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computational design. Varieties of small RNA can work cooperatively, synergistically or
antagonistically to carry out computational logic circuits. The riboswitch and enzymatic
ribozyme activities and its special in vivo attributes offer a great potential for in vivo
computation. Unique features in transcription, termination, self-assembly, self-processing
and acid resistance enable in vivo production of RNA nanoparticles that harbour various
regulators for intracellular manipulation. With all these advantages, RNA computation is
promising, but it is still in its infancy. Many challenges still exist. Collaborations between RNA
nanotechnologists and computer scientists are necessary to advance this nascent technology.

1. The end of Moore’s law for the electronic computer

Silicon-based computer and embedded systems are becoming ubiquitous in our daily lives [1].
We need processors to implement computation, communication and control to meet the demands
of new applications and paradigms. Computer chip manufacturers frantically compete to make
future microprocessors that are increasingly difficult to continue scaling with Moore’s law, the
number of electronic devices on the microprocessor every 18 months, doubling the demand to
break the quickest record. Silicon microprocessor speed and miniaturization will eventually reach
their own limits. Sooner or later, this chip competition is bound to reach stalemate. Scientists
and engineers are wondering whether Moore’s law can be continued for the next 10 years, and
whether the capacity of transistors in the unit area of a chip can be doubled every 2 years (or
every 18 months). There are three reasons for this critical challenge: (i) the accuracy of computing
will be affected if we make a transistor at the atomic level, because two wires in the circuit will
be too close and they will affect each other; (ii) the heat generated in such a small area with too
many concentrated transistors will greatly affect the functions of the transistors; (iii) the energy
consumption to cool the circuit board would be too high a burden.

By 2011, US data centres were predicted to consume 100 billion kWh at a cost of $7.4 billion
per year [2]. Unfortunately, much of this energy is wasted by systems that are idle when current
servers still draw about 60% of peak power. In typical data centres, average utilization is only 20—
30%. Chip temperature impacts circuit reliability, energy consumption and system cost. Research
has shown that every 10-15°C increase in operating temperature reduces the lifetime of the chip
by half. With increasing temperatures, the leakage current of a chip increases exponentially. In
addition, the cooling cost increases significantly, which amounts to a considerable portion of the
total cost of the whole computer system. The cross-sectional power density increases linearly with
the number of stacked silicon layers, causing a serious thermal problem. Chip manufacturers need
a new kind of material in order to produce faster computing microprocessors.

Living entities have the most complicated computational systems in the world. The calculation
capacity of cells, living organisms and the human brain is incomparable with machines used in
the outside world. The supercomputer of biological systems, including the human body, relies
on the interaction of DNA, RNA and proteins. Currently, the computational mechanism of the
human brain has not been completely elucidated, but it is believed that biomimetic approaches
following the realism of RNA, DNA and protein would be a new horizon that would solve
electronic computing problems.

2. Molecular-scale computing

Molecular computation uses bottom-up approaches to create biological and chemical computers
at the nanoscale [3-7]. Comparatively, electronic-integrated circuit systems comprise logic gates
that perform Boolean logic by receiving true (1, high voltage) and false (0, low voltage) values
resulting in a Boolean output [8]. Although the computational DNA logic gate first appeared in
1989 [9,10], the actual beginning of molecular-scale computing was when Adleman’s group, in
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Figure 1. Comparison of the electronic computer and a molecular-scale computer.

1994, used a DNA-based design to solve a seven-city Hamiltonian path problem [11]. This began
the new era of DNA computing.

The basic mechanism of the DNA-based computer is a single-strand of DNA that undergoes
a certain reaction upon the arrival of an input signal. This process is controllable, and has led to
DNA strand displacement circuits [12-16]. The advantage of using DNA is that DNA is stable,
and DNA hybridization reactions can be used to represent computational steps, with dynamic
DNA nanostructures representing computational states. Figure 1 shows a detailed comparison
between an electronic computer and a molecular-scale computer. The molecular-scale computer
has many promising features that have the potential to overcome the restraints of Moore’s law
for electronic computers. Based on concepts borrowed from electronics, such as Boolean values,
signal processing, signal amplification and feedback, multi-layered biocircuits have been created
since the middle of the 1990s.

