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Adaptive radiations are central to macroevolutionary theory. Whether trig-

gered by acquisition of new traits or ecological opportunities arising from

mass extinctions, it is debated whether adaptive radiations are marked by

initial expansion of taxic diversity or of morphological disparity (the range

of anatomical form). If a group rediversifies following a mass extinction, it

is said to have passed through a macroevolutionary bottleneck, and the

loss of taxic or phylogenetic diversity may limit the amount of morpho-

logical novelty that it can subsequently generate. Anomodont therapsids, a

diverse clade of Permian and Triassic herbivorous tetrapods, passed through

a bottleneck during the end-Permian mass extinction. Their taxic diversity

increased during the Permian, declined significantly at the Permo–Triassic

boundary and rebounded during the Middle Triassic before the clade’s

final extinction at the end of the Triassic. By sharp contrast, disparity

declined steadily during most of anomodont history. Our results highlight

three main aspects of adaptive radiations: (i) diversity and disparity are

generally decoupled; (ii) models of radiations following mass extinctions

may differ from those triggered by other causes (e.g. trait acquisition); and

(iii) the bottleneck caused by a mass extinction means that a clade can

emerge lacking its original potential for generating morphological variety.
1. Introduction
Mass extinctions affect clades differently. Some disappear completely; others are

seemingly unaffected; yet others survive but may experience a loss in taxic diver-

sity and/or a decrease in their range of morphological variety (i.e. disparity).

Likewise, the survivors of mass extinctions exhibit a variety of responses. Some

decline and go extinct (‘dead clade walking’ [1]), whereas others persist at

reduced taxic diversity or undergo new phases of diversification. Surviving

clades that rediversify are said to have passed through an evolutionary bottleneck

[2]. This is the macroevolutionary analogue of a population bottleneck in which a

species is reduced to a small number of individuals, such that its restricted gene

pool affects later phases of evolution. In this context, it is therefore logical to ask

whether bottlenecks induced by mass extinctions produce similar consequences.

In particular, we seek to establish whether clade-level extinctions produce analo-

gous founder effects that potentially limit the disparity and/or the ecological

diversity of surviving groups, even if their taxic diversity subsequently increases.

The end-Permian mass extinction event (EPME; about 252 Ma), a biological

crisis in which only 4–20% of marine species survived [3], generated a macro-

evolutionary bottleneck. Its impact on terrestrial organisms is the subject of

ongoing research, but it is now clear that its magnitude on land was nearly

as profound as in the marine realm [4]. Despite the fact that the terrestrial

fossil record is significantly patchier than the marine record, the quality of the
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terrestrial vertebrate data is generally regarded as adequate to

address macroevolutionary questions [5]. Therefore, tetrapod

data offer considerable potential for macroevolutionary ana-

lyses in the context of this major biological crisis for several

reasons. First, although some recent studies found a close

relationship between the diversity of terrestrial vertebrates

and various proxies for rock availability (e.g. number of for-

mations, number of localities, rock volume and outcrop area

per time interval [6–16]), analyses of sampling through the

EPME showed that the high diversity of tetrapods before the

EPME and their sharp decline in the earliest Triassic are not

controlled by rock availability or collecting efforts [15–18].

Second, the global stratigraphic standards for the Permian

and Triassic have improved substantially. Primary evidence

for correlation of certain terrestrial and marine units has been

fixed and tested by application of new magnetostratigraphic

and radioisotopic methods [3,7,11,16–19]. Third, the complex

anatomy of terrestrial vertebrates provides a rich source of

characters, and many groups have been subjected to intensive

taxonomic revision. Fourth, repeated and continuing large-

scale cladistic studies based on extensive taxon/character

matrices have resulted in well-vetted phylogenetic trees. Taxo-

nomic groups that straddle the Permo–Triassic boundary

(PTB) are eminently suitable for analyses of clade dynamics

in the aftermath of the EPME. Here, we focus on anomodont

therapsids—a highly diverse clade of herbivorous stem-

group mammals—as a case study for in-depth analysis of

post-EPME recovery in the terrestrial realm.

