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Electron transfer (ET) reactions in biomolecular systems represent an impor-

tant class of processes at the interface of physics, chemistry and biology. The

theoretical description of these reactions constitutes a huge challenge because

extensive systems require a quantum-mechanical treatment and a broad range

of time scales are involved. Thus, only small model systems may be investi-

gated with the modern density functional theory techniques combined with

non-adiabatic dynamics algorithms. On the other hand, model calculations

based on Marcus’s seminal theory describe the ET involving several assump-

tions that may not always be met. We review a multi-scale method that

combines a non-adiabatic propagation scheme and a linear scaling quan-

tum-chemical method with a molecular mechanics force field in such a way

that an unbiased description of the dynamics of excess electron is achieved

and the number of degrees of freedom is reduced effectively at the same

time. ET reactions taking nanoseconds in systems with hundreds of quantum

atoms can be simulated, bridging the gap between non-adiabatic ab initio
simulations and model approaches such as the Marcus theory. A major

recent application is hole transfer in DNA, which represents an archetypal

ET reaction in a polarizable medium. Ongoing work focuses on hole transfer

in proteins, peptides and organic semi-conductors.
1. Introduction
Electron transfer (ET) constitutes an important class of chemical reactions in

biomolecular complexes and has been an object of intensive research [1].

These reactions are found at the heart of fundamental biological processes,

such as respiration [2], photosynthesis [3], and radiative damage and repair

of DNA [4]. The biochemical ET occurs over large distances, often in a hetero-

geneous medium composed of different kinds of molecules and on a long time

scale. All of these features make both the experimental and the computational

studies of ET particularly demanding.

The classical tool to describe the ET in complex molecular and biomolecular

systems is the Marcus theory [5,6] and its extensions [7–11]. To evaluate the rate

of transfer between an electron donor and an acceptor, three parameters are

needed: the reaction free energy DG, the electronic coupling V and the reorganiz-

ation energy (RE) l. V can be calculated with quantum chemistry (QC) [12], and,

nowadays, also with highly accurate methods [13]. Particularly cost-efficient

methods are based on the fragment molecular orbital (FMO) approaches

[14–18] and on constrained density functional theory (DFT) [19,20]. These allow

V to be calculated along nanosecond molecular dynamics (MD) trajectories

[21,22]. In addition, effective sampling of the configuration space is needed to

evaluate DG and l, which are thermodynamic quantities. A rather accurate esti-

mation of these parameters is required because of their appearance in the

argument of an exponential, and the RE is particularly challenging to determine.

It can be decomposed into two parts: the inner sphere RE li, which is also sensitive

to quantum effects [23], and the solvent contribution to the outer sphere RE ls,

which can be calculated with classical MD simulations [24–27]; the effects of sev-

eral structural and dynamic factors on ls have been discussed previously [28,29].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.0415&domain=pdf&date_stamp=2013-07-24
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Figure 1. Application of the fragment orbital approach for hole transfer in
DNA. Purine nucleobases are considered as the charge-carrying fragments
(coloured by atom), while the remaining components of the system constitute
the MM environment (DNA backbones in black, water molecules in red/dark
grey, counter-ions in yellow/light grey). (Online version in colour.)
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The application of the standard Marcus theory is based on

several assumptions, as follows. (i) The electronic structures of

the electron donor and of the electron acceptor are known,

including the information on the de/localization of the charge.

(ii) ET occurs significantly more slowly than the structural

dynamics of the molecular system.1 (iii) The mechanism of

transfer is known (adiabatic or non-adiabatic, solvent-con-

trolled, etc.). A good indicator may be the relation of V and

l [35], although the distinction may not always be easy to

make use of [23].

An alternative solution is to perform an unbiased simulation

of ET using a non-adiabatic MD scheme and high-level elec-

tronic structure calculations [36], yet such methods are limited

to several tens of atoms and time intervals of up to a picosecond.

Stepping down the ladder of accuracy of QC methods, the DFT

may be able to describe slightly larger systems, still being

restricted to a picosecond time scale [37–39]. Even worse,

semi-empirical QC methods cannot treat systems with hun-

dreds of atoms on nanosecond time scales either, and this has

been possible only with more approximate methods [40] so far.

In order to make a rigorous description of such processes

practicable, we have developed a novel multi-scale compu-

tational scheme, where the number of degrees of freedom

is reduced carefully yet an unbiased description of the ET reac-

tion in the spirit of non-adiabatic QC-MD schemes is still

provided. The computational scheme is based on a twofold com-

bination of quantum-mechanical (QM) methods with empirical

force fields and linear scaling approaches: (i) A QM region is

defined, and the remainder of the system will be described

with molecular mechanics (MM), with interaction between the

regions to be treated with a standard QM/MM coupling. (ii)

An FMO approach is applied in the QM region, which leads to

a linear scaling of the computational time with the system size.

(iii) Only the frontier orbitals (highest-occupied molecular

orbitals (HOMOs) or lowest-unoccupied molecular orbitals

(LUMOs)) are considered in the QM treatment, while the remain-

der of the electronic structure is covered by MM; this is similar to

the simple Hamiltonians in the Pariser–Parr–Pople (PPP) or

Hückel molecular orbital (HMO) methods. Since an approxi-

mate total energy expression for the combined system is

derived, the atomic forces can be computed and the standard

semi-classical techniques can be applied to propagate the nuclear

and electronic degrees of freedom simultaneously, such as the

mean-field (MF) Ehrenfest or surface-hopping (SH) methods.

This resulting computational scheme is cost-efficient and

allows the electronic and nuclear degrees of freedom to be pro-

pagated for several hundreds of QM atoms simultaneously. We

have applied this method to the problems of hole/ET in DNA,

proteins, peptides and organic materials, which will be pre-

sented briefly after reviewing the methodology.
2. Methodology
The computational scheme for the simulation of ET is derived from

an expression for total energy within DFT. A favourable compu-

tational efficiency is achieved by the introduction of several

approximations, among which the following ones are prominent:

— use of a linear scaling ansatz for the QC problem, by means of

an FMO approach;

— efficient calculation of the FMOs with a semi-empirical

DFT scheme, self-consistent charge/density functional tight

binding (SCC-DFTB) [41];
— application of a hybrid QM/MM scheme to treat the

influence of the environment; and

— a combination of QC and MM calculations on yet another

level, treating only selected (frontier) orbitals quantum

mechanically while the remainder of the system is covered

by a force field.

These approximations are discussed in the first section below.

The following sections concern the total energy expression, the

calculation of energy derivatives, the effects that are described

effectively or neglected in the approach, and the QM propagation

schemes applied.
2.1. Linear combination of fragment orbitals
The QC problem can be solved very efficiently, provided it is

possible to decompose the molecular system naturally into a

set of M spatially non-overlapping fragments, for which separate

QC calculations can be performed. This idea is close to that of the

FMO approach of Kitaura et al. [42]. An example is the purine

nucleobases for the hole transfer in DNA (figure 1). Then, the

computational problem is reduced to the determination of the

molecular orbitals on each of the M fragments (indexed as m)

wi
m ¼

X
m

cim
m xm; ð2:1Þ

where the ith molecular orbital (FMO) of fragment m is expressed

in an atomic basis set xm with a set of FMO coefficients cim
m : In the

case of DNA, these fragments are the nucleobases over which the

excess charge is considered to travel. In the case of proteins, these

may be important amino acid side chains and parts of the protein

backbone. The methodology may also be applied to organic

materials as these consist of individual molecules, which can

be treated as fragments.

To solve for the FMOs in equation (2.1), Hartree–Fock (HF)

or DFT methods can be used. However, the application of

semi-empirical QC methods can speed up these calculations by

as much as three orders of magnitude. This is an essential step

as it allows the FMOs to be calculated along the MD trajectories

in the nanosecond regime, whereas the HF and DFT approaches

would be limited to a picosecond range. In our work, the QC cal-

culations are based on the SCC-DFTB method [41]. Evidently, the

use of such approximate methods requires a thorough bench-

marking, which has been done for hole transfer in DNA in our

initial work [16]. It was shown that SCC-DFTB provides orbitals

in close agreement with full DFT calculations. Also, the charge-

transfer (CT) parameters—the on-site energies 1m and electronic



–4.9

(a)

(b)

FMO-QM/MM
full SCC-DFTB

–5.0

–5.1

–5.2

1 2

or
b.

 e
ne

rg
ie

s 
of

 c
om

pl
ex

 (
eV

)

3 4 5
no. fragments

HOMO HOMO–1 HOMO–2 HOMO–3 HOMO–4 HOMO–9

6 7 8

Figure 2. (a) Energies of n highest occupied orbitals in complexes of n adenine
molecules (n ¼ 1 . . . 8) in the idealized B-DNA configuration, yielded by full
SCC-DFTB (red/dark) and FMO calculations (blue/light). (b) Highest occupied
orbitals of the stack of six adenine molecules in the idealized B-DNA confor-
mation obtained with SCC-DFTB. Shown are orbitals that correspond to
linear combinations of HOMO of the individual molecules; five of them rep-
resent the five highest occupied orbitals, HOMO through HOMO – 4. (Online
version in colour.)
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couplings Hmn (see below)—agree with those provided by the

higher level DFT and wave function methods.

To save computer time, only the region where the charge

can localize is treated with QC, while the entire remainder of the

system is described with MM. In the case of hole transfer in

DNA, the QC part contains the purine nucleobases (guanines

and adenines), while the MM part contains the other nucleobases,

the sugar–phosphate backbones as well as the solvent (water mol-

ecules and counter-ions). The effect of the MM environment is

taken into account using a QM/MM approach. To this end, the cal-

culation of FMOs wi
m in equation (2.1) includes the electric field

induced by the MM environment, represented by point charges,

as an external potential. Also, the electrostatic interactions between
the individual fragments (i.e. between the purine nucleobases) is

only included via point-charge electrostatics. Thus, the MOs are

constrained to be localized in the pre-determined region, and

their spatial support cannot change in the course of the simulation,

regardless of any geometry changes.

Actually, only the excess electron or hole is treated quantum

mechanically, while the entire remainder of the system (i.e. the

charge-neutral variant of the molecular system) is described with

an MM force field. This is comparable to the HMO [43,44] and

PPP [45,46] models, in which a p – s separation is assumed: only

the p-electrons are treated with QC while the s-electrons are con-

sidered to be condensed to the nuclei with classical force-field

terms. The approximation introduced here proceeds even further,

by considering the quantum system as consisting of a single electron

or hole. The basis set for the expansion of the wave function of excess

electron is constituted by the FMOs. In the simplest form, the wave

function of the excess electron consists of a superposition of the

LUMOs of the fragments (i ¼ LUMO in wi
m), and the wave function

C of the hole is built from the HOMOs wHO
m

Cðr;RÞ ¼
X

m
amw

HO
m ; ð2:2Þ

where am are the expansion coefficients in the basis of the HOMOs.

