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1. Introduction
Atmospheric CO2 concentration [CO2] has increased from a pre-industrial

level of approximately 280 ppm to approximately 385 ppm, with further

increases (700–1000 ppm) anticipated by the end of the twenty-first century

[1]. Over the past three decades, changes in [CO2] have increased global average

temperatures (approx. 0.28C decade21 [2]), with much of the additional energy

absorbed by the world’s oceans causing a 0.88C rise in sea surface temperature

over the past century. The rapid uptake of heat energy and CO2 by the ocean

results in a series of concomitant changes in seawater carbonate chemistry,

including reductions in pH and carbonate saturation state, as well as increases

in dissolved CO2 and bicarbonate ions [3]: a phenomenon defined as ocean

acidification. Time-series and survey measurements [4–6] over the past

20 years have shown that surface ocean pH has reduced by 0.1 pH unit relative

to pre-industrial levels, equating to a 26% increase in ocean acidity [3]. Reduc-

tions of 0.4–0.5 pH units are projected to occur by the end of the twenty-first

century [1] and, while atmospheric [CO2] has consistently fluctuated by

100–200 ppm over the past 800 000 years [7], the recent and anticipated rates

of change are unprecedented [8].

Research has shown that ocean acidification and climate warming can inde-

pendently affect many marine organisms in a variety of marine habitats from

tropical to high-latitude ecosystems [9,10]. Our present understanding of the

effects of ocean acidification, however, is reliant on empirical studies developed

to ascertain species-specific responses to forcing. The majority of these studies

report short-term (days, weeks or a few months, see [10]) ‘shock’ responses

that do not incorporate the longer-term potential for species gradual acclimat-

ization (i.e. respond via phenotypic plasticity, see [11]) or adaptation (the

selection of extant genetic variation that moves the average phenotype of a

population towards the fitness peak). In addition, ocean acidification is co-

occurring with other drivers of environmental change (including warming,

eutrophication, hypoxia, eutrophication, pollution [12]), yet the interactive

effects and relative importance of multiple stressors on species physiology,

life history and ecology, as well as species–environment interactions and

ecosystem function remain poorly understood [13–17].

In less than a decade since the influential report on Ocean Acidification

published by the Royal Society [18], our understanding of the direct and

indirect effects of ocean acidification and climate change on biotic systems

has remarkably improved [4,10,19–21]. Nonetheless, the rapid and often

asymmetric growth of this interdisciplinary field has left important knowl-

edge gaps that require urgent attention: (i) what are the effects of ocean

acidification and climate change on species interactions?, (ii) are communities

and their ability to maintain ecosystem functioning resilient to ongoing

global change? (iii) Can organisms’ capacity for phenotypic buffering and

adaptation offset the consequences of environmental change? Here, we
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explore advances in each of these areas and particularly

focus on the following three themes:

(i) Species interactions. While biotic interactions play

a fundamental role in defining change to species dis-

tribution and communities structure [22–24], the

degree to which ocean acidification and climate

change may alter the way in which species interact

with one another is not fully understood. Studies

that have explored species responses to biotic stimuli

and interactions under ocean acidification conditions

using laboratory experiments [25–28]) and field obser-

vations or manipulations around CO2 vents [29–32]

provide some evidence that species interactions and

community dynamics can be fundamentally affected.

(ii) Biotic mediation of ecosystem functioning. Organism–

ecosystem function relations are strongly influenced by

environmental context [13,33–35]. Exposure to ocean

acidification and warming is therefore likely to not

only affect species behaviour [33,36–38] but will also

have profound effects on the mediation of processes

that underpin the important ecosystem functions, such

as biogeochemical cycling of macronutrients [34,39] or

decomposition rates [40] that support the rest of the

food web and, ultimately, the delivery of goods and

services necessary for human well-being [41].

(iii) Capacity for phenotypic buffering and adaptation. Organisms

continuously adjust their physiological status as the

physico-chemical environment around them fluctuates

and changes (‘phenotypic plasticity’, [11,42]), in order to

maintain optimal levels of energy production, funda-

mental to sustain cell repair, growth and reproductive

investments [43]. However, plasticity often comes at a

cost [44,45]. When such cost outweighs that of adap-

tation, this should be the favoured mechanism of

response to an environmental change, and local adap-

tation should occur (e.g. [46]). In general, evolutionary

aspects of ocean acidification, alone, and in combination

with other stressors, have largely been overlooked

(notable exceptions on the adaptive responses of marine

microalgae to elevated pCO2 include Collins [47,48], Loh-

beck et al. [49,50] and Tatters et al. [51]). Consequently,

projections of the likely consequences of environmental

change, ignore species’ capacity for phenotypic buffering

and the propensity for adaptation.

