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Birds are the most diverse living tetrapod group and are a model of large-

scale adaptive radiation. Neontological studies suggest a radiation within

the avian crown group, long after the origin of flight. However, deep time

patterns of bird evolution remain obscure because only limited fossil data

have been considered. We analyse cladogenesis and limb evolution on the

entire tree of Mesozoic theropods, documenting the dinosaur–bird tran-

sition and immediate origins of powered flight. Mesozoic birds inherited

constraints on forelimb evolution from non-flying ancestors, and species

diversification rates did not accelerate in the earliest flying taxa. However,

Early Cretaceous short-tailed birds exhibit both phenotypic release of the hind-

limb and increased diversification rates, unparalleled in magnitude at any

other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adap-

tive radiation of stem-group birds was enabled by restructuring of the terrestrial

locomotor module, which represents a key innovation. Our results suggest two

phases of radiation in Avialae: with the Cretaceous diversification overwritten

by extinctions of stem-group birds at the Cretaceous–Palaeogene boundary,

and subsequent diversification of the crown group. Our findings illustrate the

importance of fossil data for understanding the macroevolutionary processes

generating modern biodiversity.
1. Introduction
Adaptive radiations are important drivers of modern biodiversity. In the classic

model, invasion of a new adaptive zone is accompanied by rapid rates of both

speciation and of phenotypic evolution of functionally important traits [1,2].

Operating at large temporal scales, this process explains, in part, the highly

unbalanced distribution of species richness among extant clades [3,4].

Birds (i.e. Avialae) originated approximately 152 Ma from within theropod

dinosaurs [5,6]. Today they comprise almost 10 000 species [7]. Outwardly, this

seems like a clear example of adaptive radiation driven by a key innovation:

powered flight. Indeed, qualitative appraisal of the fossil record suggests adaptive

radiation among Mesozoic birds [6]. However, quantitative studies of avian

cladogenesis suggest the main burst of speciation postdated the origins of flight

by up to 85 Myr, occurring well within the crown group [4,8]. The minimal

inclusion of fossil data in these analyses leaves open questions of (i) whether

the earliest avialans underwent a significant radiation compared with their

non-avian relatives and (ii) whether flight, or related innovations, had any role

in promoting speciation and morphological diversification in the earliest birds.

Uniquely among animals, bird flight is controlled primarily by the forelimbs

and tail, acting independently of the hindlimb [9]. However, the hindlimb of most

theropod dinosaurs, including the earliest (Jurassic) birds, was constrained by its

functional linkage to a long, primitive tail [9]. Subsequent dissociation of these

modules may have enabled evolutionary versatility of hindlimb anatomy and

function, hypothesized as a key innovation of birds [9–11]. Consistent with this

hypothesis, modern birds exhibit greater morphological diversity of hindlimbs

than Mesozoic theropods (figure 1) [9,12,14], enabling them to exploit diverse
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Figure 1. Triplots showing within-limb proportions of Mesozoic non-avialan (filled black circles) and avialan theropods (filled grey circles) and extant birds (open
grey circles). (a) Forelimb (NMesozoic ¼ 128; Nextant ¼ 639); (b) hindlimb (NMesozoic ¼ 153; Nextant ¼ 708). Line drawings and extant bird values are from refs
[12,13]. Line drawings are (left to right) Carnotaurus, Allosaurus, Archaeopteryx ( forelimbs), Allosaurus, Phoenicopterus and Hesperornis (hindlimbs).
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ecologies including diving, climbing, wading and perching

[9–11]. However, two independent processes of phylogenies

evolving in morphospace (i.e. ‘phylomorphospaces’) can gen-

erate high morphological disparity [15]: (i) greater amounts

of morphological change per unit of phylogenetic distance

(equivalent to higher evolutionary rates, when branches are

time calibrated) or (ii) relaxation of functional constraints,

allowing a greater area of novel morphospace explored per

unit of morphological evolution. Of these two possibilities,

only elevated rates (or both processes acting together) are con-

sistent with the classic model of adaptive radiation [1,2].