Thus, it is assumed that the lowest unoccupied orbitals of the

complex are linear combinations of the LUMOs of the individual

fragments, or that the highest occupied orbitals are linear combi-

nations of the HOMOs of fragments (for hole transfer). This

assumption is confirmed for hole transfer in DNA in figure 2: the

energies of the highest occupied orbitals in a stack of adenine mol-

ecules obtained with a diagonalization of the ‘coarse-grained’

Hamiltonian in the FMO approach (introduced below in equation

(2.9)) are compared with those yielded by full atomistic SCC-

DFTB calculations. These sets of orbital energies match convin-

cingly, and the deviations do not exceed 0.01 eV. Furthermore, a

visual inspection of the orbitals reveals that the five highest occupied

orbitals of the stacked complex of six adenines represent superposi-

tions of the weakly coupled HOMOs of the individual adenines.

Note that also further orbitals of the fragments (HOMO–1,

HOMO–2, etc. or LUMOþ1, LUMOþ2, etc.) can be included

if required for a more accurate description.
2.2. Approximate total energy expression for the hybrid
FMO/MM approach

The starting point is the expression for the DFT total energy

of the system with N – 1 electrons, i.e. a system which con-

tains a hole (radical cation),2 with electron density r. The

first step towards an efficient method is to expand this

energy around the density r0 of the neutral system with

N electrons up to the second order, using the differential

density dr ¼ r 2 r0

EN�1½r� �
XN=2

i

nikCijH½r0�jCilþ EDC½r0� þ E2nd½ðdrÞ2�; ð2:3Þ
where ni are the occupation numbers of the Kohn–Sham

orbitals Ci (with nHOMO ¼ 1 and ni ¼ 2 otherwise), EDC[r0]

is the DFT double-counting contribution [47], and E2nd is a

contribution that is of second order in the differential density

and will be analysed in detail later. Here, the aim is to express

the energy explicitly as a sum of the form

EN�1½r� ¼ E0½r0� þ E1½r0; dr� þ E2½r0; ðdrÞ
2�; ð2:4Þ

which will require further approximations.
2.2.1. The Koopmans theorem and the zeroth-order term
If we assume the orbitals of the charged system Ci to be identical

to those of the neutral system Ci
0

Ci
0 ¼ Ci ð2:5Þ

then we may rearrange the energy expression to obtain

EN�1½r� � EN ½r0� � kC 0
N=2jH½r0�jC 0

N=2lþ E2nd½ðdrÞ2�; ð2:6Þ

where EN ½r0� ¼
PN=2

i 2kCijH½r0�jCilþ EDC½r0� is the energy of

the N-electron, charge-neutral system. This expression has the

form of equation (2.4).

Equation (2.5) looks like a drastic approximation at first

sight. For discussion, let us assume the wave function of hole

to be localized on the fragment m completely so that CHO ¼

wm. We may expect three kinds of changes upon ionization:

(a) the shape of the orbital wm will change, (b) the orbitals on

the fragment m (indexed as k) wk
m will mix (rotate), and (c) the

orbital energies 1k
m will change.

Regarding (a), it has to be kept in mind that relatively large

molecular fragments are usually considered. Then, the excess

charge is distributed over many atoms as the HOMO/LUMO
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is quite delocalized most likely. In such a case, the frontier orbi-

tals are unlikely to change much upon ionization. Whenever

the excess charge is localized on a few atoms in a fragment, the

approximation of preserved frontier orbitals may become pro-

blematic; then, a third-order expansion may account, for

example, for the spatial expansion of the electron density in

small anions with respect to the neutral molecules, as discussed

for SCC-DFTB recently [48]. Also, it was shown that, after remov-

ing an electron from the HOMO, this orbital remains static and

the charge migration is driven by lower lying orbitals [49].

We have tested this approximation for the nucleobase gua-

nine, which is the dominant hole-carrying fragment in DNA. As

a measure of similarity of orbitals in the radical cation molecule

and those in the neutral one, the overlap of these orbitals obtained

on the DFT-level B3LYP/def2-TZVP was evaluated (see figure 3

for the results). The HOMO is the same in the neutral and ionized

molecule (the overlap is 0.99 and 0.999 for the a- and b-orbitals of

the radical cation, respectively). On a few occasions, there is some

rotation of lower lying orbitals and changes of their energy order.

Therefore, the response to taking an electron out of the HOMO

occurs in lower lying orbitals as expected (b). The effect of char-

ging on the orbital energy will be covered by the second-order

term, as discussed later, while this term will include also any

effects of the kinds (b) and (c) in an effective way. Also, note

that the electronic structure obtained with SCC-DFTB agrees

well with higher level results [16].

Equation (2.6) can be interpreted as follows. The (N – 1)-electron

energy is approximated to the zeroth order by the N-electron

energy EN[r0], corrected to the first order by subtracting the energy

of one electron occupying the HOMO. This is in the spirit of the

Koopmans theorem completely. The second-order term represents

the change of electron–electron interaction upon the removal of

the electron, discussed further below, and it will take the form of

a Hubbard-type contribution to the on-site energy owing to the

change of charge on the fragment. In this way, it will cover the elec-

tronic relaxation effects, i.e. points (a), (b) and (c), effectively.

Since EN[r0] denotes the energy of the charge-neutral,

N-electron system, it can be computed using HF or DFT. But, it

can be represented by any other total energy expression, and,

aiming at a computationally efficient scheme, this energy will

be obtained with an empirical force field

EN ½r0� ¼ EMM: ð2:7Þ

Here, we see the importance of passing from equation (2.3) to the

form of equation (2.4): we can represent a large part of the energy

by the energy of the empirical force field.3
2.2.2. First-order term
The first-order term in equation (2.6) is expanded in the FMO

functions according to equation (2.2)

kC 0
N=2jH½r0�jC 0

N=2l ¼
X
mn

a�mankwmjH½r0�jwnl; ð2:8Þ

leading to the FMO Hamiltonian matrix H0
mn ¼ kwmjH[r0]jwnl.

From now on, we consider one orbital wm (HOMO or LUMO)

per fragment, instead of wi
m. It is possible (and required for cer-

tain applications) to include multiple orbitals per fragment,

and this will be discussed later.

The Hamiltonian matrix is evaluated easily using the FMO

expansion (equation (2.1)) as

H0
mn ¼ kwmjH[r0]jwnl ¼

X
m

X
n

cm�
m cn

n
�Hmn; ð2:9Þ

where the double sum runs over the relevant atomic-orbital-like

basis functions, and �Hmn is the Hamiltonian in this atomic orbital

(AO) basis, which is built for the current geometry of the molecular

system. This matrix H0
mn is easy to set up, as it requires only SCC-

DFTB calculations to be performed on the fragments m and n to

determine cm
m and cn

n ; respectively, which then enter the sum in

equation (2.9) simply. As described earlier, the AO Hamiltonian
�Hmn is set up with SCC-DFTB for the current geometry of the mol-

ecular system. These integrals are interpolated from values that

have been pre-calculated and tabulated, therefore the set-up of �Hmn

is not time-consuming at all. Furthermore, the AO Hamiltonian con-

tains the interaction with the environment via a QM/MM coupling;

the whole approach is described in [16].

Then, the set of FMOs is orthogonalized with the scheme pro-

posed by Löwdin [50], simplifying the following propagation of

the wave function, as described later. The Hamiltonian matrix

corresponding to these orthogonalized orbitals is considered in all

what follows.

In the study by Kubař & Elstner [21], the time series of the on-site

energies 1m ¼ H0
mm and of the couplings H0

mn (with m=n) was com-

puted along classical MD trajectories for DNA. Here, the dynamics

of solvated DNA was simulated using a classical force field, and the

CT parameters 1m and H0
mn were recorded as described earlier.

Every DNA base was treated with SCC-DFTB, and the electrostatic

interaction with the point charges on the sugars, phosphate groups,

counter-ions and water, as well as the charges on all of the other

DNA bases, were included using the QM/MM scheme.

The off-diagonal elements H0
mn (m=n) are smaller than 0.1 eV

on average and fluctuate in time owing to the structural dynamics

of DNA. It is only the relative orientation of the fragments (DNA

bases) that induces this variation, while the solvent has only a

minor impact. The opposite is true for the diagonal matrix elements
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1m ¼ H0
mn. The fluctuations driven by the molecular vibrations of

the fragments lead to oscillations with a period of ca 20 fs and an

amplitude of ca 0.1 eV. The solvent, however, introduces much

larger fluctuations of 0.3–0.4 eV, and these fluctuations are the

major driving force for the CT dynamics, because these fluctuations

are of the same magnitude as the energy differences between differ-

ent fragment energies; note that the difference in ionization

potentials (IPs) of guanine and adenine is ca 0.4 eV [21]. The mag-

nitude of the fluctuations due to the internal dynamics and due to

the environment can be compared visually in figure 4 for the

nucleobases in the double-stranded DNA.

There is an issue related to the application of classical MD

simulation, namely whether the amplitudes of molecular

vibrations of the fragments, which may be of a quantum charac-

ter, are in agreement with reality. (Importantly, these amplitudes

drive the magnitude of oscillations of CT parameters, above all

the instantaneous IPs or electron affinities.) This problem was

analysed in the context of excitation energies of nucleobases

recently [51], and it was concluded that the intra-molecular

motion due to the zero-point vibrations—an effect of a purely

QM character—determined the shape of electronic spectra. The

point is actually that most of the internal modes of motion of a

molecule of the size of the nucleobases are in the vibrational

ground state, so that the amplitude of motion is given by the

zero-point vibrations.4 The crucial questions are then (i) how

this ‘zero-point dynamics’ compares with the classical dynamics

and (ii) how the instantaneous IP depends on the internal struc-

ture of the fragments. Notably, the IP of the nucleobases in the

solvated double-stranded DNA is driven mainly by the electric

field induced by the environment—the solvent; the related

modes of motion possess lower frequencies, thus the quantum

effects may be of lesser importance in these systems. However,

this need not be the case in all of the CT systems. In organic

semi-conductors, for instance, the environment is non-polar

and does not induce any strong electric field, so that the fluctu-

ations in the internal structure of charge-carrying fragments are

the decisive factor. Then, the (possibly quantum) character of

the internal modes of motion and the applicability of classical

mechanics require close investigation.
2.2.3. Second-order terms
The second-order term in equation (2.6) contains the second

derivatives of Hartree and exchange–correlation (XC) energy

E2½ðdrÞ2� ¼
ð ð0 1

jr� r0j þ
d2EXC

dr2
ðr; r0Þ

� �
drðrÞdrðr0Þd3rd3r0:

