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Objective(s): Erythropoiesis is regulated by some extrinsic and intrinsic factors as microRNAs 
(miRNAs). miRNAs are endogenously small non-coding regulatory RNAs which play vital roles in 
the variety of cellular fate, critical processes;  growth, apoptosis, metabolism, survival of the cells 
and specially differentiation. Several miRNAs such as miR-16 and miR-451 have been shown to be 
correlated with erythroid differentiation. Taking into account the importance of miRNAs in 
cellular differentiation, the goal of the present study was to examine the role of miRNAs in 
hematopoietic stem cells (HSC) differentiation into the erythroid cells in the absence of growth 
factors and stimulatory cytokines. 
Materials and Methods: CD133+ stem cells were infected with lentiviruses containing miR-
451/miR-16 precursor sequence, erythroid differentiation was evaluated using RT-PCR for 
hemoglobin chains and surface antigens, also by banzidine staining. 
Results: MiR-451up-regulation, but not miR-16, could induce α, β and γ-globin expression in 
CD133+ cells and have strong correlation with appearance of CD71 and CD235a markers in these 
cells. Moreover, miR-451 up-regulation increases the banzidine positive cells to ~ %40. 
Conclusion: Our results provide strong evidence that miR-451 up-regulation strongly induces 
erythroid differentiation and maturation of CD133+ stem cells. Hence, this method may provide a 
useful technique for the production of artificial blood RBC and be used as a new strategy for gene 
therapy of hemoglobinopathies, such as β-thalassemias and sickle cell anemia. 
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Introduction 
Blood transfusions are used in treatment of 

cancer patients undergoing chemotherapy, surgery 
patients and to compensate for major blood loss. 
Removal of unwanted side-effects, especially 
transfusion-transmitted infections (HIV and 
hepatitis) considering the short supply of donor 
blood are significant objectives of modern 
transfusion medicine. Blood substitutes are solutions 
for overcoming these shortages (1-2). The important 
therapeutic goal of blood substitutes is maintaining 
tissue oxygenation. Several types of oxygen carrier 
products have been constructed that mimic blood's 
oxygen transport ability, including: hemoglobin-
based oxygen carriers and perfluorocarbon oxygen 

carriers. Although these products have many 
advantages in oxygen transportation, they have 
various problems such as alterations of biochemical 
and hematological parameters, also creation of flu-
like symptoms, respectively (3). Lately, numerous 
studies have been devoted to looking at the 
possibility of using in vitro erythropoiesis as a means 
of producing an alternative source of transfusable 
blood (4-5).  
Erythropoiesis is a complex process by which a 

hematopoietic stem cell (HSC) at bone marrow 

microenvironment (HSCs niche) differentiates into 

the committed erythroid lineage. This dynamic 

process is modulated by the balance of extrinsic and 

intrinsic factors, including growth factors (e.g. stem 
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cell factor and erythropoietin), transcription factors 
(e.g. GATA1, FOG-1and EKLF) and microRNAs 
(miRNAs, e.g. miR-16, miR-221, miR-222 and 
miR451) (6-9). Several studies have been carried out 
to produce terminally differentiated red blood cells 
(RBCs) from HSCs using different combination of 
growth factors and cytokines. RBCs produced in 
these studies have characteristics comparable to 
those of adult peripheral RBC. However, the main 
problem of these methods is high cost (10-14). On 
the other hand, a number of observations have led to 
the notion that some miRNAs have key roles in 
control of HSC differentiation into erythroid lineage 
(15-22).  Felli et al (2005) demonstrated that decline 
of miR-221 and miR-222 is an important event for 
erythroid differentiation (23). Bruchova and his 
workers examined miRNAs expression in normal and 
polycythemia vera erythropoiesis and introduced 
miR-451 and miR-16 as signature miRNAs for 
normal erythroid differentiation and maturation 
(24). Besides, significant up-regulation of miR-16 
and miR-451during erythroid differentiation and 
maturation, also were reported by the other studies 
(25-28). Therefore, expression modulation of certain 
miRNAs may possibly be a useful method for 
erythropoiesis. So, in this study we evaluated 
whether up-regulation of miR-16 and miR-451 could 
induce erythroid differentiation in CD133+ stem cells 
derived from cord blood. Our results showed that 
miR-451 up-regulation, but not miR-16 over-
expression, could be an effective factor for in vitro 
erythropoiesis and might be the initial step in 
producing artificial blood by means of microRNAs.   
  