Anomodonts showed a wide range of body sizes and

ecological adaptations, including terrestrial, semi-aquatic,

fossorial and arboreal forms [20–22]. Members of the most

speciose anomodont subclade, the Dicynodontia, exhibited

caniniform tusks in the upper jaw, a turtle-like beak and

stocky bodies with short limbs and tails. Conversely, basal

anomodonts had highly divergent morphologies, including

tree-climbing and superficially lizard-like species. Although

diverse and abundant in the Late Permian, anomodonts

were strongly affected by the EPME: only two Lystrosaurus
species (L. curvatus and L. maccaigi) are known to have

crossed the PTB [23,24], although time-calibrated phylogenies

imply that a minimum of three other anomodont lineages

must have survived [25]. Lystrosaurus is an example of a

‘disaster taxon’ [17,26] owing to its cosmopolitan distribution

and very high abundance in the immediate aftermath of

the EPME, representing 73% of all vertebrate specimens

in the earliest Triassic of South Africa [27].

First documented in the Middle Permian, anomodonts

diversified rapidly and steadily, achieving a peak in taxic

diversity (41 species) during the latest Permian [7,28]. They suf-

fered a severe decline during the EPME, resulting in low

diversity during the Early Triassic, but rebounded in the

Middle Triassic before undergoing a final decline in the Late

Triassic. This diversity pattern is consistent with an evolution-

ary bottleneck, because several major lineages went extinct at

the EPME and all Triassic species but three are part of a

single lineage dating back to the Permian (Dicynodontoidea).

Using character-based analyses of morphological disparity

[29], we investigate four possible scenarios about the potential

effects of the EPME bottleneck on anomodonts. (i) Taxic diver-

sity and morphological disparity were correlated throughout

the group’s history. The bottleneck would have caused a tem-

porary decline in disparity followed by a rebound, mirroring

the temporal trend in taxic diversity changes. (ii) Taxic
diversity and morphological disparity were correlated during

the initial radiation of anomodonts but became decoupled

after the bottleneck. The loss of several lineages at the EPME

would constrain morphological variation in anomodonts as a

whole, even when their taxic diversity began to increase

during the post-extinction recovery. (iii) Taxic diversity and

morphological disparity were decoupled during the initial

anomodont radiation but correlated after the bottleneck.

The bottleneck would drive subsequent trends in disparity

and taxic diversity simultaneously (similar to scenario (i)).

(iv) Taxic diversity and morphological disparity were

decoupled throughout anomodont history. The bottleneck in

taxic diversity at the EPME would be expected to show little

or no impact on temporal trends in morphological disparity

(similar to scenario (ii); for discussions of the relationships

between diversity and disparity, see [30]).
2. Material and methods
(a) Anomodont phylogeny
There has been considerable interest in the phylogeny of anomo-

donts over the past decade. A recently published, overarching

study [31] provides a comprehensive summary of all previous

research and presents a new, refined and expanded analysis

of anomodont interrelationships (see electronic supplementary

material, figure S1), including 87 taxa and 163 characters (20 con-

tinuous and 143 discrete). Both Permian and Triassic taxa are

included, altogether covering approximately 70% of known

species-level anomodont diversity [7]. The selected tree in the elec-

tronic supplementary material, figure S1 is one of the two equally

parsimonious trees recovered in the primary analysis of the

matrix in [31]. These trees differ exclusively in the resolution of

relationships among three taxa—Elph, Interpresosaurus and

Katumbia. The tree topology was used to delimit nine groups

(g1–g9; electronic supplementary material, figure S1) for the

purpose of evaluating disparity changes across major levels of

anatomical organization in anomodont evolution.

(b) Multi-variate treatment of pairwise taxon distances
The matrix in [31] provides the basis for analyses of disparity and

morphospace occupation. These analyses quantify morphological

differences only, that is, disparity in the conventional sense of the

word without any functional or ecological interpretations of the

results [32,33]. The matrix was converted to generalized pairwise

Euclidean distances (see electronic supplementary material, data-

set S1), which were subjected to principal coordinates (PCo)

analysis. Disparity was quantified using two range- and two

variance-based metrics obtained from the PCo scores (coordinates)

of taxa (see electronic supplementary material, dataset S2) on the

first 10 PCo axes, following well-established protocols [29]. The

results based on the root products of ranges and variances

are extremely similar to those based on the sums of ranges and

variances. Therefore, we focus on the two sums only.