ð2:10Þ
The differential density dr ¼ r 2 r0 is decomposed into contri-

butions located on the individual molecular fragments m,

drðrÞ ¼
X

m
drmðrÞ: ð2:11Þ

Inserting equation (2.11) into equation (2.10), an expression is

obtained which describes the electron–electron interaction between

the differential densities drm(r) and drn(r), and the second-order

term is obtained as a sum of pairwise contributions

E2nd ¼
X

m

X
n

E2nd
mn : ð2:12Þ

Two cases may be distinguished here: for large distances (greater

than 3 Å) between the fragments m and n, the XC term can be neg-

lected and only the Hartree interaction prevails; this is shown for

the atomistic SCC-DFTB method, e.g. fig. 1 in [48]. Note that the

actual inter-fragment distances in our applications are always in

this range, being ca 3.4 Å for stacked organic molecules (DNA

bases, molecules of organic semi-conductors) and larger in the

other cases. Furthermore, the Hartree interaction may be approxi-

mated by the Coulomb interaction of fragment charges DQm

E2nd
mn �

1

2

DQmDQn

Rmn
: ð2:13Þ

Here, the differential charge on the fragment m due to the presence

of the excess charge is obtained from the wave function expansion

coefficient am introduced in equation (2.2) as DQm ¼ jamj2e (e is the

elementary charge), and Rmn is the centre-of-mass distance of the

fragments. In the other limit m ¼ n, E2nd
mm describes the on-site

charge self-interaction. This can be obtained with the effective

Hubbard model, and the diagonal term becomes

E2nd
mm � 1

2UmDQ2
m; ð2:14Þ

where Um is the Hubbard parameter of the molecular fragment m,

which is a constant that can be calculated as the second derivative

of the total energy of the molecule with respect to its charge. Note

that the applied approximations are basically the same as those

involved in the derivation of the second-order term in SCC-

DFTB [41]. The second-order term can be written in a condensed

form as

E2nd ¼ 1

2

X
m

X
n
jamj2 janj2Gmn; ð2:15Þ

with Gmm ¼ e2.Um and, for m = n, Gmn ¼ e2/Rmn.

DFT calculations of radical systems are prone to the self-

interaction error (SIE), which would lead to a drastic over-

delocalization of the excess charge in the system. In SCC-DFTB,

which is formally identical to the formalism derived here, it can be

shown that the SIE occurs as a result of the second-order terms

E2nd [52]. Since it would be too involved to subtract the electron

self-interaction orbital by orbital as proposed earlier [53], a better

(but, nevertheless, approximate) option is to consider only the spin

density in the correction scheme [37,54]; the spin density corresponds

to the density of the excess charge in the current computational

method. Following this approach, the second-order term is reduced

by a scaling with a constant empirical factor C¼ 0.2 [47].

With these approximations, the total energy (equation (2.6))

reads

EN�1½r� � EMM +
X

m

X
n

a�manH0
mn

þ 1

2
C
X

m

X
n
jamj2 janj2Gmn; ð2:16Þ

where the plus sign applies for the transfer of excess electron,

and the minus sign shall be used for the hole transfer.
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2.3. Total energy and its derivatives
To allow for MD simulation, it is crucial to have a total energy

expression as derived in equation (2.16). This involves a few

approximations, but it still enables the same equations as for

full DFT to be derived formally. The total energy is a function

of the expansion coefficients of the wave function of excess

charge am (equation (2.2)) and of the spatial coordinates Ra of

atoms a,

EN�1ðam;RaÞ: ð2:17Þ

To perform a simulation within the Born–Oppenheimer (BO)

approximation, the derivatives of EN21 with respect to am can be

considered, to arrive at a coarse-grained version of the Kohn–

Sham equations in a form equivalent to those obtained in full

DFT, with the matrix elements of the Hamiltonian taking the form

Hmn ¼+H0
mn þ dmn � C

X
k

Gmkjakj2 ð2:18Þ

(again, with plus and minus signs for electron and hole transfer,

respectively). These coarse-grained Kohn–Sham equations have

to be solved self-consistently.

At this point, it is apparent how the second-order energy term

corrects for the approximations due to the Koopmans theorem

(issues (a), (b) and (c) in §2.2.1) effectively. The matrix elements

H0
mn are evaluated according to equation (2.9) for the electro-neutral

fragments. For instance, the diagonal terms 1m ¼ H0
mm are the

Kohn–Sham energies of the HOMOs of neutral fragments. Then,

the on-site energy 1m ¼ H0
mm is corrected by an additional term (con-

taining Umjamj2 as the major contribution), which is the change of on-

site energy due to the removal oraddition of one electron from/to the

system. Here, the deformation and rotation of the fragment orbitals

as well as the change of orbital energy due to the different elec-

tron–electron interactions are included in an effective way. The

shift of energy is described by the fragment-specific Hubbard par-

ameter Um, which is determined for each individual fragment as

the second derivative of total energy with respect to the charge.

Kohn–Sham equations with the Hamiltonian in equation

(2.18) determine the coefficients am that minimize the total

energy for a given geometry Ra. Once the minimum of electronic

energy is determined, the forces on atoms can be computed by

taking the derivatives

Fa ¼ �
@EN�1ðam;RaÞ

@Ra

: ð2:19Þ

Here, EN21 contains the three parts discussed earlier. The deriva-

tives of E0 are simply the forces obtained from the MM force field,

and they are implemented in the applied MM package already.

The first-order term E1 consists of the kinetic energy (T ), elec-

tron–nucleus (vel2nuc), Hartree (vH) and XC (vXC) contributionsX
m;n

a�manHmn ¼
X
m;n

a�mankwmjT þ vel�nuc þ vH þ vXCjwnl: ð2:20Þ

The derivatives of kinetic energy and XC originating from E1

cannot be obtained in a practicable way and are neglected; the

consequences will be discussed in §2.4. The derivatives due to

the Hartree contribution to E1 together with the Coulomb inter-

action in E2 are approximated by the interaction of atom-centred

point charges according to the Coulomb law.

This ansatz, which connects the quantum system (the excess

electron or hole) with the classical (atomic) system, is implemented

in the following way: the charge on fragment m due to the excess

electron hole, DQm, is distributed among the atoms of the frag-

ment, providing additional contributions to atomic charges Dqam.

Then, the Coulomb interaction energy between all of the point

charges Dqam and Dqbn (the sum running over all fragments m and

atoms a) corresponds to the Hartree term in E1 plus the
contributions from E2. To compute the derivatives of this energy

term with respect to Ra, it suffices to update the point charges of

the MM atoms qam;0 with the additional atom-centred contributions

due to the excess charge,

qam;0 ! qam;0 þ Dqam ¼ qam: ð2:21Þ

The contributions Dqam are obtained by a linear interpolation

Dqam ¼ DQm � ðqam;ion � qam;0Þ ð2:22Þ

between the atomic charges of the charged molecule (a cation for

hole transfer, an anion for excess ET) obtained prior to the simu-

lation for the neutral (qam;0) and for the charged ðqam;ionÞ molecular

fragments. These sets of atomic charges are obtained with

restrained electrostatic potential (RESP) fitting [55] prior to the

simulation. The use of RESP charges for MD simulation is an estab-

lished standard, and it was reported that the choice of atomic charge

sets may affect the features of excess charge in simulations [56].

The resulting simulation scheme is conceptually simple: the sol-

ution of equation (2.18) gives coefficients am, which are projected to

the differential atomic charges Dqam. These are used to update the

atomic charges in the MM part of the calculation. Then, cost-efficient

MM forces are computed, considering these updated atomic charges

in the QM region. The influence of the excess charge on the MD is

covered fully in this way. The presence of the excess charge induces

a polarization of the environment, i.e. a ‘polaron’ accompanies the

transferring charge, and this is the determining factor for ET in mol-

ecular systems immersed in an aqueous environment. A remaining

problem is the application of a non-polarizable force field, and this

will be discussed later in detail.

Note that the only part of the system treated actually with quan-

tum mechanics is the excess charge—a single electron or hole. This

is done with a QM/MM approach so that the interaction with the

molecular system is accounted for. Still, the entire remainder of

the system is described classically, with MM. Thus, there is an

implicit underlying assumption that the studied system is described

adequately with an available MM force field; this assumption is

typically accepted for solvated DNA, peptides and proteins.

Based on the described approximations, a very efficient MD

scheme is implemented, making use of BO dynamics and updat-

ing the MM atomic charges in every time step as directed by the

coarse-grained quantum mechanics. For instance, eight QC cal-

culations have to be performed in every time step of the

simulation of hole transfer in a DNA octanucleotide, one for

each CT-active nucleobase. Each fragment contains about

15 atoms, and a calculation of such a system using the semi-

empirical SCC-DFTB method takes less than 100 ms on one

CPU core of a main-stream desktop computer. As these calcu-

lations on fragments, which may be performed in parallel, are

the most time-consuming part of the calculation, an efficiency

of as much as 1 ns per day is obtained.

2.4. Effects not taken into account
The computational scheme involves several notable approxi-

mations: classical non-polarizable MM calculation is applied to

obtain the energy of the charged system. Also, the kinetic

energy and XC contributions to the first-order energy term

(T and vXC in equation (2.20)) are neglected in the MM calculation

of forces on atoms due to the excess electron. Consequently, sev-

eral kinds of interactions are not described with the total energy

in equation (2.16), and they are discussed in this section in detail.

2.4.1. Intra-fragment interactions
Although the change of Coulomb interactions upon the charging

of the system is covered by the scheme formally, its portion

corresponding to the interactions within a fragment is missing.

The reason for this is the way in which the commonly

used empirical force fields are constructed—the non-bonded
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interaction between a pair of atoms within the distance of fewer

than three covalent bonds is not computed, as they are accounted

for by the bonded terms. In addition, the non-bonded interaction

between atoms connected by three bonds (1–4 interaction) is

scaled down by a certain factor. As a matter of fact, most of

the atom pairs within a fragment of typical size (a nucleobase

or an amino acid side chain) are within this distance. Therefore,

the MM energy of the fragment does not actually change upon

the arrival of excess charges, thus no change of forces occurs,

and the energy cost of the structural deformation of the fragment

due to the varying charge cannot be described.

In the Marcus theory, this effect is covered by the inner sphere

RE li. Following an earlier study [57], we introduce li by means of

an additional empirical contribution to the total energy

Em
li
¼ �lm

i DQ2
m: ð2:23Þ

There have been several estimates of the parameter lm
i , which

reflects the response of the molecular geometry of the fragment

m to the varying charge. Applied here are values obtained from

QC calculations with an implicit solvent; see the discussion in

[47]; lm
i amounts to 0.23 eV for both adenine and guanine,

which are considered for hole transfer in DNA. Supplying this

additional energy term to the total energy, the intra-fragment con-

tributions are corrected for effectively.