However, the only study to investigate hindlimb evolutionary

change (of discrete morphological characters) in Mesozoic

birds found no evidence of this [16], and most Mesozoic birds

have hindlimb proportions similar to non-avian theropods

(figure 1) [12,14].

Numerous recent discoveries of well-preserved Mesozoic

birds [6] and a taxon-rich understanding of Mesozoic theropod

systematics [17–22] allow us to analyse theropod loco-

motor evolution and taxonomic diversification in an explicit

phylogenetic framework. We compiled a dataset of body pro-

portions and phylogenetic relationships among Mesozoic

birds and other theropods. We then tested whether evolution-

ary rate shifts in fore- and hindlimb proportions are associated

with high rates of taxonomic diversification, consistent with

hypotheses of adaptive radiation in early birds.
2. Material and methods
Analyses were performed in R v. 2.15.1 [23] using customized

code available at DRYAD (datadryad.org/doi:10.5061/dryad.

4d0d2). Further details, and our dataset (see electronic sup-

plementary material, dataset S1), are provided in the electronic

supplementary material, appendix S1 and on DRYAD. Lengths

of the six main limb segments of Mesozoic theropod dinosaurs

(including birds) and an informal supertree of 228 taxa (see elec-

tronic supplementary material, figure S1) were assembled from

specimens and numerous literature sources, including ref. [24].

Polytomies, reflecting phylogenetic uncertainty, were resolved
randomly, and branch lengths calibrated according to taxon

ages, smoothing zero-length branches by equally sharing dur-

ation from the immediately basal non-zero length branch [25].

Results from one such tree are reported in our main text, but

similar results were recovered across many randomly resolved

versions of our cladogram, and among trees calibrated using sev-

eral different methods (see electronic supplementary material,

appendix S1). All three forelimb measurements are known for

92 taxa included in our tree, and all three hindlimb measure-

ments for 107 taxa.

Phylogenetic principal components analysis (PCA) corrects

for phylogenetic non-independence of taxa [26] when determin-

ing principal axes of variation [27,28] and was performed on

log10-transformed fore- and hindlimb measurements to extract

the non-allometric shape component of limb proportions. As

expected for length data spanning three orders of magnitude,

within which intralimb measurements span less than an order

of magnitude, the first principal component axis (PC1) explained

more than 95% of the variance. This represents size and size-

related (allometric) variation: the eigenvector of PC1 contains

coefficients of similar sign and magnitude for all measurements

(table 1), and its scores correlate strongly with total limb lengths

both using and not using phylogenetic independent contrasts

(R2 . 0.99). Analyses of limb shape therefore used only the

scores of PC2 and PC3, the eigenvectors of which were robust

to taxonomic subsampling and different tree scaling methods

(see electronic supplementary material, appendix S1). The PCA

scores of ancestral nodes were estimated using maximum likeli-

hood under a Brownian model of evolution with all branch

lengths set to 1.0, which is equivalent to squared change

parsimony [15,28].

A phylomorphospace approach [15] was used to examine pat-

terns of body shape evolution along lineages in a quantitative

morphospace by comparing two values among groups: a morpho-

logical rate estimate (the ratio of morphological distance to

phylogenetic branch duration; morphological distance is the sum

of Euclidian distances between ancestor–descendant pairs in a

morphospace; electronic supplementary material, appendix S1)

and the lineage density (packing of morphological branch length

into a morphospace area) [15]. Lineage density was calculated as

the total morphological branch length divided by the bounding

ellipsoid area in morphospace. Significance of the between-

group ratios of morphological rates and lineage densities was
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Table 1. Summary of PCA results based on the first randomly resolved
tree, with a root length of 10 Ma.

PC1 PC2 PC3

forelimb

eigenvalue 0.00584 0.00012 0.00006

% explained 97.2 1.92 0.92

after PC1 — 67.6 32.4

eigenvector coefficients

humerus length 20.57 20.47 0.67

radius length 20.56 20.37 20.74

metacarpus length 20.59 0.80 0.05

hindlimb

eigenvalue 0.00535 0.00009 0.00004

% explained 97.6 1.68 0.71

after PC1 — 70.4 29.6

eigenvector coefficients

femur length 20.61 0.68 0.41

tibia length 20.56 20.00 20.83

metatarsus length 20.56 20.74 0.38
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established by comparison with the outcomes of 1000 simulations

run under a Brownian model of evolution (see electronic sup-

plementary material, appendix S1) on the phylogenetic tree with

branch lengths [29].