Materials and Methods 
Recombinant lentiviruses production 

The pCDH-451 and pCDH-16 plasmids                     
were generated by ligation of 250 and 458 bp 
fragments encompassing pri-miR-451 and pri-miR-
16 sequences, respectively, into the XbaI /BamHI 
restriction sites of pCDH-CMV-MCS-EF1-copGFP 
vector (System Biosciences, USA). These fragments 
were amplified by PCR reaction using                  
following primers:  pri-miR-451 FW:                             
5′- GGAAGATCTTGACAAGGAGGACAGGAGAG -3′,          
pri-miR-451 RW: 5′- 
CCCAAGCTTGCCTTGTTTGAGCTGGAGTC-3′; pri-miR-
16 FW: 5′- ACTCTAGAGCAGCACATAATGGTTTG-3′ 
and pri-miR-16 RW: 5′-
TGGATCCCTCTAATGCTGCATAAGC- 3′  on genomic 
DNA extracted from human whole blood (Cinnagen, 
Iran). lentivirus production; human embryonic 
kidney (HEK) 293 cells (3 ×106) were seeded into 
10-cm plates containing DMEM medium 
supplemented with 10% FBS(purchased from 
Gibco). The next day, pPAX2 plasmid (containing gag 
and pol genes) and pMD2 plasmid (containing vsv 
gene) were co-transfected with pCDH-451/ pCDH-16 
plasmids  also empty vector (pCDH empty backbone) 

as negative control into seeded 293T cells using 
lipofectamin 2000 reagent (Invitrogen, USA)  
according to manufacturer’s protocol. The 
supernatants containing produced lentiviruses were 
collected every 12 hours for 2 days after transfection 
and concentrated by ultracentrifuge at 40.000g for 2 
hr. Then for virus titration, 293T cells were 
transduced with a different concentration of 
recombinant lentiviruses and the number of viruses 
in the functional copy was determined using GFP 
protein and fluorescent microscope forty-eight hours 
later.  
 
CD133+ cells isolation, culture and infection   

Human umbilical cord blood (UCB) was obtained 
from 3 healthy full-term placentas. Written 
permission was obtained from healthy pregnant 
women. Next, to purify CD133+ stem cells, MNCs 
(mononuclear cells) were isolated from UCB samples 
by density gradient centrifugation using Ficoll-paque 
reagent (GE Healthcare, Sweden). CD133+ cells were 
enriched through positive selection using CD133 
magnetic micro-beads and MidiMACS separation 
systems (Miltenyi Biotec, Germany) as per 
manufacturer's recommendations. Enriched CD133+ 
stem cells were expanded into StemSpan media 
(Stem Cell Technologies, Canada) in the presence of 
100ng/mL stem cell factor (SCF), 100 ng/mL 
thrombopoietin (TPO) and 100ng/mL Flt3-ligand 
(Stem Cell Technologies) for 5 days. For gain of 
function studies, expanded CD133+ cells were 
transferred at density of 1×105 cells per well in 24-
well plates containing IMDM media (purchased from 
Gibco) supplemented with only 5% FBS in the 
absence of any erythroid stimulatory growth factors 
and cytokines. The next day, CD133+ cells were 
infected with a multiplicity of infections (MOI of 30, 
It means that 30 lentivirus particles were added per 
one CD133+ stem cell).  

The study was performed in four groups: one 
group was transduced with pCDH-451 lentiviruses 
(pCDH-451 group), another was infected with pCDH-
16 lentiviruses (pCDH-16 group), the third did not 
receive any treatment (blank control group) and the 
fourth group was transduced with pCDH-empty 
lentiviruses (negative control group). After 14 days, 
the role of miR-16 and miR-451 up-regulation in 
erythroid differentiation was monitored by 
hemoglobin chains (α, β, γ and ζ) RT-PCR, erythroid 
cell surface markers (CD71 and CD235a) RT-PCR 
and banzidine staining. 
 