Boolean frameworks have been used in the measurement of biological interactions, and the
classification of genes has been represented under diseased conditions [17,18]. Currently, most
Boolean logic gates operate by fluorescence detection, a method that is complex and physically
inconvenient [14,19-23]. Alternatively, a homogeneous colorimetric detection method has been
employed that uses high extinction coefficients and the distance-dependent optical properties
of gold nanoparticles to reduce the complexity and cost of the procedure and increase the ease
of operation [24,25]. As exemplified in figure 2, metal-ion-mediated DNA logic gates (using
AND, NAND and NOR) have been fashioned based on electrochemical outputs that use the
unique features of Ag* ions that interact with the cytosine—cytosine mismatch, and of Hg?*
ions that interact with the thymine-thymine mismatch, in DNA duplexes [26]. The AND logic
system was based on the proximity-dependent surface hybridization between thiolated T-/C-
rich DNA on a gold electrode surface and T-/C-rich DNA labelled with ferrocenecarboxylic acid
(Fc), in which the Hg?* and Ag* ions are used as inputs and the current of the Fc as output.
Subsequently, an NAND logic gate was constructed based on the strand dissociation as well as
the conformational switch of T-/C-rich DNA triggered by Ag“‘ and Hg2+ ions. In addition, it
was found that the C—Ag™—C and T—Hg?*—T base pairs can trigger the structural conversion
of multiple nucleic acid helices from triplexes to duplexes, which motivated the fabrication of
another NOR logic gate.
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Figure 2. Logic-gate systems with Ag™ and Hg?* ions as inputs and electrochemical signals as output detected by differential
pulse voltammetry (DPV). (a) Schematic of the two-input logic gate and equivalent electronic circuit for the AND logic
operations. (b) A schematic presentation of a ‘NAND’ gate. (c) Schematic of a ‘NOR’ gate. (Adapted from [26]. Copyright (©
2013 with permission from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)

DNA electrochemical logic gates that can be made with minimal reagents, fewer working
steps and a simpler optical set-up are optimal. Compared with silicon-based elements used
in electrical computation, nucleic acids are structurally simple, have straightforward sequence-
specific hybridization between complementary strands, and can capture certain target molecules
(e.g. metal ions, small molecules and proteins in a highly specific manner [27,28]; as such, in
order to compute DNA, DNA logic gates must be created [29]). Zhang and co-workers [30] have
designed a system of colorimetric logic gates (OR, AND and INHIBIT) using Pb?>* and Mg?*
ions as the DN Azyme cofactors to activate respective scission DNAzymes, and Zhang et al. have
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constructed a complete set of two-input logic gates by designing a series of circular substrates
(OR, AND, INHIBIT, XOR, NOR, NAND and XNOR), where ion-dependent DNAzymes were
the functional components and the respective cofactor ions were used as the inputs [31].

Another step forward was the introduction of toehold-mediated DNA strand displacement.
A toehold is a single-stranded domain that leads to enzyme-free DNA machinery that is
automated by hybridization [6,32]. The most recent results are from the Caltech laboratory [33].
Qian and Winfree [33] used a DNA hybridization reaction to represent the logic operations AND
and OR. The digital values were controlled through threshold gates. The signal recognition is
amplified through fluorophores and quenchers. The designed seesaw circuits with three layers of
gates demonstrated the possible progression of DNA computation to more layers of gates.

However, there are many limitations of DNA-based computation. The most obvious is that
the execution time of a logic gate such as AND or OR is too long to tolerate. It usually
takes 1-2h to finish one AND or OR operation through biochemical reactions. Three-layer
seesaw circuits require more than 6-10h to reach a stable state and to achieve the final value
represented. The second challenge of DNA-based computation is the limiting proteins required in
the DNA reactions, such as DNA-binding and DNA-cutting proteins. Nevertheless, scientists and
engineers have started to use molecular-scale computing devices to build new-style computers,
such as quantum computing and neurocomputing. But, DNA-based computation is still a
promising approach.

3. Historical evolution of RNA nanotechnology

Adleman [11] proposed and introduced the idea of using DNA to solve complex mathematical
problems. DNA coding is very similar to how permanent personal genetic information is stored
in an electronic computer’s hard drive. DNA Logic is a team from Rochester, NY, whose DNA-
based logic gate achieved the first step in the creation of computing systems that have the same
structure as a conventional computer. They used an electronic signal instead of a DNA genetic
code to carry out a calculation. They used the genetic materials as input and a combination of
two fragments as an output. Two DNA inputs were linked and crossed by a chemical to form an
end-to-end concatemer structure to serve as an ‘AND GATE'. They reported that these logic gates
could be combined with DNA microchips to execute a new approach for DNA computation.