We also used a distance-based metric—distance from the

founder [34]—to investigate models of morphospace occupation,

both by major anomodont groups and through time. The calcu-

lations were based on the generalized Euclidean distances, and

Biseridens was treated as the ‘founder’ taxon. The distance from

the founder is simply the mean generalized Euclidean distance

of taxa (in any given group or time interval) from Biseridens.

(c) Patterns of taxon distribution in morphospace
To assess the significance of separation among major groups of

anomodonts in morphospace (where groups represent either
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taxonomic or temporal taxon sets), we used non-parametric

tests, namely a non-parametric multi-variate analysis of variance

(npMANOVA; [35]) and an analysis of similarities (ANOSIM;

[36]) carried out on the PCo scores of taxa along the first 10 PCo

axes. In both tests, we assessed the significance level of group sep-

aration via 9999 random permutations. With each permutation, the

taxa and their associated PCo scores were sampled randomly and

reassigned to groups based on the proportions in which taxa

appear in the original groups of interest (either taxonomic or

temporal). The statistics of association (F in npMANOVA; R in

ANOSIM) for the original groups was compared to the statistic

values obtained from random sampling routines. We chose the

Euclidean distance as the distance measure for both tests. Finally,

we used Bonferroni correction for multiple comparisons in all post

hoc tests of the significance of each pairwise comparison between

groups (see electronic supplementary material, dataset S5).

(d) Analyses of diversity and disparity through time
We assessed the statistical dependence (and associated signifi-

cance) between diversity and disparity by time interval in two

slightly different ways. First, for each of the two disparity

metrics—sum of ranges and sum of variances—we quantified

their rank–order correlations with diversity using Spearman’s r

and Kendall’s t correlation coefficients. Analyses were conducted

in ‘R’ using codes supplied by Dr Graeme T. Lloyd, downloadable

from the following site: http://www.graemetlloyd.com/methgd.

html. For each correlation test, we used both unrarefied and rare-

fied median disparity values (see electronic supplementary

material, dataset S3). Each of these two categories of values was

correlated with the number of taxa per interval. We examined

both the total recorded anomodont diversity for each interval (6,

17, 45, 54, 7, 34, 26 and 8 taxa, respectively, in t1–t8) and the

number of taxa per interval that were used in the phylogeny (5,

14, 31, 40, 7, 18, 14 and 6 taxa, respectively, in t1–t8) [7,15,16].

For each correlation test, we reported the strength of the correlation

and its permutational probability (see electronic supplementary

material, dataset S6).

Our second approach is similar to the previous one, but applies

generalized differencing to disparity values and diversity counts

[13,37]. The generalized differencing method removes trends in

time series, and eliminates autocorrelation by calculating the differ-

ences between the values in any two adjacent intervals, accounting

for the strength of autocorrelation in adjacent intervals [11,13,37].

Once again, the strength and significance of correlations were

quantified for all combinations of diversity counts (i.e. total

number of anomodont taxa versus number of taxa in the phylo-

geny) and disparity values (i.e. rarefied versus unrarefied median

values of the sum of ranges and the sum of variances). Finally,

we also correlated the unrarefied sums of ranges and variances

with the total number of major lineages (i.e. groups g1–g9) present

in each time interval (2, 3, 6, 6, 2, 4, 3 and 2 lineages, respectively, in

t1–t8; electronic supplementary material, dataset S6).
3. Results
(a) Morphospace occupation
Several aspects of the distribution of anomodonts in morpho-

space (figure 1; using the first three PCo axes) are of interest. (i)

The basal anomodonts (dark grey taxa in figure 1) occupy

an extensive region of morphospace that is distinct from the

generally smaller regions occupied by each of the major groups

of dicynodont anomodonts. (ii) The Permian dicynodonts

(dark magenta, most cyan, green, brown and most red taxa in

figure 1) occupy a region of morphospace intermediate between

those of the basal anomodonts and of the Triassic dicynodonts
(most lime, light blue and dark blue taxa). (iii) The Triassic (in

particular, Middle and Late Triassic) dicynodonts occupy fairly

restricted and sometimes overlapping areas of morphospace.