RNA extraction and RT-PCR  

Total RNA was extracted from test and control 
groups using Biozol reagent (Bioer,China ) on day 14 
post infection. The first strand cDNA was synthesized 
with AMV reverse transcriptase enzyme from 100 ng 
of total RNA using cDNA synthesis kit (Bioer) 
according to manufacturer’s instructions. Next, RT-
PCR reactions were performed for hemoglobin genes 
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(α, β, γ and ζ) and erythroid specific cell surface 
markers (transferrin receptor, CD71:120 bp and 
glycophorinA, CD235a:167 bp) as erythroid 
differentiation indexes using following primers: α-
globin (annealing temperature: 59Cْ, Product 
size:407 bp): FW, 5′- CCGACAAGACCAACGTCAAGG-
3′ and RW, 5′-GGTATTTGGAGGTCAGCACG-3′;                  
β-globin (annealing temperature: 60Cْ, Product 
size:122 bp): FW, FW, 5′-CTCACCTGGACAACCTCAAG 
-3′; and RW, 5′-TACCCGGTCGTGTGTCTGGT-3′;              
γ-globin (annealing temperature: 54Cْ, Product size: 
194 bp): FW, GTCCTCTGC-CTCTGCCATC -3′ and        
RW, 5′-CGGTCACCAGCACATTTCC-3′; ζ-globin 
(annealing temperature: 55Cْ, Product size: 208 bp): 
FW, 5′- GGTGAAGAGCATCGACGACA-3′ and RW,                 
5′-TCTCGGTCAGGACAGAGGA-3′; CD71 (annealing 
temperature: 60Cْ, Product size: 120 bp): FW,                
5′-TGAGGTGGCAATGCACACTTC-3′ and RW,               
5′- AGGAGTGGCTGCATATGTGTCC-3′; CD235a 
(annealing temperature: 60Cْ , Product size: 167 bp): 
FW, 5′- GGCTAAGGTCAGACACTGAC-3′ and RW, 5′- 
TGTGCATTGCCACCTCAGTG-3′; GAPDH (annealing 
temperature: 58Cْ, Product size: 166 bp): FW, 5′- 
GACAAGCTTCCCGTTCTCAG -3′ and RW, 5′- 
GAGTCAACGGATTTGGTCGT. 
 
miRNA-qRT- PCR 

Total RNA was extracted from all samples at day 
4. Then, qRT-PCR for miR-16 and miR-451 were 
performed using Stratagene kit (USA) according to 
manufacturer’s protocol. Briefly, first cDNA strand 
was synthesized through miRNA 1st-strand cDNA 
synthesis kit (Stratagene) and reverse transcribed 
into qPCR-ready cDNA. After that, miRNA qRT-PCR 
analysis was carried out in triplicate on ABI PRISM 
7500 real time PCR System (Applied Biosystems, 
USA) with the high-specifity miRNA                              
qPCR   core reagent kit (Stratagene) using following 
miRNA-specific forward primers: miR-451                  
FW, 5-′ AAACCGTTACCATTACTGAGATT-3′ and         
miR-16 FW: 5′- AGCAGCACGTAAATATTGGC-3′ 
according to manufacturer’s instructions and 
normalized to U6 small nuclear RNA (snRNA) as 
endogenous control. U6 primers were: FW: 5′: 
CTCGCTTCGGCAGCACACATATAC-3′, RW: 5′- 
ACGCTTCACGAATTTGCGTGTC-3′. The qRT-PCR 
cycling conditions were 10 minutes at 95°C followed 
by 10 sec at 95°C, 15 sec at 60°C, and 20 sec at 72°C, 
repeated for 30 step cycles. Data analyses were 
performed using the relative quantification of CT 
method.  
 
Banzidine staining 

Banzidine staining was used for calculation of 
percentage of cells which express hemoglobin chains. 
For producing benzidine solution, 5 mL of 30% 
hydrogen peroxide was added to 1 mL of a stock 
solution of 0.2% benzidine dissolved in 0.5% acetic 
acid. A number of 105 cells from each test and control 

groups were resuspended in phosphate buffered 
saline (PBS) and mixed with the same volume of the 
benzidine solution for 7 min in room temperature. 
Then, each sample was monitored by light 
microscopy and the blue cells (benzidine-positive 
cells) were counted and expressed as a percentage. 
100 cells were counted in each sample and all 
experiments were performed triplicate.  
 
Statistical analysis 

All experiments were repeated three times and 
data were presented as mean±SD. The comparison 
between groups was performed by Student's t- test. 
P- value less than 0.05 designated statistically 
significant differences.  
 

Results 
Erythroid differentiation of CD133+ cells 
CD133+ stem cells were isolated successfully from 
each cord blood sample. The purity rate of isolated 
cells was measured by flow cytometry (Figure 1, A). 
Quantities over than 90% were selected for further 
studies. Then, CD133+ stem cells were successfully 
transduced by lentiviral vectors. Transduction 
efficiency was checked each time by fluorescent 
microscopy and determined about 70% (Figure 1, B). 
 