We also estimated evolutionary rates for each shape axis indi-

vidually using a Bayesian approach [30], which uses reversible-

jump Markov chain Monte Carlo sampling from a distribution

of multi-rate models in inverse proportion to their poorness of

fit. We implemented this approach over 1 000 000 generations,

discarding the first 250 000 as burn-in. The significance of

observed rate shifts was assessed using randomization tests [30].

Finally, we used SymmeTREE [31] to survey the tree for signifi-

cant shifts in rates of lineage diversification, by comparison of tree

balance with the expectations of an equal rates Markov diversi-

fication process [31]. Significant tree imbalance can arise from an

increase in diversification rate at a specified node or from the

effects of later extinction in its sister taxon [32]. Thus, we analysed

two versions of our cladogram, one extending until the extinction

of non-avian dinosaurs at the end of the Cretaceous and another

extending only as far as the Early Cretaceous diversification of

pygostylian birds. If both recover the same result, then elevated

diversification rates provide the best explanation of any significant

tree imbalance [32].
3. Results
(a) Principal components analysis
The second PC axes explain approximately 70% of shape-

related variance (see table 1 and electronic supplementary

material, appendix S1). For both limbs, opposite signs of the

eigenvector coefficients of distal and proximal limb elements

indicate that PC2 describes elongation of the metacarpus/meta-

tarsus relative to the humerus/femur. The eigenvector

coefficient of the radius length has a similar value to that of

the humerus, but that of the tibia is intermediate between the

femur and metatarsus. PC3 of the forelimb measurements

describes elongation of the radius relative to the humerus,
with the metacarpus taking an intermediate eigenvector coeffi-

cient. PC3 of the hindlimb measurements describes relative

elongation of the tibia compared with the femur and metatar-

sus. Eigenvector coefficients are robust to taxon subsampling

(electronic supplementary material, tables S1 and S2).

(b) Phylomorphospace plots
Mesozoic birds, including flightless taxa, have a long meta-

carpus (high positive PC2) and radius (highly negative

PC3) (figure 2a). Various maniraptoran lineages also entered

this ‘avialan region’, including basal deinonychosaurs such

as Mahakala and Microraptor (suggesting these forelimb pro-

portions may be primitive for Paraves), oviraptorosaurs (e.g.

Gigantoraptor) and the alvarezsauroid Haplocheirus. Most non-

avialan theropods show intermediate (low, positive) values

on both axes. However, some lineages are more different

to Avialae, possessing a relatively short metacarpus (nega-

tive PC2) in some ornithomimosaurs and early theropods,

a short radius (high positive PC3) in tyrannosaurids and

alvarezsaurids, or both in some abelisauroids.

Most clades centre on a common region of hindlimb morpho-

space (figure 2b). However, the spread of data is greater among

maniraptorans, among which some enantiornithines have a

short tibia compared with the expectations of allometry (high

positive PC3) and ornithuromorphs have a long tibia (negative

PC3). Each group exhibits a similar range of PC2 values

(elongation of the metatarsus compared to the femur), although

therizinosauroids have a distinctly short metatarsus (high posi-

tive PC2) and the flightless, aquatic hesperornithiforms have a

long metatarsus compared with their femur (high negative PC2).

(c) Phylomorphospace parameters
Rates of forelimb evolution in most groups are statistically

indistinguishable (at the 5% level) from the expectations of a

tree-wide single rate Brownian model (table 2). Although flight-

less Avialae have slower rates of forelimb evolution than other

groups, their small sample size (one lineage) indicates that this

result is essentially meaningless. Avialae, Maniraptora and

Deinonychosauria occupy significantly less forelimb morpho-

space area than expected under the Brownian model and have

a significantly greater lineage density (packing of morphological

distance into morphospace area) than other theropods, implying

greater constraint on forelimb morphospace occupation in

maniraptorans, including birds.