These qualitative patterns are corroborated by the results of

npMANOVA and ANOSIM (see electronic supplementary

material, dataset S5). Both analyses reject, respectively, the null

hypotheses of similar variances (npMANOVA: F¼ 13.5; p¼
0.0001) and of equal medians and ranges for within-group

ranked dissimilarities among major groups (ANOSIM: R ¼
0.6531; p ¼ 0.0001). For both analyses, two pairwise post hoc

comparisons are non-significant, namely between endothio

donts (dark magenta in figure 1) and emydopoids (cyan) and

between kannemeyeriids (light blue) and stahleckeriids (dark

blue). The latter comparison corroborates the observation that

the derived Triassic groups overlap in morphospace. In the

case of ANOSIM, a further non-significant comparison occurs

between the basal anomodonts (dark grey) and the

endothiodonts.
(b) Disparity
The Permian anomodonts are significantly more disparate

than their Triassic relatives (see figure 2a,b and electronic sup-

plementary material, S2a,b). In addition, Permian and Triassic

taxa have significantly different distributions (unequal var-

iances) in morphospace (npMANOVA: F ¼ 10.9; p ¼ 0.0001).

However, we note that the distances within the Permian

and Triassic groups do not differ significantly from the dis-

tances between these two groups (ANOSIM: R ¼ 0.07476;

p ¼ 0.0655; electronic supplementary material, dataset S5).

Disparity calculations by stage-level time bins (rarefied to

the number of taxa present in the least-diverse time bin) paint

a more nuanced picture of changes in disparity through time.

With the sum of ranges (measuring amount of morphospace

occupied; figure 2c), we observe an initial slight disparity

increase in the late Middle Permian, followed by declines

during the rest of anomodont history. With the sum of

variances (measuring dispersion of taxa around group cen-

troids; figure 2d ), we observe a continued decline from an

initial high during the Middle Permian to the extinction of

the whole group in the Late Triassic. Importantly, disparity

during the earliest Triassic stages does not differ significantly

(based on overlap among confidence intervals) from dis-

parity in most previous and succeeding stages, although

the earliest Triassic was a time of particularly low taxic

diversity. These results hold true for the unrarefied sum of

variances and, in part, for the unrarefied sum of ranges (see

electronic supplementary material, figure S2c,d ). With the

latter metric, however, we observe two disparity increases (i.e.

between Roadian–Wordian and Capitanian, and between

Induan–Olenekian and Anisian), a significant drop at the

PTB, and steady decreases between remaining adjacent time

intervals. Although the unrarefied sum of ranges exhibits a

different pattern from its rarefied counterpart, this results

mostly from the significant drop at the PTB, whereas the overall

trend of decreasing disparity remains almost unaltered

(with the two exceptions noted above). Global tests of separ-

ation among groups of taxa assigned to the eight time

intervals return significant results, both for npMANOVA

(F ¼ 7.351; p ¼ 0.0001) and for ANOSIM (R ¼ 0.258;