Such an effective, empirical description of the energy cost of the

molecular geometry change shows an additional advantage over

the application of classical MM. As found recently [23], the

rearrangement of molecular geometry caused by the change of

the charge state may occur via tunnelling—an exclusively QM

mechanism. If that is the case then the usual classical way of calcu-

latingli as mentioned earlier would yield values overestimated by a

factor of as much as 2. For this reason, it is appropriate to describe

the inner sphere reorganization by means of an additional, empiri-

cal term in the expression for the total energy, instead of aiming at

an explicit account for the changes in molecular geometry.
2.4.2. Inter-fragment interactions
Since the charges in the QM region are updated according to the

location of the excess charge, the additional Coulomb interaction

between the fragments relative to the neutral system is covered

by the present formalism. This is the main contribution from

the off-diagonal terms in equation (2.16). However, the van der

Waals interaction between the fragments in the charged state

may also differ from that in the neutral state. Now, this effect

is missing in the description because the XC contribution to

the forces on atoms was neglected in the derivative of first-

order energy in equation (2.20). The possible consequences are

of two kinds: (i) Owing to the change of charge density, the

exchange repulsion may differ between the charged and the neu-

tral species. This may result in a slightly different van der Waals

distance of the molecular fragments. In principle, an additional

charge-dependent term could be introduced into the classical

force field to take this interaction into account (as suggested in

[47], supplementary information). A possible effect would be a

modified distortion of the structure of DNA, i.e. a small com-

pression or expansion of the region where the excess charge is

localized. This effect is expected to be small, as discussed for

DNA in [58] and in general in [59]. Such a minor change of struc-

ture will be overwritten completely by the dynamics of the

system, which introduces much larger fluctuations than the geo-

metry change induced by the charge-dependent van der Waals

interactions. (ii) Another effect may be the change of dispersive

interactions. To inspect this for hole transfer in DNA, we com-

puted the isotropic polarizability of the neutral and the cationic

forms of both purine bases on the DFT/PBE/TZVP level. Very

similar values were obtained—for A, 13.62 and 13.61 Å, respect-

ively, and for G, 14.58 and 14.67 Å, respectively. Therefore, the
effect seems negligible for the hole transfer in DNA, and no

correction has to be added in the current scheme.
2.4.3. Electronic polarization of the environment
The electric-charge density of the molecular environment is rep-

resented by fixed point charges in the standard force fields, as

applied here as well. This approximation inherent to MM-

based methods is a source of errors whenever the electronic

polarization is changing during the process being simulated.

Obviously, the transfer of electric charge is such a process, and

it has been established that the solvent RE is overestimated

severely if evaluated with a non-polarized force field [60–63].5

While this is the most prominent effect, other relevant quanti-

ties may be affected as well, such as the magnitude of

fluctuation of on-site energies 1m; as an example, note again

the large fluctuations in IP of nucleobases in DNA (figure 4).
The factor by which the energy-related quantities are over-

estimated is related to the optical dielectric constant of the

medium [62,64]. Then, if it is not practicable to pass to a polariz-

able MM force field, the most straightforward way to correct for

the overestimated electrostatic interaction is to scale the relevant

interactions down by a suitable factor [64–66]. The effect on the

energy barrier can be illustrated by considering the relation

between the RE ls (representing the barrier) and the magnitude of

fluctuation of one of the energy quantities describing the system;

available choices are the energy gap expressed as the difference in

IP (DIP) [26],

var DIP � 2kT � ls; ð2:24Þ

the IP itself [24] and the total electronic energy [30]. The relation of

the (possibly scaled) electric potential induced by the MM environ-

ment to ls becomes clear by noting that the IP is nearly directly

proportional to the electric potential [21]. While no such quantity

as RE is defined in the developed simulation scheme, the reasoning

presented here applies to the effect of scaling of the MM electric field

on the energy barrier to ET. Simply speaking, the reduced energy

barrier leads to an increased rate of transfer.

Blumberger & Lamoureux [67] described the more complex

character of the problem, finding the RE in an aqueous medium

to be overestimated by 26–34% when the TIP3P water model

was used. Based on this observation is the suggested choice of

the value of the scaling factor of 1/1.4–1/1.5. Within the current

framework, this approach is used in the QM/MM calculations

of the CT-active molecular fragments, where the MM charges of

the molecular environment are divided by a factor of 1.5 in the

application to hole transfer in DNA. In other recent work

[68,69], it was proposed to scale the charge of charged residues

and ions in classical MD simulations with the common biomolecu-

lar force fields by a factor of ca 0.7, to correct for the energetics of

ion solvation. While this procedure is clearly debatable, we wish

to point out that the introduction of the scaling factor of 1/1.4–

1/1.5 in our method as well as our motivation by the overesti-

mated solvent RE is consistent with this reasoning completely.

Effectively, the excess charge interacting with the MM environ-

ment is reduced by a factor of 0.67–0.71 as a result of the scaling.

The scaling of MM electric field also influences the energy

landscape of the simulated ET reaction, which is determined

by the differences in IP of the charge-carrying fragments in the

case of hole transfer. Whenever this difference is induced by

the different character of the molecular environments of the indi-

vidual fragments, it decreases as a consequence of the scaling of

the MM electric field. Based on the analysis in [68,69], where cor-

rect solvation energetics was obtained with the scaling of atomic

charges, it can be expected that the MM scaling also improves the

energetics of ET in our simulations. Note that this applies in the

case of hole transfer in Escherichia coli DNA photolyase, where

the energy landscape will be due to the different MM
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Figure 5. Schematic of the behaviour of the wave function in the MF ((a)
Ehrenfest) and the surface hopping ((b) SH) simulation. In each case, the
course of two simulations is drawn. In SH, note that the system may
leave the high-coupling region (in the centre) in the D0 state (light) or in
the D1 state (dark). (Online version in colour.)
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environment of the charge-carrying fragments, and thus it will be

affected by the MM scaling. Contrary to that, this point will

not occur in applications where all of the fragments experience

the same or a similar environment because of symmetry, as in

the case of hole transfer in DNA where the energy differences are

due to the different chemical characters of adenine and guanine.

2.5. Non-adiabatic propagation schemes
As indicated in §2.3, the computational scheme described up to

this point can be used readily to perform a multi-scale simulation

of ET within the BO approximation. Note that QM/MM-BO

simulations of ET were also performed by other researchers pre-

viously [37–40]. Since the validity of BO for the systems of

interest is ambiguous or even unlikely, it is preferable to resort

to a non-adiabatic representation. Our work makes use of the

extensive development in this field, and both main approaches,

the MF (Ehrenfest) and the SH method, have been implemented.

For a discussion of the general features and applicability of MF

and SH, we refer to previous publications [70,71].

2.5.1. Mean-field (Ehrenfest) method
The energy within the MF method [72,73] is obtained by aver-

aging over all (adiabatic) states weighted by their populations.

Then, all of the states interact with a common potential as a

result of the classical environment, which in turn interacts with

the combination of states in the quantum system. The quantum

system is propagated with a straightforward numerical solution

of the time-dependent Schrödinger equation (TDSE). Figure 5a
shows schematically how the wave function, which corresponds

to one of the adiabatic states at the start of the simulation, is

driven into a combination of adiabatic states as soon as these

become coupled via the atomic dynamics.

The current MF implementation [47] is in the framework of

time-dependent DFT, representing a coarse-grained version of

the previous work by Niehaus et al. [74]. The Lagrangian formal-

ism is used to derive the equations of motion from the total

energy expression presented in the previous sections. The poten-

tial energy is taken from the above derivation, and there are

kinetic energy contributions related both to the coordinates of

atoms and to the expansion coefficients of the wave function

for excess charge. Two sets of equations of motion are obtained:

the electronic system evolves according to the TDSE with the
Hamiltonian Hmn containing the second-order contribution

(equation (2.18))

_am ¼ �
i
h�
X

n
anHmn: ð2:25Þ

For the classical (MM) system, Newton’s laws of motion are

obtained

Ma
€Ra ¼ �

@EMMðqa; qA
0 Þ

@Ra

: ð2:26Þ

Note that these equations of motion contain atomic charges on

the CT-active fragments augmented by the differential charges

corresponding to the distribution of excess electron,

qa ¼ qa0 þ Dqa:
These two sets of equations are coupled to each other, so that

they have to be propagated simultaneously. The MM equations

involve the (time-dependent) charges of the (N – 1)-electron

system qa, which are obtained by a mapping (projection) of the

excess charge onto the classical MM system. On the other

hand, the time-dependent electronic Hamiltonian depends on

the coordinates of all atoms parametrically. Practically, the

coarse-grained electronic Hamiltonian is calculated first, and a

step of the quantum propagation of the excess charge is per-

formed, followed by a projection of the excess charge to the

atomic charges and then a step of classical dynamics of the

atoms is done. The following iteration (time step) continues

with another calculation of the Hamiltonian and a quantum

propagation step, and so on. By performing the projection of

the excess charge onto the MM system, it is ensured that the

environment (e.g. solvent) is being polarized according to the

position and de/localization of the excess charge, and it turns

out that this is an important factor for the understanding of the

CT process.

2.5.2. Surface hopping
Within an SH scheme [75], the quantum system is only allowed to

reside in one of a certain set of states, either adiabatic or diabatic.

The principle of SH is to propagate the populations of states in

time, while the system occupies one of the states at a time, and a

transition to another state (surface hop) is possible in every step

of the simulation. This is depicted in figure 5b. The key component

of the algorithm is the calculation of the probability of such a

surface hop. Accurate SH algorithms are known, such as the

fewest switches by Tully [76]. Following a recent study [36], the

SH algorithm based on a local diabatization of the adiabatic

states [77] is implemented in this work. We present a brief outline

of the method here, and refer to the original work for details [78].

In every step of the simulation, the eigenproblem for the

quantum system—the excess charge—is solved, providing the

adiabatic states, and the current wave function of the excess

charge is expressed as their combination. Then, the set of diabatic

states is redefined to be identical to the adiabatic ones at the

beginning of the time step, and a step of propagation of the

wave function (population of the states) expressed in this locally

diabatic basis is performed according to the TDSE. The newly

obtained populations are used to calculate the probabilities of

surface hops from the current state to each of the other states,

and a random number is drawn to determine whether a

transition to another state (surface hop) occurs in this step.