Avialae exhibit significantly high rates of hindlimb

evolution compared with other theropods, including deinony-

chosaurs and other maniraptorans. Avialae also occupy a

significantly larger area of hindlimb morphospace than other

theropods, including non-avialan maniraptorans. Avialan

and pygostylian hindlimb lineage densities are significantly

lower than those of non-maniraptoran theropods. However,

although avialan and pygostylian hindlimb lineage densities

are lower than expected compared with maniraptorans and

deinonychosaurs, the difference is not statistically significant

(table 2). Results including only lineages younger than

180 Ma are similar to those from the full time span (see elec-

tronic supplementary material, table S2). Results after

deletion of 50% of Avialae do not exhibit significantly high

hindlimb rates, but do show significantly low lineage

density compared with all other theropods, including non-

avialan maniraptorans (see electronic supplementary material,

tables S4 and S5, and appendix S1).



(a) (b)

–0.1

–0.1

0.1

0

0.2

Majungasaurus
Carnotaurus

Aucasaurus

Limusaurus Gansus

Baptornis

Vorona

Segnosaurus

Neimongosaurus

Longipteryx
Eoenantiornis

Hesperornis

Torvosaurus
Tyrannosaurus

Mononykus

Compsognathus

Eoraptor

Herrerasaurus

Pelecanimimus

0.3

–0.1

–0.2

0

0.05

–0.3 –0.2 0–0.1 0.10
PC2

PC
3

PC2
0.1 0.2

Figure 2. Phylomorphospaces depicting (a) the Mesozoic theropod tree in fore- (N ¼ 92) and (b) hindlimb (N ¼ 107) shape spaces defined by PC2 and PC3
(table 1). Non-maniraptoran lineages are shown in black, non-avialan maniraptorans in dark grey (red) and Avialae in light grey (blue). Silhouettes are illustrative.
(Online version in colour.)

Table 2. Statistical significance of phylomorphospace parameter ratios. Numbers are the proportion of replicates simulated under a Brownian evolutionary model
for which the ratio between groups was lower than that observed. High values above 0.95 and low values below 0.05 are deemed statistically significant and
accompanied by an asterisk (one-tailed probabilities owing to equivalence when reversed). The phylomorphospace is based on the first two shape axes (PC2
and PC3) of a phylogenetic PCA using the first randomly resolved tree with a root length of 10 Ma.

forelimb rate area density hindlimb rate area density

flying Avialae: non-paravian 0.794 0.003* 0.999* 1.000* 0.995* 0.200

flying Avialae: Deinonychosauria 0.779 0.692 0.412 0.999* 0.996* 0.081

flying Avialae: non-maniraptoran 0.784 0.000* 1.000* 1.000* 1.000* 0.008*

flying Avialae: Maniraptora 0.765 0.348 0.725 1.000* 0.987* 0.239

flying: flightless Avialae 0.987* — — 0.175 — —

Deinonychosauria: non-paravian 0.437 0.002* 0.997* 0.847 0.347 0.759

Deinonychosauria: flightless Avialae 0.979* — — 0.007* — —

flightless Avialae: non-paravian 0.018* — — 1.000* — —

Maniraptora: non-maniraptoran 0.527 0.003* 0.994* 0.494 0.945 0.075

Maniraptora: flightless Avialae 0.988* — — 0.001* — —

flightless Avialae: non-maniraptoran 0.014* — — 0.998* — —

Pygostylia: non-paravian 0.778 0.005* 0.998* 1.000* 0.994* 0.164

Pygostylia: other paravians 0.688 0.905 0.160 0.996* 0.996* 0.067

Pygostylia: non-maniraptoran 0.796 0.000* 1.000* 1.000* 1.000* 0.006*

Pygostylia: other maniraptorans 0.736 0.448 0.637 1.000* 0.997* 0.124
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(d) Tests of multi-rate Brownian motion
Model-averaged posterior distributions of Brownian variance

(approx. evolutionary rates [26,33]) for individual PC axes

are approximately consistent with our (multi-variate) phylo-

morphospace approach. Univariate forelimb rates show a few

shifts scattered over the tree with little coordinated signal rel-

evant to avian origins (see electronic supplementary material,

figures S4 and S5). A shift to slow rates might be localized to

the base of the maniraptoran group including therizinosaurs,

oviraptorosaurs and paravians, although statistical support for

this is negligible (posterior probability ¼ 0.165; p ¼ 0.474n.s.).