The main driving force of RNA-based computing lies in the concept of RNA nanotechnology.
To uncover the role of RNA nanotechnology in network computing devices, it is important
to briefly provide terminology and a history of the RNA nanotechnology concept. RNA
nanotechnology is a relatively recent field of science that uses bottom-up or top-down approaches
to build artificial RNA architectures that are nanometres in scale. It involves the characterization
of the physical, chemical, biological and pharmaceutical properties of artificial RNA scaffolds
or nanoparticles that can be used in nanobiotechnology, synthetic biology, nanomedicine and
computing devices. RNA nanotechnology is a unique field that is distinct from the classical
studies on RNA structure. The concept began in the late 1990s with the pioneering work
led by Dr Peixuan Guo and his laboratory. In 1998, they demonstrated the construction of
RNA nanoparticles using the re-engineered natural packaging RNA (pRNA) derived from a
bacteriophage $29 DNA packaging motor to self-assemble by hand-in-hand interaction into
multimeric RNA nanoparticles (figure 3a). This finding was published in Zhang et al. [39], and
was featured in Hendrix [40]. In 2004, the same group reported the systematic formation of pPRNA
nanoparticles using technologies of palindrome sequence-mediated self-annealing [37] (figure 3b).
In the following years, they successively showed that pPRNA molecules could be conjugated with
various therapeutic functionalities, including aptamers, siRNA, ribozymes and microRNA, and
serve as polyvalent vehicles to deliver these molecules [35,38,41-50] (figure 3c). These findings
have paved the way for RNA nanotechnology to develop into a novel area of therapeutics for the
treatment of various diseases such as cancer, viral infections and genetic diseases. This is pioneer
work to prove the concept of RNA nanotechnology and intracellular computation and raises the
possibility of intracellular computation.
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Figure3. Historical outline of RNA nanotechnology. (a) Re-engineered pRNAs form hexamers, one of the first pieces of evidence
for the application of the RNA nanotechnology concept [34,35]. (Upper panel, adapted with permission from F. Major and from
(© Elsevier 1998; lower panel, adapted from [35] with permission from () Mary Ann Liebert, Inc. 2005.) (b) Re-engineered
pRNA (i) monomer can assemble to (ii) dimers and iii) trimers [36—38]. AFM, atomic force microscopy. (Adapted from [38] with
permission from () Elsevier 2010.)

The development of multi-valent pRNA nanoparticles in the Guo laboratory is just one facet
of the rapidly emerging field of RNA nanotechnology and therapeutics. Elucidation of the
structure and folding mechanism of RNA motifs and junctions has laid a foundation for
the further development of RNA nanotechnology. In its early stage, significant contributions to
the fundamental studies of RNA structural motifs were made by Eric Westhof, Neocles Leontis,
Luc Jaeger, David Lilley and their laboratories [51-65]. Advances in RNA three-dimensional
computation from traditional intra-molecular interaction to inter-molecular interaction were
promoted by Bruce Sharpiro and co-workers (figure 3d) and have brought new features into the
RNA nanotechnology field [59,66-69].

Currently, RNA nanotechnology is becoming a popular and rapidly developing branch
of science, as evidenced by the burst of publications on RNA nanostructures in the past 5
years, indicating a strong interest in RNA nanotechnologies in diverse fields such as chemistry,
biophysics, biochemistry, structural biology, microbiology, cancer biology, pharmacy, cell biology
and nanomedicine. New perspectives on the application of the RNA nanotechnology concept are
slowly developing into a more sophisticated era of RNA computing.

4. Significance and uniqueness of RNA nanotechnology

RNA biopolymers are very important to RNA nanotechnology, beginning at the atomic level
of these intriguing molecules. Composed of four different nucleotides—A, C, G and U—RNA
is capable of Watson—Crick base pairing (as DNA does) as well as a variety of non-canonical
base pairing [55,58,70-72]. This property mainly promotes RNA folding into either rigid or
flexible structures containing tertiary interactions that are distinct from those of double-stranded
DNA (figure 4) [54,55,73-76]. RNA tertiary interactions mediate bulges, internal hairpin loops,
multi-way junctions and inter- and intra-RNA-RNA components. A 90-nucleotide RNA can
display up to 4% different sequences with a very large number alternative secondary and
tertiary structures. Such a huge pool of rich structural conformations could ease the search for
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Figure 4. Significance and uniqueness of RNA nanotechnology.

viable partners in particle assembly, substrate binding, architecture building and manufacture
engineering.