Recombinant lentiviruses increased mature miRNAs 
level in treated CD133+ cells 

To determine the efficacy of recombinant 
lentiviruses, we measured the expression level of 
miR-16 and miR-451 at day 4 after transduction in 
test and control groups by qRT-PCR. Treatment of 
CD133+ cells with pCDH-16 lentiviruses, but not 
with pCDH-empty lentiviruses, led to rise of mature 
miR-16 by 13-fold relative to the blank control cells 4 
days upon transfection. Similar results were 
obtained when CD133+ cells were infected with 
pCDH-451 lentiviruses. Over expression of miR-451 
in pCDH-451 group enhanced mature miR-451 by 
11.5-fold compared with blank control group. As 
expected, when CD133+ cells were treated with 
pCDH-empty lentiviruses, miR-451 expression level 
showed no significant alteration compared to blank 
control group (P> 0.05, Figure 2). These results 
indicate that both recombinant lentiviruses are 
functional and increase mature miRNAs level 
appreciably. 
 
pCDH-451 lentiviruses, but not pCDH-16 lentiviruses, 
could induce erythroid differention of CD133+ cells 

Because miR-16 and miR-451were up-regulated 
drastically during erythroid differentiation, we 
sought to determine whether these miRNAs could 
induce erythropoiesis individually and in the 
absence of any erythroid stimulatory growth factors 
and cytokines. So, we evaluated the effect of 
mentioned miRNAs upregulation on expression of 
erythroid specific markers. CD133+ cells were 
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infected with pCDH-451, pCDH-16 or pCDH-empty 
lentiviruses and erythroid differentiation was 
assessed by RT-PCR for hemoglobin chains and cell 
surface markers (Figure 2A and B). Over expression 
of the miR-451 induced expression of α, β and γ- 
globin, but not the expression of the ζ- globin.  
 

 

 

          

 

 
 

 
 
 

 
 

 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 
Figure 1. CD133+ stem cell purification and infection. A: Result of 
CD133+ cells purification from HCB by flow cytometry. In each case, 
purification efficiency was above 90%. B: (B, above) Transduced 
CD133+ cells examined by light microscopy. (B, below Transduced 
CD133+ cells examined by fluorescent microscopy. Transduction 
efficiency of CD133+ cells with pCDH-16 and pCDH-451 was 
obtained approximately more than 70% as determined by fluorescent 
microscopy 
 
 

Noteworthy, γ- globin was expressed at lesser extent 
than α and β chains. However, miR-16 up-regulation 
in pCDH-16 group had no effect on the hemoglobin 
chains expression. Similarly, miR-451 up-regulation 
led to stimulation of CD71 and CD235a expression. 
Nevertheless, miR-16 up-regulation did not 

positively effect the expression of either cell surface 
marker. Since, β-globin and CD235a genes are the 
important markers of maturing human erythroid 
cells, these findings suggest that miR-451 up-
regulation, but not miR-16 up-regulation, is able to 
promote erythroid differentiation of the HSCs and 
even its maturation without adding any stimulatory 
factors.  

 
 

Figure 2. Expression of miR-16 and miR-451 in test and control 
groups was measured by QRT-PCR at day 4. The expression level of 
both miRNAs was assessed in the group that infected with pCDH-
empty group. All tests were performed in triplicate and data were 
presented as mean ± SD. Error bars designate SD. * P<0.05 

 
miR-451 up-regulation correlated with banzidine 
positive cells 

Erythroid differentiation and hemoglobinization 
were also examined by banzidine staining (Figure 3). 
MiR-451 over expression significantly increased the 
proportion of the cells which were benzidine-
positive in pCDH-451 group versus control group at 
day 14 (40.2% vs. 4.7%, respectively), whereas miR-
16 up-regulation had no obvious effect on the 
hemoglobinization (only 5.5% cells was benzidine-
positive). Unsurprisingly, no significant alteration 
was seen between the percentage of the cells that 
were positive for banzidine staining in pCDH-empty 
group and blank control group (3.8% vs. 4.7%, 
respectively, P> 0.05). Taken together, these results 
further confirmed that miR-451 up-regulation 
contribute to erythroid differentiation of CD133+ 
cells and identify this miRNA as one of  the main 
factors that induces hemoglobinization. 