Avialan hindlimb rates are fast. Rapid rates of the metatar-

sus : femur proportion (hindlimb PC2) are concentrated in
Avialae, especially in Ornithurae and some enantiornithines

(see electronic supplementary material, figure S6) but are not

statistically significant ( p ¼ 0.210n.s.). Relative tibia size (hind-

limb PC3; figure 3) shows rapid rates in Avialae, but less so

among non-pygostylians, and the most likely node for this

rate shift is Pygostylia (posterior probability ¼ 0.365; p ¼
0.015*). Indeed, four pygostylian lineages independently

explored the limits of hindlimb morphospace (figure 2b).

(e) Diversification rate shifts
Both sets of tree balance analyses recovered significant

( p , 0.05) lineage diversification rate shifts in Early Cretaceous

Pygostylia: among basal enantiornithines and ornithurine
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birds (figure 3). The tree including only Triassic–Early Cretac-

eous taxa also recovered a shift in Confusciusornithidae.

No other significant shifts were detected in the entire tree of

Mesozoic theropods.
4. Discussion
(a) Rates and constraint in theropod limb evolution
Extant bird forelimbs occupy greater morphospace area

than those of extinct theropods, including Mesozoic birds

(figure 1a) [13]. Indeed, Mesozoic birds and other maniraptor-

ans were restricted to small, intensively exploited areas of

forelimb morphospace compared with both non-maniraptoran

theropods and extant birds (figures 1a, 2a). Maniraptoran

forelimbs exhibit high lineage density compared with non-

maniraptoran theropods. Thus, evolutionary constraints on

forelimb morphospace occupation acted not just on Mesozoic

birds but also on flightless maniraptorans and were not

imposed purely by the demands of flight. Maniraptorans pos-

sess a highly asymmetrical wrist joint, enabling three segment

arm folding [34]. This constrains the forelimb segments to

approximately equal lengths [13,34], but allows longer and

more functionally versatile forelimbs [13], and is associated

with ecological diversification in Maniraptora [18]. It may also

have protected their pinnate arm feathers from damage [34]

and is an exaptation for flight.

Avialan hindlimb morphospace is dominated by pygostylian

birds (figures 2a and 3). This suggests that tail abbreviation,

rather than powered flight alone, provides the best explanation

for enhanced morphospace occupation in birds [9,12,14].
Morphological diversification of the avialan hindlimb was

primarily driven by rapid evolutionary rates, especially of rela-

tive tibia length. High rates of hindlimb evolution may have

continued after the Mesozoic, as extant birds occupy a still

greater hindlimb morphospace [12]. Mesozoic avialan hindlimb

evolution is also characterized by low lineage density, especially

compared with non-maniraptoran theropods. The link between

tail reduction and evolutionary release of the hindlimb is con-

firmed by the eccentric hindlimb proportions of some non-

avialan maniraptorans that convergently developed a pygostyle

[35,36] (therizinosaurs; figure 2b).

Our results differ from studies of discrete characters (apo-

morphies), which find little evidence for clade-wide shifts in

forelimb [37] or hindlimb [16,37] rates in Avialae or Pygostylia.

This difference may be explained by the different data type

in our study, and by our consideration of constraints on mor-

phospace exploration. Thus, although evolution across all

apomorphies does not support the ‘pectoral early-pelvic late’

hypothesis [38], key characters of forelimb function (relative

segment length and wrist mobility [13,34]) evolved before

those facilitating hindlimb diversification (flight and an

abbreviated tail [9]) and both had major impacts on subsequent

limb evolution.