This procedure is an alternative to the direct numerical inte-

gration of the TDSE, which is performed in the MF approach; see

above. All of the remaining parts of the simulation protocol are

the same. The charge distribution of the excess electron or hole,

determined by the currently occupied adiabatic state, is projected

onto the MM atomic charges of the participating molecular frag-

ments, and the charges of the corresponding atoms are updated

in the MM engine. Then, a step of the classical dynamics of the

atoms is performed.
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It should be noted that the current SH scheme is a

particularly simple one. For instance, explicit calculation of

non-adiabatic couplings kckjrRcll is not involved, and the over-

lap of the adiabatic state vectors kckðtÞjclðtþ DtÞl is considered

instead. Furthermore, the velocities of atoms are not rescaled

after a completed surface hop, which is common with other SH

implementations. This way, sudden changes in the dynamics of

the system are avoided, but also the total energy of the system

is not conserved; this is probably a minor issue because of the

application of a thermostat to conserve the temperature rather

than the energy. Also, the so-called classically forbidden tran-

sitions [79] are not treated in any particular way, so that the

classical system is assumed always to contain enough energy

to support the surface hop, effectively. These two topics in the

coarse-grained QC context are the object of current work in our

laboratory. The same is true about the implementation of a

possibly necessary decoherence correction [80–82].

2.5.3. Which quantum-mechanical propagator?
Now, it is necessary to choose the propagation scheme to be used.

It shall be noted here that while every propagation scheme

may have its own distinct issues, as will be discussed later in

this section, there are also problems that stem from the introduc-

tion of the semi-classical representation. One of them is the too

slow quantum decoherence, which is caused by the division of

the system into a quantum part and a classical part, and thus

this problem is shared by both MF and SH schemes [83]. (Still,

it is possible that the problem will manifest itself to a different

extent in MF and SH.)

The simplest propagation scheme is the MF (Ehrenfest)

method, which does not require the coarse-grained Hamiltonian

to be diagonalized. The TDSE is integrated explicitly with a

numerical method, including all of the adiabatic states in the cal-

culation implicitly. The current wave function of the hole is

transferred directly into the propagation of atomic coordinates

(i.e. MD) by means of the mapping onto the atomic point

charges. The conceptual simplicity comes at the cost of a poten-

tially severe MF error, increasing the delocalization of the wave

function largely. This is evident above all in applications where

ET proceeds along a flat energy landscape, as is the case in

hole transfer in homogeneous DNA sequences.

The BO approximation is involved in most of the main-

stream QM/MM simulations and may be plugged into the

current hybrid methodology as well. The coarse-grained elec-

tronic eigenproblem has to be solved by a diagonalization of

the coarse-grained Hamiltonian, and already this step has

turned out to be critical on rare occasions, in the simulations of

hole transfer along flat energy landscapes. Still, the most impor-

tant limitation is that only the lowest adiabatic state—the ground

state—is considered. As shown recently [36], a proper descrip-

tion of elementary ET events may require higher adiabatic

states to be considered, and so the application of BO is restricted

to systems where this is not the case. Another possible problem

concerns the fact that artificial transfer over long distances may

be obtained with BO; this would happen when the instantaneous

IP of a distant fragment is decreased by an accidental environ-

mental fluctuation, even though there is no electronic coupling

between the involved molecular fragments whatsoever.

The SH approach seems to be the only one free of such

principal limitations. In spite of its complex character and the

fact that it is still an approximation, it is possible to construct

an implementation of SH that is suitable for the application to

ET processes. SH involves the higher adiabatic states naturally,

and it suffers neither from the delocalization issue (as a single

adiabatic state is mapped to the MD engine at any given instant)

nor from the possible artificial transfer when there is no coupling

of the involved fragments. This makes it perhaps the best choice

of the presented approaches. We note that it is not possible to
rule out that further issues will emerge in future applications

of the current simulation method to new molecular systems. A

conceivable example may be a too large number of fragment

orbitals that would need to be considered in the application to

organic semiconductor systems (see below), which would

imply a too large number of adiabatic states to be considered

for SH.

2.6. Implementation details and simulation protocols
The described methodology has been implemented in a local ver-

sion of the Gromacs simulation package [84,85], v. 4.0.3 and

(newly) v. 4.6. The most time-consuming procedure in the simu-

lation is the SCC-DFTB calculations of the molecular fragments.

The SCC-DFTB method has been included as an integral part of

the Gromacs MD engine mdrun. Since the calculations of the

different fragments are independent of each other, they may be

performed at the same time on different processing units, and

this simple parallelization has been implemented. Favourable

computational efficiency is achieved as a result of full integration

of the QC calculations in the programme and of the described

parallelization. A multi-scale simulation of ET in a system such

as the DNA sequences described below takes typically 1 day

per nanosecond, provided the number of charge-carrying mol-

ecular fragments in the system does not exceed the number of

available CPU cores.

Production simulations have been performed for DNA and

protein systems so far, and the simulation protocols follow the

standards established for classical MD simulation closely. The

Amber parm99 force field is used [86,87], including the usual

corrections specific for DNA [88] and proteins [89]. The biomole-

cule is placed in a rectangular box filled with TIP3P water

molecules, and Naþ or Cl– counter-ions are added to neutralize

the system. The smooth particle–mesh Ewald method is applied

to evaluate the Coulomb interactions while the Lennard–Jones

interactions are cut off at 1 nm. The simulations are performed

at a constant temperature of 300 K and a pressure of 1 bar, main-

tained by the Nosé–Hoover thermostat and the Parrinello–

Rahman barostat, respectively, with a characteristic time of 0.5 ps.

The lengths of bonds involving a hydrogen atom are constrained

to the equilibrium lengths with LINCS or SHAKE. The time step

is usually 1 fs; for the initial DNA simulations presented below,

the time step was 0.2 fs. The number of steps made, and thus the

total time simulated differs by application.

Prior to each production simulation, an equilibration is

performed with a stationary excess charge placed on a selected

molecular fragment. To this end, modified MM charges of

the atoms in this fragment are used; the magnitude of these

charges is estimated beforehand according to equation (2.22)

with DQm ¼ 1. The equilibration procedure starts with a steepest-

descents minimization of 100 steps, and it continues with a short

dynamics (of 20 ps typically) where the solvent is heated up to

300 K by means of a Berendsen thermostat while the solute is

kept at 10 K. The next step is a simulation (of 20 ps again) where

the entire system is brought to a temperature of 300 K with the

Berendsen thermostat. Finally, a simulation (of 100 ps to 1 ns, dif-

fering by application) is performed with the same set-up as

described for the production phase.
3. Applications
3.1. Hole transfer in DNA
The original motivation to develop the presented methodology

was to describe the transfer of a radical cation in double-

stranded DNA. There has been a long debate about the

mechanism, and all of the issues of localization of charge, adia-

baticity of transfer and time-scale separation have been raised.



Table 1. The features of hole transfer in the DNA oligonucleotide AAAA
(homogeneous sequence). The delocalization of the wave function (given as
the number of fragments, parameter Srec), the mobility of the hole
( parameter L)a and the number of elementary transfer events in a
simulation of 1 ns. MF, mean-field; SH, surface-hopping; BO, Born –
Oppenheimer simulations. Data taken from [78].

MF SH BO

delocalization 2.42+ 0.64 1.07+ 0.17 1.17+ 0.28

mobility 2149 696 326

rate of

hopping

— 109 110

aDelocalization is given as Srec ¼ 1/
P

i DQ2
i (DQi are the hole

occupations of the individual fragments). Mobility L is the sum of
elementary ‘distances’ travelled by the centre of charge of the wave
function in each time step of the simulation; the base-pair step is a unit of
distance here. See [78] for details.
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While it is established that the mechanism is not band-like

because the disorder due to dynamics and solvent prevents

the formation of extended orbitals [90], initial studies

concentrated on the distinction [91] between one-step super-

exchange tunnelling and what was interpreted as multi-step

hopping [92–94] mechanisms. Static DNA molecules were

considered here, and models involving the dynamics of the

system—except model-based work, e.g. by Jortner et al. [95]—

appeared later. A prominent role is played by the idea of the

polaron, the deformation or polarization of the molecular

environment in the vicinity of the transferring hole [96]. It

constitutes the basis of, for example, the phonon-assisted

polaron-gated [97] and polaron drift [98] models, and its exist-

ence was supported by the studies of sequence-dependent

transfer [99].

There is a question that is both crucial and interesting but

that is by no means answered unambiguously yet: is the hole

in DNA delocalized over several nucleobases or rather con-

fined to a single one? The delocalization of the hole charge

would be a prerequisite of band transport or, for example,

a conformational gating [100] mechanism, while other exper-

imental work was interpreted in terms of the hopping

mechanism assuming a localized hole [101–103]. Generally,

the quantum delocalizing effect competes with the localizing

forces of the solvent [56]. A certain consensus of a spatially

localized hole has been reached recently in the theoretical

and computational community [39,40,104,105]. It is possible

to understand how peculiar the question of delocalization is

by noticing the qualitative change over time of the results

reported by several researchers. For instance, while Conwell

[98] previously considered delocalized holes, she concluded

more recently that the hole is quite localized [39]. Our own

previous work [106] involved a numerical integration of

TDSE for the hole, without taking into account the polariz-

ation of the environment due to the excess charge. Thus,

the localizing forces of the environment were not included

in the simulation, and a delocalized hole was observed.

This has changed upon critical analysis and has passed to

the method reviewed here, and a rather localized hole is

observed now, as described later.

The hole transfer in DNA was studied by means of ato-

mistic simulation in several laboratories over the last

decade. Several studies relied on the post-processing of MD

trajectories performed for a system that did not contain the

excess charge. Here, the various approaches used a Monte

Carlo formalism [107], calculation of the state of the hole

for individual snapshots [108], or involved the integration

of the TDSE in a simple way [106,109]. Principally, none

of this work could describe the polarization response of the

environment to the presence of the hole, and so the agree-

ment of the obtained rates of transfer with the experimental

results obtained in these studies may have been accidental

to a considerable extent. The response of the environment

was taken into account in the DFT-based work in Mantz

et al. [37], but the observation of a localized hole was actually

forced by the biased simulation protocol. So, the only work

from that time which involved most of the interactions

between the excess charge and the environment seems to

be that in the study by Steinbrecher et al. [40], in which a

parametrized model of the electronic structure was used,

making nanosecond simulations possible. Still, the model

was not quite correct, as it left out the description of inner

sphere reorganization. The addition of this term would
have made the model complete and self-contained; also, how-

ever, the rate of transfer would have decreased considerably.

Thus, the good agreement with experimental reports seems

to have resulted from a compensation of errors brought

about by the approximations in the model. We note that

there is also newer work that describes the discussed inter-

actions [39], but the application of full DFT calculations

brings an increased computational cost, restricting the available

time scale to the picosecond range.