p ¼ 0.0001), although several pairwise comparisons among

time intervals are non-significant (electronic supplementary

material, dataset S5).
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Figure 1. Patterns of anomodont distribution in morphospace. (a) Two-dimensional plot on PCo axes 1 and 2; (b) two-dimensional plot on PCo axes 1 and 3; in
both plots, colour-coded convex hulls delimit taxa in groups g1 – g9 and (c) three-dimensional plot using PCo axes 1 – 3, colour-coded according to the scheme in
the two-dimensional plots. Group notations and colour codes: g1, basal anomodonts (dark grey); g2, endothiodonts (dark magenta); g3, emydopoids (cyan);
g4, cryptodonts (green); g5, ‘Dicynodon’-grade taxa (brown); g6, lystrosaurids (red); g7, dinodontosaurids plus shansiodontids (lime); g8, kannemeyeriids (light
blue); g9, stahleckeriids (dark blue). Taxon identification numbers: 1, Biseridens; 2, Anomocephalus; 3, Patranomodon; 4, Suminia; 5, Otsheria; 6, Ulemica; 7, Galepus;
8, Galechrius; 9, Galeops; 10, ‘Eodicynodon’ oelofseni; 11, Eodicynodon oosthuizeni; 12, Colobodectes; 13, Lanthanostegus; 14, Chelydontops; 15, Endothiodon;
16, Pristerodon; 17, Diictodon; 18, Eosimops; 19, Prosictodon; 20, Robertia; 21, Emydops; 22, Dicynodontoides; 23, Kombuisia; 24, Myosaurus; 25, Cistecephalus;
26, Cistecephaloides; 27, Kawingasaurus; 28, Keyseria benjamini; 29, Daqingshanodon limbus; 30, Oudenodon bainii; 31, Tropidostoma; 32, Australobarbarus;
33, Odontocyclops; 34, Idelesaurus; 35, Rhachiocephalus; 36, Kitchinganomodon; 37, Aulacephalodon; 38, Pelanomodon; 39, Geikia locusticeps; 40, Geikia elginensis;
41, Elph; 42, Interpresosaurus; 43, Katumbia; 44, Gordonia traquairi; 45, Delectosaurus; 46, Vivaxosaurus trautscholdi; 47, Dicynodon lacerticeps; 48, Dicynodon huenei;
49, Daptocephalus leoniceps; 50, Dinanomodon gilli; 51, Peramodon amalitzkii; 52, Jimusaria sinkiangensis; 53, Syops vanhoepeni; 54, Euptychognathus bathyrhynchus;
55, taxon ‘TSK 2’; 56, Sintocephalus alticeps; 57, Basilodon woodwardi; 58, Lystrosaurus curvatus; 59, Lystrosaurus declivis; 60, Lystrosaurus murrayi; 61, Lystrosaurus
maccaigi; 62, Kwazulusaurus shakai; 63, Lystrosaurus hedini; 64, Turfanodon bogdaensis; 65, Dinodontosaurus; 66, Dolichuranus; 67, Rechnisaurus; 68, Tetragonias;
69, Vinceria; 70, Shansiodon; 71, Rhinodicynodon; 72, Angonisaurus; 73, Xiyukannemeyeria; 74, Uralokannemeyeria; 75, Parakannemeyeria; 76, Rabidosaurus;
77, Kannemeyeria simocephalus; 78, Kannemeyeria lophorhinus; 79, Sinokannemeyeria; 80, Placerias; 81, Moghreberia; 82, Rhadiodromus; 83, Wadiasaurus;
84, Stahleckeria; 85, Sangusaurus; 86, Jachaleria; 87, Ischigualastia.
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Disparity calculations by major groups (once again rarefied

to the number of taxa in the smallest group) show a consistent

pattern in terms of both amount of morphospace occupa-

tion (figure 2e) and degree of taxon dispersal (figure 2f ).

One group, cryptodonts, always emerges as being the least
disparate of all. From the root to the apex of the anomodont

tree (see electronic supplementary material, figure S1), the

three earliest-diverging groups—namely basal anomodonts

(g1), endothiodonts (g2) and emydopoids (g3)—are con-

sistently more disparate than all other groups, namely
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cryptodonts (g4), Dicynodon-grade taxa (g5), lystrosaurids

(g6), dinodontosaurids/shansiodontids (g7), kannemeyeriids

(g8) and stahleckeriids (g9). The unrarefied profile of dis-

parity changes by major group (see electronic supplementary

material, figure S2e,f ) shows similar patterns to its rarefied

counterpart (figure 2e,f).
(c) Diversity and disparity correlations
Anomodont taxic diversity (measured using both the taxa

actually included in the phylogeny and the total number of

known taxa [7]) increases throughout the Middle and Late

Permian, but declines significantly as the PTB is crossed (see

figures 3a–d and 4; electronic supplementary material, S3).