In addition, the versatility and low-energy folding of RNA deliver a significant advantage over
DNA, such as high thermodynamic stability [77-79] and various in vivo attributes [34,39,45,80-84].
At the same time, RNA can be designed and manipulated with a level of simplicity characteristic
of DNA. But it displays a structural flexibility and functional diversity similar to that of proteins,
including enzymatic activities. Although RNA nanotechnology can be regarded as a subdivision
of nucleic acid nanotechnology, the uniqueness of RNA properties when compared with DNA
will advance the emerging field of RNA nanotechnology. The discovery of diverse RNA functions
in ribozyme, riboswitch, aptamer, siRNA and miRNA and the methods to produce fluorogenic
RNA in the cell [85,86] suggest the immense potential of intracellular computation.

5. Fabrication of RNA nanoparticles with potential as computer parts

Artificial construction and assembly of RNA molecules into more complex and functional
systems requires the use of programmable, addressable and predictable building blocks. The
thermodynamic stability, specificity, affinity, flexibility and folding rules of RNA structural motifs
need to be known, so that possible advantages can be found or difficulties overcome. RNA
folding into various three-dimensional structures dictating its function is the result of complex
hierarchical self-organization of modular elements. Self-assembly of RNA building blocks in
a predefined manner to form larger two- and three-dimensional structures is a prominent
bottom-up approach and represents an important means by which biological techniques and
biomacromolecules can be successfully integrated into nanotechnology [35,37,43]. Figure 5
provides the main concepts of RNA nanoparticle fabrication based on the following methods
[54,55,73-76,91].

First is the biomimetic method, which mimics RNA constructs from naturally occurring atomic
resolution X-ray or NMR structures. The structures of RNA motifs and the mechanisms of RNA
folding and sequence interactions have been investigated for many years. A rich resource of
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Figure 5. Fabrication of RNA nanoparticles. (a) (i) pRNA four-way junction constructed by mimicking the observed natural
pRNA 3WJ core motif [42]. (Adapted from [42], (©) 2012 with permission from Elsevier.) (i) pRNA hexamer was built via loop—
loop interaction by naturally occurring pRNA hexamers [34,87]. (Left panel, adapted from [34]. (C) 1998 with permission from
Elsevier. Right panel, adapted from [88]. (C) 2013 with permission from Elsevier.) (b) lllustration of the similarity between DNA
and RNA structural arrays: (i) AFM image of cross-shaped tiles possessing a four-arm formation through the sticky end [89,90].
(Adapted from [89]. (O 2008 with permission from the American Association for the Advancement of Science.) (i) An example
of RNA square-based structural arrays obtained from six sticky nucleotides [62]. (Adapted from [62]. (C) 2008 with permission
from the American Association for the Advancement of Science.) (c) Examples of RNA nanostructures designed with the help of
computer programs. (i) Computer-aided design of an RNA nanocube [59]. (Adapted from [59]. (C) 2010 with permission from
Nature Publishing Group.) (ii) An example of an RNA nanotube [66]. (Figure courtesy of Dr Bruce A. Shapiro.)

well-developed databases can be used to extract known RNA structural units for construction
of novel RNA nanoparticles with the desired properties [82,92,93]. One such example is based
on the structural features of the pRNA of the bacteriophage $29 DNA packaging motor, which
uses a hexameric RNA ring to gear the machine [94-96]. The basic methodology to produce
different RNA nanoparticles based on the pRNA sequence is illustrated in figure 6 (Shu Yi nature
protocols). Thus, Guo’s group has extensively re-engineered pRNA to form dimers, trimers,
tetramers, hexamers (with proteins) and arrays via hand-in-hand or foot-to-foot interactions
between two interlocking loops of pRNA, as summarized in figure 7 [36,37]. In addition, the
dimer and trimer nanoparticles have been used successfully as polyvalent vehicles to deliver a
variety of therapeutic molecules as well as for constructing RNA arrays [37].

Another example that uses the structures of known RNA structural elements is called
‘RNA architectonics” [62]. The strategy is based on the rational design of artificial three-
dimensional RNA constructs guided by specific loop—loop interactions. This can be decomposed
and reassembled to create new RNA nanoscopic architectures by inverse folding.
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Figure 6. Workflow diagram of functional RNA construction based on the pRNA molecule. PCR, polymerase chain reaction.