The parts of DNA that exhibit the lowest IP are the purine

nucleobases, guanine (G) and adenine (A). Therefore, G and A

are the molecular fragments that are considered in the FMO

calculations. The pyrimidine nucleobases, the DNA backbones

and the solvent compose the MM environment, being rep-

resented by point electric charges. In a simulation, the

transferring hole (radical cation) evolves via the purines

along the DNA double strand. We note that the efficiency of

hole transfer is not limited by the possible distribution

of purines between both DNA strands as the electronic coup-

ling can be sufficient in such a case as well [21]. The first

application deals with two archetypical DNA species [78],

one with a homogeneous sequence AAAA in which the IP

of all of the considered fragments are equal, and one with a

sequence GAG in which the transfer from one G to the other

has to overcome a higher energy region represented by the A.
3.1.1. Oligonucleotides with a homogeneous sequence
The different non-adiabatic propagation schemes, MF and

SH, provide markedly different pictures of hole transfer in

the DNA sequence AAAA; the amount of delocalization

and a measure of the mobility of the hole are shown in

table 1. The wave function of the hole delocalizes over mul-

tiple As within picoseconds after an MF simulation is

started, even though the initial conditions are those of a per-

fectly localized hole. As soon as such delocalization has

occurred, there is no way for the wave function to go back

into a localized state. This is a consequence of the MF descrip-

tion, where the MM environment interacts with the excess

charge assuming a state that corresponds to a combination

of adiabatic states. The amount of delocalization is large and

probably dependent on the size of the system, i.e. the

number of purines considered.



Table 2. The features of hole transfer in the DNA oligonucleotide GAG
(heterogeneous sequence). The delocalization of the wave function (Srec as
defined in table 1) and the number of transfer events in a simulation of
1 ns, averaged over 20 simulations. Abbreviations are the same as given in
the legend to table 1. Data taken from [78].

MF SH BO

delocalization 1.36+ 0.31 1.00+ 0.02 1.00+ 0.00

number of

transfers

3.4+ 2.3 3.3+ 1.8 0
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The large delocalization observed in MF simulations leads

to very fast transfer. It was shown previously that a much lower

RE applies in the transfer of a delocalized hole than in the

transfer of a spatially confined hole [110]. Then, the increased

transfer rate is a direct consequence. Actually, in the MF

simulations of hole dynamics in AAAA, it is merely possible

to speak about the mobility of the wave function rather than

about the rate of transfer because the ‘position’ of the

delocalized hole is difficult to determine.

For this reason, it seems to be inappropriate to use the (con-

ceptually simple) MF scheme to simulate hole transfer in

systems such as the homogeneous DNA sequences. Instead,

an implementation of the SH method is a good alternative, in

spite of the disadvantages of SH, similar to the hopping algor-

ithm, not being unambiguous, etc. [83]. In the SH simulations

of hole transfer in AAAA, the wave function of the hole

remains localized to a single A for most of the time, which is

the same appearance that is observed in BO simulations. The

rate of next-neighbour hole transfer can be determined in

such a case and amounts to ca 100 ns– 1, which is roughly an

order of magnitude larger than the experimental estimates

[101,102]. This discrepancy may be caused by the preliminary

character of the SH implementation, which seems to require

additional attention regarding the calculation of hopping prob-

abilities and decoherence behaviour. Development along these

lines is underway in our laboratory.

3.1.2. Oligonucleotides with a heterogeneous sequence
The DNA species with the nucleobase sequence GAG rep-

resents a qualitatively different system with regard to hole

transfer. The energy landscape is not flat anymore because

of the IP of A being ca 0.4 eV larger than that of

G. Consequently, a spatial extension of the hole spanning

this high-energy region is unfavourable. The wave function

of the hole is localized considerably even in MF simulations,

and the MF error does not manifest itself notably. Although

there are still isolated instants when the wave function is

spread over two nucleobases, the wave function always

returns to a rather spatially confined state, which is obser-

ved for most of the simulation time. The amount of

delocalization and the rate of transfer of the hole are shown

in table 2.

The appearance of the CT events is similar in MF and SH

simulations, perhaps as a consequence of similar localization

of the hole. Also, the rate of transfer does not differ between

MF and SH simulations, and three or four transfer events are

observed per nanosecond on average.6 We note that this

nearly perfect agreement may be the result of a sort of
cancellation of errors to a certain extent as the MF error

cannot be excluded entirely and the SH scheme is not in a

final form yet. These results will have to be checked as

soon as the SH algorithm has been upgraded (see the section

on the non-adiabatic dynamics above). It can be expected

that slower rates will be obtained with the corrected

methodology.

3.1.3. Conclusion on hole transfer in DNA
The hole transfer in homogeneous DNA sequences does not

seem to be a great problem for the Marcus theory. The hole

is likely to be localized well. On the basis of spectroscopic

measurements, the relaxation of water was reported to occur

with two significant time scales of 1.4 and 19 ps [111], and

similar observations were made in MD simulation studies

[112]. Thus, the relaxation occurs just faster than the hole

transfer. Lastly, the calculation of the adiabaticity parameter

[35], as performed in [78], predicts a solvent-controlled

adiabatic mechanism of transfer.

The hole transfer in heterogeneous sequences represents a

more complex problem. The simple model of thermally induced

hopping [94] may not be sensitive enough to reproduce

the difference between various DNA sequences. Notably,

Schuster and co-workers [99,113] observed a more intricate

dependence of hole transfer efficiency on the exact nucleobase

sequence, which was attributed to the so-called phonon-assisted

polaron transport involving a delocalized hole. The particular

topics of distance dependence and sequence dependence of

hole transfer are the prospective applications of the reviewed

simulation scheme.

3.2. Note on charge transport in DNA
The presented simulation approach is aimed at the temporal

evolution of an excess electron in a complex molecular

system, following an injection of this electron or hole into

the system.7 Apart from this ‘chemical’ process, it is possible

to consider the charge transport through the molecular

system, which is considered rather from a point of view of

physics and can also be called conductivity. We would like

to mention our recent work in this area briefly.

To this end, our FMO scheme for the calculation of the

CT Hamiltonian is combined with the Landauer–Büttiker

formalism [114] to compute the electrical conductivity. The

structural dynamics of the molecular system is reflected by

the time-dependent Hamiltonian, which enters the calculation

of electric current under the approximation of instantaneous

electron transport by means of tunnelling. The variation of

the Hamiltonian in time has a huge impact on the electron

transport, and the description of transport improves dramati-

cally in comparison with static models, which were often

considered previously.

This flavour of our simulation approach was introduced

in the work on charge transport in double-stranded DNA

[115], where the effect of structural fluctuations was analysed

in detail. Subsequent applications dealt with another class

of DNA molecules, G4-DNA [116], double-stranded DNA

containing mismatches [117], under mechanical stress [118]

and in a micro-hydrated environment [119]. This multi-

scale scheme has been developed further, by taking into

account the dissipative character of the environment [120,121],

and by passing to the time-dependent Green’s function

approach [122].



Figure 6. The photo-activation of E. coli DNA photolyase by means of hole
transfer from the FAD cofactor to a tryptophan side chain on the surface of
the protein via two other tryptophan residues. (The CT system is shown as
thick tubes). (Online version in colour.)

Table 3. Rate ( per nanosecond) of elementary transfer steps of hole
transfer along three tryptophan side chains in E. coli DNA photolyase. Data
obtained with MF multi-scale simulation and with the Marcus theory (using
several sets of values for the Marcus parameters), as well as the
experimental reference. All data taken from [34].

transfer step
our
work

Marcus
theory experiment

Trp1! Trp2 12 5 – 290 110

Trp2! Trp3 15 ,0.0003 33
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3.3. Hole transfer in a protein
ET is the most frequently occurring type of enzyme-catalysed

reactions in biochemistry. Although many of the ET reactions

taking place in proteins, often requiring the presence of a cat-

alytic metal centre, can be described with the Marcus theory

with success, examples can be found where this is not so

straightforward. This is the case with E. coli DNA photolyase

[123], in which the photo-activation process proceeds via a

sequential transfer of a hole from the flavin adenine dinucleo-

tide (FAD) cofactor via two tryptophan side chains (Trp1 and

Trp2) to a terminal tryptophan (Trp3) at the surface of the

protein [124] (figure 6). The hole transfer in the subsystem

composed of three tryptophan side chains was considered

in our work [34], and the main findings will be presented

in this review because another type of energy relations in a

CT system is observed here.

The fundamental difference between the charge transfer

in DNA and in this enzyme concerns the properties of the

molecular environment rather than the charge-carrying mol-

ecular fragments themselves. Much like in the DNA species

AAAA, all of the charge-carrying fragments are chemically

identical (all of them are tryptophan residues), and so they

possess equal inherent IP. But, the highly heterogeneous

structure of the protein affects the energy landscape of the

transfer: Trp1 is buried in the interior of the protein molecule

whereas Trp3 is located at the surface, exposed to the solvent;

Trp2 is moderately solvent-accessible. These structural features

have consequences for hole transfer.

A first point is that the solvent is effectively more polariz-

able than the protein. Consequently, when the hole is located

on Trp2, it is stabilized more strongly than on Trp1, and the

stabilization is the strongest on Trp3; the energy difference

amounts to ca 0.6 eV for each of the steps. This fact provides

the hole transfer reaction with a driving force, so that the

lowest energy state has the hole located on Trp3 and a re-

transfer to Trp2 or Trp1 is unlikely. Another point concerns

the dynamics of the system. Upon a completed hole transfer

event, the environment adjusts—re-polarizes—according to

the new location of the hole. The applicability of the classical

theory of CT requires this re-polarization to occur substan-

tially faster than the transfer itself. While the component of

polarization that corresponds to the solvent meets this cri-

terion, the relaxation of the (albeit smaller) component due

to protein takes hundreds of picoseconds, interfering with

the time scale of transfer.
The hybrid methodology for ET simulations is an ideal

means to describe the transfer under such complex conditions

as seen in this example. The rate of hole transfer obtained

from simulations in [34] is in reasonable accordance with

the experimental reports, deviating by less than an order

of magnitude, while the calculations with the Marcus

theory predict a rate for the second step Trp2! Trp3 that

is three orders of magnitude too slow (table 3). Interestingly,

when a hole transfer simulation is started from the system

equilibrated with the hole localized on Trp2—so that

the environment is relaxed fully—the elementary transfer

Trp2! Trp3 is much slower than observed in the simulations

performed without the artificial relaxation (see fig. 14 in [34]).

The artificial relaxation of the intermediate state performed in

this test simulation is equivalent to the assumptions of fully

relaxed reactants in the Marcus theory. Therefore, the

reason for the second elementary transfer occurring so fast

is most probably that the energy barrier for this step increases

slowly only after the first step Trp1! Trp2, allowing for the

second step to take place well before the environment has

relaxed. Note that very slow rates of relaxation, on time

scales longer than 100 ps, were indeed reported in protein

systems [125]. Such a sequence of events is not in accordance

with the assumptions of the Marcus theory, which considers

an instantaneous relaxation of the environment. The example

of hole transfer in E. coli DNA photolyase demonstrates the

advantage of an explicit simulation of ET over the classical

theory of transfer, in cases where certain assumptions of

the classical theory are not fulfilled.