 
Discussion  

MicroRNAs (miRNAs) are small, non–protein-
coding RNAs that recognize target sites, in the 3′ 
untranslated regions (UTRs) of cognate mRNAs, 
through imperfect base-pairing, and either 
destabilize them or inhibit protein translation. 
miRNAs is  involved in different processes in multi-
cellular plant and animal species but not in 
unicellular organisms including cell development, fat 
storage, apoptosis and differentiation (29-34). 
Essential roles of miRNAs also were identified in 
hematopoietic lineage differentiation (23-25). For 

B 

A 
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instance, Bruchova et al (2007) performed gene-
expressing profiling using microarray method and 
indicated that miR-16 and miR-451 up-regulated by 
35-fold and 3-fold, respectively, throughout the 
erythroid differentiation (35-37).  

In the present study, to determine whether miR-
16 and miR-451 could play central roles in erythroid 
differentiation in the absence of cytokines and 
growth factors combination, we analyzed the effect 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

Figure 3. RT-PCR results of hemoglobin chains and surface CD markers expression in pCDH-451 group (A and B), control group (C) and pCDH-
16 group (D). α-, β-, γ-globin, CD71 and CD235a were expressed in pCDH-451 group, but not in pCDH-16 group and control group. Product size 
of α: 407 bp, β: 122 bp, γ: 194 bp, ζ: 208 bp, GAPDH: 166 bp, CD71: 120 bp, CD235a: 167 bp, Marker (M): 100 bp 
 
 

 
 

Figure 4. Evaluation of hemoglobinization using banzidine staining method. Infection of CD133+ cells with miR-451 increased banzidine positive 
cells to ~ 40%. In other group no obvious changes were observed. Results indicate the mean ± standard deviation of three independent experiments. 
Error bars represent SD. * P<0.05 

 

 

of enforced expression of these miRNAs on erythroid 
differentiation of CD133+ cells. RT-PCR results 

indicated that, when cells were treated with pCDH-
451 lentiviruses, miR-451 up-regulation persuaded 

A 
B 

C 
D 
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the erythroid surface markers CD71 and CD235a. In 
addition miR-451 overexpression induced 
hemoglobin α and β expression at high level, 
whereas miR-451 stimulated γ-globin expression at 
low level. Findings demonstrate that in this model, 
adult β-globin (Hb A), with negligible fetal globin 
(Hb F) was produced that mimics in vivo 
erythropoiesis. Our results are consistent with a 
report that states up-regulation of miR-451, 
increased β-globin and hemoglobinization in MEL 
cells during DMSO-induced erythroid differentiation 
(19). Moreover, our data showed that the up-
regulation of miR-451caused a significant rise in 
CD133+ hemoglobinization (~ %40). These findings 
suggest that miR-451 up-regulation alone and 
without adding any auxiliary factors could induce 
erythroid differentiation of CD133+ cells. However, 
miR-451 target(s) are not yet identified in humans 
(25).  

On the other hand, transduction of the cells with 
pCDH-16 lentiviruses could not induce hemoglobin 
and surface antigen genes expression in CD133+ 
cells.  Our observations seem to be in disagreement 
with a previous study by Choong et al who 
demonstrated that miR-16 have strong positive 
correlation to the appearance of erythroid specific 
cell surface markers such as CD36, CD71 and CD235a 
and hemoglobin synthesis upon erythroid 
differentiation of CD34+ cells using cytokines 
combinations (27). These dissimilarities may be 
explained by differences in the method of 
erythropoietic induction of the stem cells and the 
source of progenitor cells. Thus, up-regulation of 
miR-16 on their own and without stimulatory 
cytokines assistance did not promote erythroid 
differentiation of the CD133+ cells. 
 

Conclusion 
Taken together, our evidence suggests that miR-

451 up-regulation maybe a critical factor for in vitro 
erythropoiesis of HSCs and production of artificial 
blood. On the other hand, in the hemoglobinopathies 
such as sickle cell anemia and thalassemia, the major 
problem is failure in the production of adult globin 
(HbA) (38). Thus, erythropoiesis using miR-451 and 
other miRNAs may be useful in studying the 
pathophysiology of hemoglobinopathies and test 
effective therapeutic strategies for the possibility of 
reversing these abnormalities by gene therapy. 
However, it is clear that for clinical applications, 
complete process of in vitro erythropoiesis using 
miRNAs expression modulation should be proved 
functionally and morphologically. Hence, present 
study is the primary step in this field and further 
studies would be necessary. 
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