Application of a three-way junction (3W]) [41] and a four-way junction (4W]J) [42] that are
selected from known RNA structures is another exciting example of a biomimetic approach
to create functional nanoparticles [60,67]. There are several examples in the literature: RNA
structural motif (from rRNA) to guide the tetramer assembly of L-shaped tectoRNAs; 3W]
motif (from 23S rRNA) to construct a T-shaped arrangement of three helices; and tRNA motifs
consisting of 4- and 5-WJ to fold L-shaped tertiary structures [60,82]. However, crystallography
and NMR are not the only sources of RNA functional elements—many of them have been
identified by in vitro selection, for instance aptamers [97,98].

The second method is to inherit the principles of DNA nanotechnology. Because DNA and
RNA share some common structural and chemical features, DNA methods can provide viable
models for RNA nanotechnology development. Direct DNA self-assembly is predictable, and
complex nanostructures can be created with precise addressability. This is demonstrated by
assembling DNA into a variety of elegant shapes with precise control over their geometries,
periodicities and topologies (figure 5). Branched DNA tiles, tensegrity triangles (rigid structures
in periodic array form) [99], algorithmic self-assembled Sierpinski triangles (aperiodic arrays
of fractal patterns) [100], nanotubes, helix bundles [101], polycatenated DNA ladders [102] and
three-dimensional cubes, polyhedrons, prisms and buckyballs are some of the examples.

Rothemund’s [103] DNA origami is an exciting demonstration of the addressable and
programmable property of DNA. Behind the principle of DNA origami lies a long single-
stranded viral DNA which is used as a scaffold for binding shorter strands to generate
well-defined two- and three-dimensional configurations. This strategy was applied to build three-
dimensional boxes that can be locked and unlocked [104], nanoarrays for label-free detection
of substrates [105], multi-layered three-dimensional DNA nanostructures and for structure
elucidation of organized proteins [106]. Rationally designed supramolecular DNA assemblies
can be conjugated with organic and inorganic molecules, such as conjugation of porphyrins
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Figure 7. lllustration of toolkits to obtain RNA nanoparticles. (a) pRNA extended interlocking loop—loop interaction ‘hand-in-
hand;, toolkit no. 1; (b) pRNA interaction via a palindrome sequence introduced at the 3'-end ‘foot-to-foot, toolkit no. 2; and
(c) 3WJ motif of pRNA 3WJ used to construct branched RNA nanoparticles, toolkit no. 3 [87]. (Adapted from [87]. () 2013 with
permission from Cold Spring Harbor Laboratory Press.)

on parallel DNA helix bundles [107], nanomagnets [108] and elegant nanomachines [109,110].
Recently, DNA fold-and-cut methodology was used to build a reconfigurable topological surface
with only one side and only one boundary called a Mébius strip [111].

The above-mentioned DNA nanotechnology principles have been successfully applied to RNA
nanotechnology (figure 5). The formation of jigsaw puzzles and bundles was demonstrated
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in both RNA and DNA [37,61,62,112-114]. To introduce branching into structures, multi-helix
junctions are used as monomers in DNA constructs [115,116], enabling similar novel and diverse
RNA-based architectures to be built [55,60].

The final method is to use computational tools to design RNA nanoparticles. As mentioned
above, RNA molecules display diverse structures mediated by both canonical and non-canonical
base pairing. In contrast to traditional methods in which raw materials are harvested from
three-dimensional databases rather than designed for a given application, the next generation of
building blocks can be designed a priori for programmed assembly and synthesis. RNA secondary
structures are stabilized largely by nearest-neighbour interactions that can be measured in model
systems [77,78].

Application of this method, however, requires a large data bank of parameters for the
nearest-neighbour interactions. Fortunately, advances in RNA synthesis make it possible to study
molecules with many different structural motifs. The use of computational methodologies can
significantly reduce the time and expense required to build RNA-based functional nanoparticles
to address experimental needs. However, prediction of RNA structure or folding for particle
assembly is a great challenge, owing to the unusual folding properties involving non-canonical
interactions. Single-base modifications can result in folding alterations and loss of function.
Currently, using Zuker’s RNA secondary structure dynamic programming algorithm, typically
only 70% of the two-dimensional folding prediction is accurate [117,118]. Obviously, predicting
the RNA three-dimensional structures is even more difficult.

Although there are novel strategies that predict the self-assembly of nucleotide sequences into
three-dimensional RN A nanoparticles, presently, new and efficient computational approaches are
required. Generally, there are two steps in building RNA nanoparticles: (i) the computational
approach (e.g. using Kinefold) [119], using the spontaneous self-folding property of RNA
into defined structures via base-base interactions based on their characteristic AG, and
(ii) spontaneous assembly of the resulting RNA building blocks into larger assemblies based
on the predicted architecture. This creates an effective computational pipeline for generating
molecular models of RNA nanostructures. The RNA junction database [82], NanoTiler [67],
RNA2D3D algorithms [120], RNA dynamics [121,122] and FR3D [123] are used to build RNA
nanoparticles that incorporate individual RNA motifs to defined user specifications [66] and have
been shown to self-assemble in vitro (e.g. nanocubes; figure 4 and [59,68]).