3.4. Hole transfer in peptides
Peptides have been a popular class of systems to study ET,

and the studies by Giese and co-workers [126,127] concen-

trated on the hole transfer between two amino acid side

chains via a relay amino acid (see figure 7 for an example

of such a system). The characteristics of these ET systems

differ from both DNA and the E. coli DNA photolyase in

several respects.

The conformational flexibility of small peptides in

an aqueous solution is much larger, making the sampling

of conformational space difficult. The consequences for

ET become clear by noting the straightforward connection

between the structure and the electronic coupling between

the individual electron-carrying fragments. Concerning the

fragments that are involved in the transfer, it may be necess-

ary to consider not only the amino acid side chains but also

the p-electron systems of the peptide bonds [128], and this

represents another technical challenge because of the difficult

definition of the QM/MM boundary.



Figure 7. One of Giese’s peptide systems to study hole transfer. Three
optionally methoxy-functionalized tyrosine side chains (orange in online
version) are the charge-carrying fragments. (Online version in colour.)

Figure 8. A monolayer of alkylated HBC deposited on a gold surface (10
identical molecules; surface on the bottom side, not shown). (Online version
in colour.)
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Figure 9. Delocalization of the HOMO in the complex of six HBC units. Obser-
vation in an MD simulation (running averages over 20 fs) compared with the
value for the ideally ordered structure.
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Our preliminary study of hole transfer in these peptides

focused on the basic characterization of the transfer and the

calculation of parameters of the Marcus theory [129]. An

interesting result is the outer sphere RE for the sequential

transfer 1! 2! 3: for the entire transfer 1! 3, it is very

similar to that obtained for the elementary steps 1! 2 and

2! 3. This is different from the situation for the hole transfer

in DNA, where strong distance dependence was observed

[110]. The reason is perhaps the relatively large distance

between the individual amino acid side chains involved in

the transfer, which are not immediate neighbours on the pep-

tide chain—rather, there are two or three other amino acids in

between. Then, the RE is already saturated for the elementary

transfer steps. In the current work on this topic in our labora-

tory, the QM region has involved the p-electron systems of

the peptide backbone explicitly, and use has been made of

a Green function approach to compute the electronic coup-

lings [130] to account for the super-exchange mechanism on

long time scales correctly. Also, we plan to perform direct

simulations of hole transfer in these systems, in spite of the

presumably extensive computational cost due to the long

time scale of transfer exceeding nanoseconds.

3.5. Hole transfer in organic semi-conductors
Organic semi-conductors are a class of ET systems that are of

great interest currently. At the same time, they possess ET

characteristics that are markedly different from those observed

in the previously mentioned applications [131]. For these

reasons, we are working to extend the presented hybrid

methodology, to describe the ET in systems such as hexabenzo-

coronene (HBC) derivatives. Owing to their self-organizing

capabilities [132], these materials form phases such as liquid

crystals and self-assembling monolayers on surfaces; an

example of the latter structures is shown in figure 8.

The difference between these systems and those presented

above is clear—there is no aqueous or generally polar solvent

around the electron-carrying molecules. Therefore, there is

little orientational polarizability in the system that would

oppose the transfer of electron, and merely electron polariz-

ability is conceivable. Also, the inner sphere RE seems to be

much smaller than in DNA bases or amino acids. On the

other hand, the electronic couplings between the individual

molecular fragments can be quite large. As pointed out

recently [133], the reversed relation of RE and electron coup-

ling probably leads to an entirely different mechanism of

transfer—adiabatic in this case. An additional computational

challenge is represented by the extended, highly symmetric

aromatic character of the electronic systems of these mol-

ecules. Two HOMOs are degenerated actually, and another
orbital has only a slightly lower energy, so that at least three

orbitals per molecular fragment have to be considered for

the hole transfer.

Since the charge will probably be rather delocalized over

several molecular fragments, it may not be meaningful to

describe the transfer as consisting of hopping events. On the

other hand, the delocalization will be limited owing to the dis-

order caused by the structural fluctuations. This point can be

inferred from the results of preliminary calculations performed

on the complex of six HBC fragments. The electronic structure

of the complex was computed along an MD trajectory,

and the delocalization of the HOMO was obtained as

Srec ¼ 1/
P

i DQ2
i ; where DQi is the occupation of each frag-

ment by the HOMO (figure 9). The delocalization amounts

to 2.3 on average, which is distinctly smaller than the value

of 3.3 obtained for the (static) ideally ordered structure, illus-

trating the disordering effect of the dynamics, which

prevents the formation of extended electronic bands.

Apparently, the hole transfer in organic semi-conductors is

an application with particularly high requirements for the flexi-

bility of the theoretical or computational approach that would

describe it, and it seems that, unlike the Marcus theory, our

hybrid methodology may meet these requirements.
4. Discussion and conclusion
We have developed a multi-scale computational scheme that

allows us to simulate the electron and hole transfer processes

in QM regions containing several hundreds of atoms, embed-

ded in extended non-reactive environments, on a time scale of

up to tens or hundreds of nanoseconds. The scheme relies on

an approximated expression for the total energy, which allows

us to implement state-of-the-art non-adiabatic propagation

methods. Therefore, the simulation does not rely on any
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assumptions about the localization of the electronic structure,

the nuclear and electronic time scales and the mechanism of

the transport process. The adiabatic as well as the non-adia-

batic effects are covered naturally, and the hopping transfer

and the band transport are described as well as the super-

exchange tunnelling, although the accessible time scales may

be exceeded for the latter. The quantum description is reduced

to the frontier orbitals, and it is easy to draw parallels with the

parameters used in the Marcus theory—in terms of the

electronic coupling, the driving force and the RE.

The method makes use of a QM/MM coupling scheme.

The reactive region in which the charge can be localized is

treated with a QC method. It is split further into the frontier

orbitals, which are treated with QC explicitly, while the

remainder of this region is described with MM, much like

in the HMO and PPP approaches. The main approximations

are the following:
20130415
— The wave function of the excess electron or hole is con-

sidered as a superposition of orbitals of the molecular

fragments. This makes the QC calculations, which are

the most time-consuming component of the simulation

scheme, scale linearly with the system size.

— The total energy to the first order is the energy of the

neutral system E0 plus the energy of the excess electron

E1 (or its negative in the case of hole transfer), according

to the Koopmans approximation. We showed that the

basic assumption, a similar shape of the frontier orbitals

of the neutral and the ionized fragments, holds well.

— All of the energy change due to the different on-site elec-

tron–electron interactions as well as that due to the

relaxation and rotation of orbitals is covered by the

second-order term E2 by using a Hubbard model effec-

tively. These effects are evaluated for isolated fragments

and are assumed to hold in the weakly interacting com-

plex system as well.

— In the calculation of forces on the atoms, the contributions

of kinetic energy and XC to E1 have to be neglected

further. Consequently, two kinds of processes taking

place upon the charging of the system are not covered:

the geometry relaxation of the fragments and the change

of van der Waals interactions between the fragments.

While the latter effect is small, the former is significant

and is taken into account by an additional inner sphere

reorganization contribution to the total energy. This

may even be a superior approximation because quantum

effects can be taken into consideration, which would be

missing in the standard semi-classical dynamics schemes.
The derived approximate expression for the total energy

allows us to compute the forces on the atoms, as in the stan-

dard QC methods. This is the basis for the application of a

non-adiabatic semi-classical scheme, MF (Ehrenfest) or SH.

The testing revealed that the application of the MF method

is problematic because it leads to a pronounced, overesti-

mated delocalization of the wave function of the excess

charge. This resulted in the wrong description of the transfer

because the outer sphere reorganization energies were under-

estimated. This issue does not apply in the SH scheme.

The framework has been applied to the hole transfer in

DNA, in E. coli DNA photolyase, and in model peptides

and organic materials. We summarize the main findings here.
While there has been no real consensus on the fundamental

features of hole transfer in DNA, our results showed that this can

be resolved on the basis of direct ET simulations. The hole is loca-

lized nearly completely as confirmed by non-adiabatic SH

simulations, and reasonable hopping rates were obtained,

albeit slightly faster than in the experiments. In DNA, the

time scale of transfer not shorter than tens of picoseconds is per-

haps long enough so that no problems related to the relaxation

effects would occur, and it is possible to apply the Marcus

theory. Also, RE is much larger than the electronic coupling,

so that the hole is localized on a single nucleobase predomi-

nantly, and the transfer proceeds with the solvent-controlled

adiabatic mechanism in homogeneous sequences. The detailed

sequence dependence of transfer can be readily studied with

direct simulations.

For the consecutive hole transfer reaction in the protein

E. coli DNA photolyase, we find the second elementary step

to be fast, in accordance with the experiments. This fast trans-

fer cannot be predicted on the basis of the standard Marcus

theory because of the time-scale separation problem: the

time scale of transfer interferes with that of the structural relax-

ation. Generally, long time-scale relaxation effects ranging

from pico- to nanoseconds [112] can be observed in biomolecu-

lar complexes whenever a sudden change of the electrostatics

in the system has taken place. It seems to be common that there

are slow relaxation modes in proteins, on a time scale exceed-

ing 100 ps [125], which are not present in DNA for instance.8

In this case it does not seem possible to construct a simple

model since the dynamics of the system seems to depend

on structural details of the molecule. Rather, an atomistic

approach is needed, particularly regarding the environment,

which may be pronouncedly heterogeneous.

The study of hole transfer in model peptides relies on the

Marcus theory, which is justified as the transfer is slow. The

focus is the calculation of electronic couplings for the transfer

between the amino acid side chains, involving Green’s function

methods and taking into account the p-electron systems in

the backbone.

An application of the multi-scale simulation scheme for

organic semi-conductors faces an additional challenge as it is

necessary to include multiple molecular orbitals per fragment.

The preliminary results show that the ET in these materials is

anything but similar to that in the aqueous biomolecular com-

plexes. RE may be much smaller owing to the non-polar

character of the system, being dominated by the inner sphere

component li. The relation of RE to the electronic coupling

may not be as clear as in DNA or in the protein, or may even

be reversed. Consequently, considerable delocalization of

charge is observed, making it possible for the transfer to proceed

with an entirely different mechanism from that in the previous

cases, similar to band transport. Then, direct dynamics simu-

lations would be a method with clear advantage over the

Marcus theory. This particular case demonstrates that our meth-

odology seems to be well suited for the description of fast CT

processes for which the detailed mechanism is still in question,

in particular when the application of a hopping scheme may

not be possible. The organic electronics is perhaps a typical

example [133–135].