(b) Adaptive radiation in Early Cretaceous birds
Two of our results suggest that evolutionary versatility of the

hindlimb was a key innovation driving adaptive radiation in

Early Cretaceous pygostylian birds: (i) accelerated rates of

evolution in hindlimb proportions, an ecologically important

trait [9,12,14] and (ii) significant tree imbalance indicating
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increased cladogenesis in Pygostylia. Adaptive radiation in

Pygostylia, rather than in flying birds as a whole, is consistent

with hypotheses of musculoskeletal evolution during the

dinosaur–bird transition [9–11]. Diverse cranial specializ-

ations also suggest adaptive radiation in Early Cretaceous

pygostylians [6,39], although cranial data have not been ana-

lysed quantitatively.

Apparent rapid evolutionary rates in birds could result

from their substantially smaller body sizes and faster gener-

ation times compared with most other theropods [40] or from

the generally short branch durations estimated among early

Avialae (figure 3; see discussion in the electronic supplemen-

tary material, appendix S1). However, we can conservatively

say that the difference in hindlimb rates between avialan and

non-avialan theropods is substantially greater than that for

the forelimbs, and differences in body size, generation time

and tree structure cannot explain this observation.

Topological methods to evaluate diversification rate

shifts, such as SymmeTREE, can only be applied inexactly

to trees including fossil taxa, and this approach remains

underdeveloped [32,41]. Arguably, the abundance of small

maniraptoran fossils, including avialans, in a single Early Cre-

taceous Lagerstätte, the Jehol Biota of China [42] could have

generated the observed diversification rate shifts in Pygostylia.

However, the absence of comparable rate shifts in non-pygos-

tylian maniraptorans, which are also well sampled from the

Jehol, gives us confidence that a genuine taxonomic radiation

of birds occurred in the Early Cretaceous.

(c) A two-phase model of avialan adaptive radiation
Until now, attempts to explain bird diversity focused on the

distal product of their radiation, by predominantly considering

extant birds, which live more than 150 Myr after Archaeopteryx
[4,8,12]. These studies suggest a radiation within the crown

group. The avian crown group is exceptionally speciose and

morphologically disparate, for example in their breadth of mor-

phospace occupation [13]. We do not dispute that this reflects a

real evolutionary radiation. However, we do find quantitative

evidence for an adaptive radiation of Mesozoic stem-group

birds [6,43] that predates the crown radiation by at least 30 Myr.

The Mesozoic fossil record documents an early time in

avialan history, during which extinctions, climatic fluctuations

and a Cenozoic radiation may not yet have overwritten the sig-

nals of initial diversification. Mesozoic birds encompassed less
morphological and ecological diversity than modern birds and

had diversified for substantially less time than their non-avian

theropod relatives. Despite this, we have shown that processes

capable of generating high taxonomic and morphological

diversity were functioning early on the avian stem lineage.

Elevated rates of lineage diversification were coincident with

high evolutionary rates of ecologically important traits. This

is strong evidence for radiation driven by invasion of a novel

adaptive zone or the appearance of a key innovation.
(d) Fossil data aids macroevolutionary inference
Because of the richness of neontological datasets, much atten-

tion has focused on the radiations that gave rise to extant

diversity [2,4,7]. However, there are reasons to be cautious

about ‘extant-only’ analyses. First, extinction is an important

contributor to patterns of extant species richness [4,44,45] and

can seriously bias inferences from neontological datasets

[32,46]. Second, the absence of data on extinct morphologies

reduces the power of modelling approaches to detect non-

Brownian modes of trait evolution [47], and morphological

rates along long, unsampled branches tend to be underesti-

mated [48,49].

Abrupt mass extinction at the Cretaceous–Palaeogene

boundary resulted in extinction of the most diverse Mesozoic

bird group, Enantiornithes, as well as many basal ornithur-

ines [50], leading to a profound loss of neontological data

on the first three-fifths of bird evolution. When fossil data

are analysed, a more nuanced picture emerges. Our results

emphasize the importance of fossil data when evaluating

hypotheses of ancient adaptive radiations and their role in

shaping modern diversity.
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