6. Application of RNA nanotechnology for computer design

Thus far, we have shown the capabilities of RNA nanotechnology to provide one of the few
ways to form designed, complex structures with precise control over nanoscale properties. The
field is beginning to see application in the design of logic gates as building blocks for computer
construction. Here, we briefly emphasize some important aspects of why it is critical to apply
RNA nanotechnology into ‘'RNA computers’.

One of the main advantages of RNA is that it can carry catalytic (e.g. ribozymes [124]) and
gene regulation functions (e.g. riboswitches [124]) within the cell as well as performing detection,
signalling and sensing functions (e.g. aptamers). Thus, the RN A molecule has advantages over the
DNA molecule not only in versatility of different structures but also in functionality (figure 8a—d).
Unlike traditional electronic computers, which use electric current as inputs and outputs, these
RNAs use the concentrations of specific chemical species as signals. These RNAs can replace
DNA to implement logic functions and to build up the multiple layer Boolean networks with
AND/OR/NOT logic gates [91,127,128].

The design and synthesis of basic functional circuits are the fundamental tasks for developing
a fully functional computing device. Before it is possible to engineer higher order genetic
networks that can perform complex functions, basic functions should first be realized. RNA
nanotechnology-based devices can perform cellular information-processing operations from
standard components. These devices can exhibit logic operations (AND, NOR, NAND or
OR gates) and signal filtering. RNA-based devices process and transmit molecular inputs to
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Figure 8. Application RNA nanotechnology for computer design. (@) Comparison between DNA and RNA computers. (b) Atomic
resolution structures of some functional RNAs (shown are the hammerhead ribozyme PDB ID: 1GID, guanine riboswitch PDB
ID: 3GER and malachite green (MG) aptamer PDB ID: TF1T). (c) Example of the application of RNA nanoparticles to calculate
a distance [125]. (Adapted from [125]. (O 2010 with permission from the American Chemical Society.) (d) Application of
MG aptamer-functionalized 3WJ pRNA nanoparticles in vitro, showing the different emissions based on different excitation
wavelengths [126]. (Adapted from [126]. (O 2011 with permission from Nature Publishing Group.)

targeted protein outputs, linking computation to gene expression and thus the potential to
control cellular function. Several information-processing systems have been developed based
on RNA computing. For example, protein-based systems can perform logic operations to
convert molecular inputs to regulated transcriptional events. In addition, a framework for the
construction of single input-single output RNA devices based on the assembly of three functional
components—a sensor component which is made of an RNA aptamer; an actuator component,
made of a hammerhead ribozyme; and a transmitter component, made of a sequence that couples
the sensor and actuator components [129]—was proposed.

RNA nanostructures will represent different inputs. The output, such as the activation of
a pathway, is based on logic functions of input RNA concentrations. The beauty of the RNA
approach is that there are many more variations in RNA than in DNA, as emphasized in
figures 9-11. As an example, using only one specific type of RNA structure as an input, we
can construct a tremendous variety of different structures and functionalities through different
methods, e.g. hand-in-hand (figure 9), foot-to-foot (figure 10) and junction core extension toolkits
(figure 11). RNA logic gates can lead to a computer capacity that is comparable to the world’s
currently most powerful supercomputer. The future RNA computer will be compact; for example,
a 1cm?3 space can hold 10 trillion RNA molecules. With this small amount of RNA, a computer
would be able to hold 10 terabytes of data, and perform 10 trillion calculations at a time. By
adding more RNA, more calculations could be performed. The RNA computer will be fast.
In contrast to conventional computers, which operate linearly, RNA computers can perform
parallel calculations. Such parallel computation allows RNA to solve in 1 h complex mathematical
problems that would require hundreds of years for conventional computers to compete the task.
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Figure9. AFMimages of pRNA nanoparticles obtained by ‘hand-in-hand’ interaction following toolkit no. 1[87]. (Adapted from
[87]. (© 2013 with permission from Cold Spring Harbor Laboratory Press.)

