In Vivo Experiments
All animal work was performed in accordance with protocols

approved by the Animal Care and Use Committee of the National

Health Research Institutes. Mice (4–8 weeks old) were obtained

from the National Laboratory Animal Center of Taiwan (Taipei,

Taiwan). Recombinant mouse HGF (100 ng; R&D Systems) was

injected via the tail vein, and C57BL/6 mice were sacrificed

3 days after injection. Peripheral blood, bone marrow, and spleen

were collected for flow-cytometric analysis of Gr-1+CD11b+ cells.

For in vivo tumor studies, nude mice (BALB/c nu/nu) were inocu-

lated subcutaneously with tumor cells (human colon cancer cell

line HCT-116; 1 3 106 cells) admixed with human MSCs (5 3

105 cells at a 1:2 ratio to cancer cells) transfectedwith either control

siRNA (NT siRNA) or HGF-specific siRNA (siHGF). The mice were

sacrificed 3 weeks after inoculation, and tumors were excised and

minced with scissors to obtain leukocytes, which were assessed
Stem C
for Gr-1+CD11b+ cells by flow-cytometric analysis. For c-Met

inhibition studies, wild-type C57BL/6 mice were intraperitoneally

injected with vehicle (DMSO, n = 3) or PHA-665752 (Tocris Bio-

science), a c-Met inhibitor (0.15 mg, n = 3) as previously described

(Gordin et al., 2010). Themicewere sacrificed 5 days later and their

livers and spleens were collected for flow-cytometric assessment of

Gr-1+CD11b+ and Gr-1+CD11b+F4/80� cells.

Statistical Analysis
Statistical analysis was performed with SPSS 18.0 software (SPSS),

with statistical significance defined as p < 0.05. Values were

expressed as the mean ± SEM. Student’s t test was used for com-

parisons between two groups, and ANOVA was used for com-

parisons of multiple groups.

For further details regarding the materials and methods used in

this work, see Supplemental Experimental Procedures.
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Noël, D., and Jorgensen, C. (2003). Immunosuppressive effect of

mesenchymal stem cells favors tumor growth in allogeneic ani-

mals. Blood 102, 3837–3844.

Djouad, F., Bouffi, C., Ghannam, S., Noël, D., and Jorgensen, C.
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