It then rebounds during the Middle Triassic before declining

again in the Late Triassic. This pattern differs strikingly from

that observed for disparity, which generally shows a steady

decline over time. Disparity and taxic diversity are very

weakly and non-significantly correlated in the vast majority

of cases, regardless of which of a wide variety of data treat-

ments are considered (the only exception involves the

application of generalized differencing to the unrarefied sum

of ranges; electronic supplementary material, dataset S6).

Our conclusions also hold true when disparity is correla-

ted with the number of lineages (groups g1–g9) present in
each time interval (see electronic supplementary material,

figure S4). As in the case of taxic diversity, we found no signifi-

cant correlations between disparity and number of lineages

(see electronic supplementary material, dataset S6) in the

vast majority of cases (the sole exception being generalized

differencing of the unrarefied sum of ranges).

(d) Distance from the founder
The average distance of taxa from Biseridens is shown in

figure 3e–h, and calculated through time (figure 3e,f ) and

by major groups (figure 3g,h). With reference to the unrare-

fied plots (figure 3e), the distance from the founder is

almost unaltered from Roadian to Capitanian, before a

rapid increase is observed at the Capitanian–Wuchiapingian

transition, followed by a plateau-like trend until the Induan–

Olenekian (only a negligible decrease is observed across the

PTB). A new, slightly higher plateau level is attained through

the remaining part of the Triassic. The plot of the unrarefied

distance from founder for major groups highlights the rapid

and steep increase in average distance across the basal anom-

odont–endothiodont–emydopoid transition (figure 3g).

Most major groups of dicynodonts are characterized by com-

parable values, although dinodontosaurids, shansiodontids,

kannemeyeriids and stahleckeriids show slightly higher

values than other dicynodonts.
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p
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the number of taxa in any given interval; (a,b) comparisons based on the number of taxa present in the phylogeny; (c,d ) comparisons based on the total number of
known anomodont taxa. (e – h) Distance from the founder (white rhombs), expressed as the average generalized Euclidean distance of taxa from Biseridens (‘founder’
taxon); (e,f ) average distance of taxa binned by time intervals; (g,h) average distance of major groups. Vertical grey bars mark the Permian – Triassic boundary.
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4. Discussion
(a) Macroevolutionary bottleneck
Taken together, our results allow us to reject scenarios (i)

(diversity and disparity were correlated throughout anomo-

dont history) and (ii) (diversity and disparity were
correlated during the initial radiation of anomodonts but

became decoupled after the bottleneck) for the potential bot-

tleneck effect of the EPME on anomodonts. Clearly, disparity

and diversity were neither correlated throughout the entire

history of this clade (scenario (i)), nor is there evidence for

a correlation between these two variables (or between
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disparity and number of major lineages) in the Permian that

subsequently broke down in the Triassic (scenario (ii)).

Instead, rarefied anomodont disparity declines steadily over

time, whereas taxic diversity fluctuates, with two episodes

of increase alternating with two episodes of decrease. This

pattern is consistent with scenario (iv), which posits that

taxic diversity and disparity may be controlled by different

factors. Scenario (iii) applies only to the unrarefied sum of

ranges in the post-EPME history of the group and may be

partly expected given the sensitivity of this metric to

sample size, and the fact that the majority of Triassic anomo-

donts appear superficially very similar. Therefore, although

the EPME represents a bottleneck in terms of anomodont

taxic diversity, it does not seem to have had a strong effect

on broad-scale patterns of morphological variation throughout

the evolution of this group (figure 4).

Similarly, and perhaps more surprisingly, the ecologi-

cal opportunities occurring in the aftermath of the EPME

apparently were not enough to alter the trend of declining dis-

parity in anomodont history. Despite their sheer diversity,

numerical abundance and wide geographical distribution,

these therapsids appear to have been constrained in the

amount of morphological novelty that they could generate.