In addition, there are numerous small RNA regulators available [130,131]. By the trans- and
cis-actions, we can use varieties of small RNA regulators to build in vivo products and functional
pathways and control them with induction or repression. Three types of working methods
are generally available: cooperative, synergistic and antagonistic, to produce computational
logic circuits as conjunctive or disjunctive normal forms, or other kinds of logic operation
[91,127,128].

7. RNA in vivo computation

Recent advances in RNA-based therapeutics have broadened the scope of therapeutic targets for
a variety of human diseases ranging from genetic disorders to HIV infection and extending to
various cancers. The concept of nanotechnology application to living systems has already been
proven when molecular computers were found to be able to operate in, and directly communicate
with, a biological environment [6,14].

In vitro demonstration of this computing device has been shown before [4] when DNA was the
software encoded with input and output and DNA-manipulating enzymes were the hardware.
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‘foot-to-foot’ approach, toolkit no. 2
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Figure 10. AFMimages of pRNA nanoparticles obtained by ‘foot-to-foot” interaction following toolkit no. 2 [87]. (Adapted from
[87]. (©) 2013 with permission from Cold Spring Harbor Laboratory Press.)
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foot-to-foot

Simple tasks could be performed; for example, determining whether a list of zeroes and ones had
an even number of ones. Later, it was programmed to sense specific biomolecular concentrations
(messenger RNA (mRNA)); perform a simple computation; and release a biomolecule (DNA) in
response [19]. From this, abnormal concentrations of mRNA could be sensed, cancer diagnosed
and an agent released to treat it in vitro. Seelig et al. [14] inserted Boolean logic gates over
microRNA (miRNA) by DNA strand displacement and created multi-layered circuits based on
electronic concepts such as signal restoration, amplification and feedback.

Rinaudo et al. [132] was able to program a biomolecular computing device to work inside a
living cell. They inserted a plasmid with specifically encoded DNA and used an external program
with the ability to control the computation inside the host cell. The mRNA was used to encode
a fluorescent protein, and the target sequences for small interfering RNA (siRNA). They found
that siRNA was able to control the level of fluorescence exhibited by the cell because of mRNA
degradation that allowed siRNA the control to do so.

Win & Smolke [129] developed in vivo programming with computation independent of the
cell machinery, yet that can respond to both endogenous and exogenous molecular signals. In
their work, they used a combination of ribozymes and RNA aptamers [133,134]. The whole idea
was simply to use the cleaving ability of ribozyme, which was regulated by binding aptamer
RNA to a specific molecule, so that aptamer binding allowed cleavage or blocked cleavage by the
ribozyme. They demonstrated Boolean logic operations using the concentrations of two proteins
as input and the expression of green fluorescent protein (GFP) as output, implemented by the
ribozyme-aptamer molecules using yeast. Their modular and easy to program system consisted
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Figure 11. AFM images of pRNA nanoparticles obtained by ‘foot-to-foot’ interaction following toolkit no. 3 [87]. (Adapted from
[87]. (©) 2013 with permission from Cold Spring Harbor Laboratory Press.)

of mRNA that encoded GFP with a modified control region (3’ untranslated region); one or more
ribozyme-aptamer molecules were embedded in the region.

Recently, Auslander et al. [135] used the advances in RNA synthetic biology and designed
standardized control devices using trigger-controlled transcription factors and RNA-binding
proteins. These combinatorial circuits can be integrated as a two-molecule input and can
perform digital computations with NOT, AND, NAND and N-IMPLY expression logic in
single mammalian cells. Importantly, they showed that individual mammalian cells capable of
executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in
a predictable, precise and robust manner. As the outcome, this information may provide new
treatment strategies and bioelectronic interfaces in future gene-based and cell-based therapies.

Lou et al. [136] developed a memory module which is a toggle switch with two mutually
repressed repressors, CI and CI434 genes from the lambda and 434 phages, respectively. The
memory module is expected to function as follows: when CI is present, it activates transcription
and represses the transcription of CI434, thus establishing a stable high CI/low CI434 state,
which is defined as the ‘ON’ state of the memory module. In this case, red fluorescent protein
is expressed. Alternatively, when CI434 is present, it can repress the transcription of CI, thus
maintaining the transcription of itself and establishing a stable low CI/high CI434 state, which is
defined as the ‘OFF’ state. Another approach used a scalable transcriptional / post-transcriptional
synthetic regulatory circuit composed of HeLa cancer cell ‘classifier” that senses expression levels
of a customizable set of endogenous microRNAs and triggers a cellular response only if the
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expression levels match a predetermined profile of interest. This cancer cell classifier selectively
identifies HeLa cells and triggers apoptosis without affecting non-HeLa cell types [137].