These entirely different characters of ET in the various

molecular systems make it difficult to develop a unified

phenomenological model of transfer. Then, a multi-scale simu-

lation scheme as reviewed here is a viable alternative to

characterize the features and predict the rate of the ET reaction.
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Endnotes
1While this separation of time scales [30,31] may not be valid in some
fast processes [32–34], an extension of the Marcus model to account
for this effect was proposed [32].
2The derivation for the system with an excess electron (radical anion)
is analogous.
3Also, it may be noted that only the relative energetics of the molecu-
lar conformations is described by the zeroth-order term.
4The typical frequency of skeletal C–C vibrations is 1600 cm– 1, and
1 kT ¼ 209 cm– 1 at 300 K.
5The atomic charges are overestimated in the commonly used bio-
molecular force fields to compensate for the missing electronic
polarization in polar environments such as aqueous solutions.
6Unfortunately, no experimental work is known to the authors that
could be interpreted in terms of the absolute rate of hole transfer in
this or similarly simple heterogeneous DNA sequences.
7The injection of charge itself cannot be simulated with the current
methodology.
8Whereas the change in electrostatics concerns the dipole moment of
the chromophore in spectroscopic studies, the same is expected when
an electron is transferring in the molecular system.
nterface
10:2
References
0130415
1. Marcus RA. 1999 Electron transfer—past and
future. Adv. Chem. Phys. 106, 1 – 6. (doi:10.1002/
9780470141656.ch1)

2. Gray HB, Winkler JR. 1996 Electron transfer in
proteins. Annu. Rev. Biochem. 65, 537 – 561.
(doi:10.1146/annurev.bi.65.070196.002541)

3. Hervas M, Navarro JA, De La Rosa MA. 2003 Electron
transfer between membrane complexes and soluble
proteins in photosynthesis. Acc. Chem. Res. 36,
798 – 805. (doi:10.1021/ar020084b)

4. Bixon M, Jortner J. 1999 Electron transfer—from
isolated molecules to biomolecules. Adv. Chem. Phys.
106, 35 – 202. (doi:10.1002/9780470141656.ch3)

5. Marcus RA. 1956 On the theory of oxidation-
reduction reactions involving electron transfer. I.
J. Chem. Phys. 24, 966 – 978. (doi:10.1063/1.
1742723)

6. Marcus RA, Sutin N. 1985 Electron transfers in
chemistry and biology. Biochim. Biophys. Acta 811,
265 – 322. (doi:10.1016/0304-4173(85)90014-X)

7. Levich VG, Dogonadze RR. 1959 Theory of non-
radiation electron transitions from ion to ion in
solutions. Dokl. Akad. Nauk SSSR 124, 123 – 126.

8. Hush NS. 1961 Adiabatic theory of outer sphere
electron-transfer reactions in solution. Trans.
Faraday Soc. 57, 557 – 580. (doi:10.1039/
tf9615700557)

9. Hopfield JJ. 1974 Electron-transfer between
biological molecules by thermally activated
tunneling. Proc. Natl Acad. Sci. USA 71,
3640 – 3644. (doi:10.1073/pnas.71.9.3640)

10. Jortner J. 1976 Temperature-dependent activation-
energy for electron-transfer between biological
molecules. J. Chem. Phys. 64, 4860 – 4867. (doi:10.
1063/1.432142)

11. Small DW, Matyushov DV, Voth GA. 2003 The theory
of electron transfer reactions: what may be missing?
J. Am. Chem. Soc. 125, 7470 – 7478. (doi:10.1021/
ja029595j)

12. Newton MD. 1991 Quantum chemical probes of
electron-transfer kinetics: the nature of donor-
acceptor interactions. Chem. Rev. 91, 767 – 792.
(doi:10.1021/cr00005a007)
13. Blancafort L, Voityuk AA. 2005 CASSCF/CAS-PT2
study of hole transfer in stacked DNA nucleobases.
J. Phys. Chem. A 110, 6426 – 6432. (doi:10.1021/
jp061184s)

14. Troisi A, Orlandi G. 2001 The hole transfer in DNA:
calculation of electron coupling between close
bases. Chem. Phys. Lett. 344, 509 – 518. (doi:10.
1016/S0009-2614(01)00792-8)

15. Senthilkumar K, Grozema FC, Bickelhaupt FM,
Siebbeles LDA. 2003 Charge transport in columnar
stacked triphenylenes: effects of conformational
fluctuations on charge transfer integrals and site
energies. J. Chem. Phys. 119, 9809 – 9817. (doi:10.
1063/1.1615476)
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21. Kubař T, Elstner M. 2008 What governs the charge
transfer in DNA? The role of DNA conformation and
environment. J. Phys. Chem. B 112, 8788 – 8798.
(doi:10.1021/jp803661f )
22. Oberhofer H, Blumberger J. 2009 Charge
constrained density functional molecular dynamics
for simulation of condensed phase electron transfer
reactions. J. Chem. Phys. 131, 064101. (doi:10.1063/
1.3190169)

23. Tesar SL, Leveritt III JM, Kurnosov AA, Burin AL.
2012 Temperature dependence for the rate of hole
transfer in DNA: nonadiabatic regime. Chem. Phys.
393, 13 – 18. (doi:10.1016/j.chemphys.2011.11.017)

24. VandeVondele J, Sulpizi M, Sprik M. 2006 From
solvent fluctuations to quantitative redox properties
of quinones in methanol and acetonitrile. Angew.
Chem. Int. Ed. 45, 1936 – 1938. (doi:10.1002/anie.
200503581)

25. VandeVondele J, Sulpizi M, Sprik M. 2007 Electron
transfer properties from atomistic simulations and
density functional theory. CHIMIA 61, 155 – 158.
(doi:10.2533/chimia.2007.155)

26. Blumberger J. 2008 Free energies for biological
electron transfer from QM/MM calculation: method,
application and critical assessment. Phys. Chem.
Chem. Phys. 10, 5651 – 5667. (doi:10.1039/
b807444e)

27. Kowalczyk T, Wang L-P, Van Voorhis T. 2011
Simulation of solution phase electron transfer in a
compact donor – acceptor dyad. J. Phys. Chem. B
115, 12 135 – 12 144. (doi:10.1021/jp204962k)

28. Muegge I, Qi PX, Wand AJ, Chu ZT, Warshel A. 1997
The reorganization energy of cytochrome c revisited.
J. Phys. Chem. B 101, 825 – 836. (doi:10.1021/
jp962478o)

29. Parson WW, Chu ZT, Warshel A. 1998 Reorganization
energy of the initial electron-transfer step in
photosynthetic bacterial reaction centers. Biophys. J.
74, 182 – 191. (doi:10.1016/S0006-3495(98)
77778-1)

30. Beratan DN, Skourtis SS, Balabin IA, Balaeff A,
Keinan S, Venkatramani R, Xiao D. 2009 Steering
electrons on moving pathways. Acc. Chem. Res. 42,
1669 – 1678. (doi:10.1021/ar900123t)

31. Skourtis SS, Waldeck DH, Beratan DN. 2010
Fluctuations in biological and bioinspired electron-
transfer reactions. Annu. Rev. Phys. Chem. 61,

http://dx.doi.org/10.1002/9780470141656.ch1
http://dx.doi.org/10.1002/9780470141656.ch1
http://dx.doi.org/10.1146/annurev.bi.65.070196.002541
http://dx.doi.org/10.1021/ar020084b
http://dx.doi.org/10.1002/9780470141656.ch3
http://dx.doi.org/10.1063/1.1742723
http://dx.doi.org/10.1063/1.1742723
http://dx.doi.org/10.1016/0304-4173(85)90014-X
http://dx.doi.org/10.1039/tf9615700557
http://dx.doi.org/10.1039/tf9615700557
http://dx.doi.org/10.1073/pnas.71.9.3640
http://dx.doi.org/10.1063/1.432142
http://dx.doi.org/10.1063/1.432142
http://dx.doi.org/10.1021/ja029595j
http://dx.doi.org/10.1021/ja029595j
http://dx.doi.org/10.1021/cr00005a007
http://dx.doi.org/10.1021/jp061184s
http://dx.doi.org/10.1021/jp061184s
http://dx.doi.org/10.1016/S0009-2614(01)00792-8
http://dx.doi.org/10.1016/S0009-2614(01)00792-8
http://dx.doi.org/10.1063/1.1615476
http://dx.doi.org/10.1063/1.1615476
http://dx.doi.org/10.1021/jp801486d
http://dx.doi.org/10.1002/anie.200906455
http://dx.doi.org/10.1039/c2cp41348e
http://dx.doi.org/10.1063/1.3507878
http://dx.doi.org/10.1063/1.3507878
http://dx.doi.org/10.1146/annurev.physchem.012809.103324
http://dx.doi.org/10.1146/annurev.physchem.012809.103324
http://dx.doi.org/10.1021/jp803661f
http://dx.doi.org/10.1063/1.3190169
http://dx.doi.org/10.1063/1.3190169
http://dx.doi.org/10.1016/j.chemphys.2011.11.017
http://dx.doi.org/10.1002/anie.200503581
http://dx.doi.org/10.1002/anie.200503581
http://dx.doi.org/10.2533/chimia.2007.155
http://dx.doi.org/10.1039/b807444e
http://dx.doi.org/10.1039/b807444e
http://dx.doi.org/10.1021/jp204962k
http://dx.doi.org/10.1021/jp962478o
http://dx.doi.org/10.1021/jp962478o
http://dx.doi.org/10.1016/S0006-3495(98)77778-1
http://dx.doi.org/10.1016/S0006-3495(98)77778-1
http://dx.doi.org/10.1021/ar900123t


rsif.royalsocietypublishing.org
JR

SocInterface
10:20130415

16
461 – 485. (doi:10.1146/annurev.physchem.012809.
103436)

32. Wang H, Lin S, Allen JP, Williams JC, Blankert S,
Laser C, Woodbury NW. 2007 Protein dynamics
control the kinetics of initial electron transfer in
photosynthesis. Science 316, 747 – 750. (doi:10.
1126/science.1140030)

33. Skourtis SS, Beratan DN. 2007 Photosynthesis from
the protein’s perspective. Science 316, 703 – 704.
(doi:10.1126/science.1142330)

34. Woiczikowski PB, Steinbrecher T, Kubař T, Elstner M.
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110. Kubař T, Elstner M. 2009 Solvent reorganization
energy of hole transfer in DNA. J. Phys. Chem. B
113, 5653 – 5656. (doi:10.1021/jp901888r)

111. Pal SK, Zhao L, Zewail AH. 2003 Water at DNA
surfaces: ultrafast dynamics in minor groove
recognition. Proc. Natl Acad. Sci. USA 100,
8113 – 8118. (doi:10.1073/pnas.1433066100)

112. Furse KE, Corcelli SA. 2010 Molecular dynamics
simulations of DNA solvation dynamics. J. Phys.
Chem. Lett. 1, 1813 – 1820. (doi:10.1021/jz100485e)

113. Liu C-S, Hernandez R, Schuster GB. 2004 Mechanism
for radical cation transport in duplex DNA
oligonucleotides. J. Am. Chem. Soc. 126,
2877 – 2884. (doi:10.1021/ja0378254)
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