A potential example of such constraints can be found in the

evolution of the distinctive feeding system of the dicynodonts.

Early in the group’s history, a series of sweeping changes to the

skull, including the addition of a novel muscle mass and

the origination of a highly distinctive jaw joint morphology

[38–41], resulted in a propalinal (i.e. fore–aft) sliding motion

of the lower jaw during mastication. However, subsequent

changes to the skull–jaw articulation system tended to be

minor. Even when certain Triassic lineages re-emphasized an

orthal (i.e. up-and-down) motion of the lower jaw, they did

so by changing the skull proportions and slightly altering the

shape of the articular surface of the jaw joint (such that exten-

sive fore–aft sliding at the joint translated into an orthal instead

of a propalinal motion at the anterior tip of the jaw) rather than

by evolving fundamentally new skull and/or jaw features [42].

The distance from the founder (see, especially, figure 3e,g)

highlights the generally conservative nature of ‘higher’
dicynodonts relative to basal anomodonts and primitive

dicynodonts. The rapidly increasing values of this metric

across groups g1–g3 point to the major structural transition

from basal taxa to dicynodonts and correspond to the tem-

poral increase of the average distance from the founder

early in anomodont history. After the initial increase, how-

ever, the overall structural differences among dicynodonts

tend to show very limited excursions when expressed in

terms of distance from the founder. Simply expressed, an

‘average’ dicynodont taxon from any given time interval or

major group is not more similar/dissimilar to a basal anom-

odont than an ‘average’ dicynodont taxon from any other

time interval or group. This implies that dicynodonts may

have been constrained from evolving any fundamentally

new, distinct morphologies despite variations in ecological

opportunities and fluctuations in diversity.
(b) Phylogeny and disparity signal
Recent work [33] suggests that much of the disparity signal pro-

vided by cladistic datasets has phylogeny as one of its main

sources. In light of this, we might expect anomodont disparity

to correlate with the number of groups present at any time,

i.e. being higher when several clades co-occur, and lower

when only a few clades are present and/or when most taxa

belong to just a single clade (because members of a single

clade would be relatively similar owing to their descent from

a recent common ancestor). The overall temporal trend in

anomodont diversity shows a declining number of clades

over time. As an example, groups such as endothiodonts, emy-

dopoids, cryptodonts and dicynodontoids are present in the

Late Permian, whereas Late Triassic anomodont faunas are

dominated by stahleckeriids. Therefore, a declining disparity

trend might be predicted. However, the reality is more complex.

The group’s history starts with the low-diversity/high-

disparity basal anomodonts. Although taxic diversity increases

rapidly with the appearance of new clades during the Middle

and early Late Permian, disparity increases only at the

Roadian–Wordian to Capitanian transition (in the case of

both unrarefied and rarefied sum of ranges), but begins to
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decrease immediately thereafter, despite the continued

addition of major anomodont clades. At the EPME, disparity

continues to decrease except in the case of the unrarefied

sum of ranges. The pattern described for this metric mirrors

the post-EPME trend in diversity changes, whereby an initial

diversity increase is observed at the Induan–Olenekian to

Anisian transition, and a novel steady decrease occurs there-

after. Taken together, our findings suggest that, at least for

anomodonts, tree topology (i.e. phylogenetic relatedness)

may not strongly (or exclusively) affect the overall trends in

disparity changes.

In summary, taxic diversity and morphological disparity

are decoupled in anomodont history, with a macroevolution-

ary bottleneck in one (taxic diversity) apparently not

affecting long-term trends in the other (disparity). This obser-

vation is significant because it implies that studies that

consider taxic diversity or morphological disparity in isolation

may miss important features of a clade’s history, such as those

that may be revealed by more holistic approaches. This is
especially relevant in analyses of large-scale evolutionary

diversifications, when simple taxon counts may provide little

or no insight into the timing of acquisition of important adap-

tations or the impact of these on modalities of clade expansion.

At the same time, it will be important to investigate the inter-

play between diversity and disparity in other vertebrate

groups, in order to determine whether the anomodont pattern

is typical or atypical during mass extinctions.
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