Based on these developments, we believe that RNA computing will provide a way forward for
future biocomputing. Artificial RNA computers operating inside living cells would enable us to
control cellular physiology. Our knowledge of RNA-based cell regulations is the most promising
tool to construct in vivo computers. Nature has already given us all the information required to
translate these RNA functions into digital molecular networks that embody standardized forms
of logic functions.

8. Challenges for future RNA-based computation

RNA-based computation has the advantage of more variations and flexibility than DN A-based
computation. But, the biochemistry reaction time is still a critical challenge. Inspired by the results
and progress in DNA-based computing, RNA-based computing is promising. Xie ef al. [138]
reported that the observed rate constants of the siRNA output production are one to two orders
of magnitude lower than those measured with model DNA strand-exchange substrates. But they
have not built a scalable RNA computer and determined whether the RNA computer is slower or
faster than the DNA computer at system level.

The interdisciplinary approach combining computer engineering and biochemistry is critical
to the success of RNA-based computation. There are two complementary motivations for
constructing molecular computing [138]. One is to solve the famous ‘NP-hard” computational
problem [11,139,140], the other is to build autonomous molecular computers that could
potentially operate in vivo [6]. Figure 12 shows the development path of molecular-scale
computing. We can borrow many concepts from electronic computer science and engineering
to learn how to build a complicated molecular-based computer. Although by designing the logic
circuit of AND/OR/NOT gates in a cell an '/RNA computer’ can theoretically be designed and
implemented in bacterial, yeast and mammalian systems [127], the way to harness the computer
in a cell to our benefit is still a very long way off. The biggest challenge is that protein engineering
is still in its infancy [141] and we are still very far away from building a molecular-based computer
comparable to current electronic computers.

One of the biggest challenges associated with RNA-based intracellular computation is its
instability. Despite the fact that RNA therapeutics such as ribozymes, aptamers and siRNAs
have been shown to demonstrate exceptional versatility inside the body, delivery vehicles are
still required for therapeutic moieties to efficiently transport them to the targeted cells. Because
natural RNA is prone to RNase degradation this has hindered its application as a delivery vehicle.
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However, some progress has already been reported. This includes artificial modification of the
RNA bases, phosphate backbones and the C-2’ functional group [68,142]. The introduction of
peptide nucleic acids, locked nucleic acids (LNAs) and their respective derivatives polycarbamate
nucleic acids [143] or LNA with a bridge at different positions (2'—4/, 1’-3') also significantly
improves the chemical and enzymatic stability of RNA structures [144]. However, it is believed
that the most prominent is the replacement of the 2'-hydroxyl group with fluorine as this has a
minimal detrimental effect on RNA folding and functions.

In addition to instability issues, the challenges of in vivo computation using RNA [127,145]
include scaling the logic operations with a large number of inputs, extending input signal types
and non-specific actions resulting in targeting unexpected or undesired pathways resulting in
toxicity effects. The results of modifications related to RNA folding and in vivo toxicity of the
nucleotide derivatives remain to be explored. Owing to the metabolism and biocompatibility
issues, the most stable RNA might not necessarily be the most desirable; retention of particles
within an appropriate time period is more attractive.

Another challenge associated with RNA ‘computers’ is the yield and cost of RNA production.
As has been reported before [91], commercial RNA chemical synthesis can only offer 40
(conservative) to 80 (with low yield) nucleotides. Acetalester 2’-OH protecting groups, such as
pivaloyloxymethyl, have been reported to enhance chemical synthesis of RNA. RNase ligase II
has been shown to be a good alternative to the traditional T4 DNA ligase to generate longer RNA
by ligation of two shorter synthetic RNA fragments [146]. Heterogeneity of the 3’-end of RNA
products obtained during in vitro transcription is another issue [147]; this can be addressed by
extending the transcribed sequence beyond the intended end and then cleaving the RNA at the
desired site using ribozymes, DNAzymes or RNase H [146-148]. Large-scale RNA complexes
produced in bacteria escorted by a tRNA vector have also been reported [149,150]. Based on
the rapid reduction of cost over the history of DNA synthesis, it is expected that the cost of
RNA synthesis will gradually decrease with the development of industrial-scale RNA production
technologies.

In conclusion, natural or synthetic RNA molecules can fold into predefined structures
that can spontaneously assemble into nanoparticles with multiple functionalities. The field of
RNA nanotechnology is emerging but will play more and more important roles in medicine,
biotechnology, synthetic biology and nanotechnology.
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