This Theme Issue contains nine contributions that consider the

effects of ocean acidification and climate warming, alone and

in combination, on physiological and life-history responses,

biotic interactions, community dynamics and ecosystem func-

tioning over the medium to long term, across multiple

generations, and from natural systems chronically exposed

to elevated pCO2. We review and present new evidence that

supports the importance and challenges of incorporating

long-term acclimatization and naturally adapted populations

and communities. Evidence is presented from field obser-

vations, as well as laboratory and field-based empirical

studies representing a range of phyla and life stages in both

benthic and pelagic habitats, in order to provide a balanced

and wide-ranging summary of how marine organisms may

respond to the ongoing rapid climatic change.

Current understanding of the likely ecological consequen-

ces of warming and ocean acidification is predominantly
based on studies that have focused on calcifying (shell-

forming) organisms, which show a tendency to exhibit strong

sensitivities to ocean acidification [10]. This focus, however,

overlooks the direct and indirect effects of enhanced [CO2] for

non-calcareous taxa that is necessary to build a holistic appreci-

ation of how the effects (negative, neutral and positive) of ocean

acidification may be expressed at the biotic assemblage and eco-

system level [52,53]. In the first paper of this Issue, Connell et al.
[54] consider the importance of future atmospheric [CO2] as a

resource, rather than a stressor, for a subdominant species of

mat-forming algae. They show that enhanced [CO2] has the

potential to influence the competitive abilities of these species

following an increase in resource availability that, in turn,

causes shifts in species dominance and community structure

that affect long-term ecosystem persistence and stability.

Such extended effects of ocean acidification are particularly

challenging to incorporate in empirical investigations. In the

second contribution to this issue, Russell et al. [55] introduce

the importance of longer-term species acclimatization for dis-

tinguishing the confounding effects of exposure length from

the effects of being held in an artificial environment over pro-

longed time periods. They show that primary producers (algal

biofilm) and consumers (Littorina littorea) are likely to respond

differently to one another under increasing [CO2] and warming

and that species acclimatization is fundamental if trophic shifts

in response to changing species metabolic demands are to be

avoided. In highlighting the potential for organisms to acclimat-

ize to altered climate conditions, the authors emphasize the

importance of such longer-term processes when predicting com-

plex species and environmental responses to climate change. As

the duration of experiments is extended, however, other long-

term processes become increasingly important. In the longest

empirical study to-date Godbold & Solan [56] demonstrate that

the effects of warming and acidification on growth and behav-

iour of the ragworm Alitta virens change over time and, in turn,

have significant consequences for ecosystem functioning (sedi-

ment nutrient generation). The authors argue that species

responses to ocean acidification are intimately linked to seasonal

variation in environmental conditions (e.g. temperature and

photoperiod), such that the long-term effects of climatic forcing

may be buffered, or exacerbated, at different times of the

annual cycle. Hence, the natural variability of environmental

and climatic stressors needs to be incorporated and accounted

for in future studies if we are to reduce uncertainty in predicting

the ecological consequences of climate change. This will have

significant implications for the management and conservation

of marine ecosystems.

The importance of species–environment interactions is

considered in more detail by Laverock et al. [57], who show

that ocean acidification has the potential to significantly

modify the relationship between benthic macroinfauna (here,

the burrowing shrimp Upogebia deltaura) and ammonia-

oxidizing microorganisms inhabiting burrow walls. They

show that under low pH conditions, ammonia oxidation associ-

ated with burrow walls significantly reduces and that ocean

acidification has the potential to negate the positive impact

that shrimp bioturbation otherwise has on microbial nitrogen

cycling. Such changes in bioturbated sediments are likely to

have significant impacts on the coupling of bentho-pelagic

nitrogen cycling, a process of fundamental importance for the

rest of the food web. Species behaviour and interactions (e.g.

foraging, reproduction, predator avoidance) in many aquatic

organisms are mediated through their olfactory senses
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(e.g. [27]) that affect individual organisms’ fitness, and ultima-

tely change population dynamics and community structure.

Leduc et al. [58] critically review the effect of acidification

on olfaction-mediated behavior in marine and freshwater

organisms, showing that the mechanisms of sensitivity in

marine and freshwater species differ greatly. In marine species

olfactory-mediated behavioural impairments are caused by

the effects of elevated CO2 on brain neurophysiology, whilst

in freshwater fish the same impairments occur as a result

of the degradation of chemosensory molecules as well as

overall reduced olfactory sensitivity. The authors argue that

ecosystem-specific response mechanisms need be considered

before effective management and conservation strategies can

be implemented.

Biological responses to ocean acidification have been

shown to be highly species-specific and often idiosyncratic

[10,21,59,60]. However, to-date no multispecies study has

investigated a biological response to ocean acidification

accounting for species evolutionary history and ecology.

Byrne et al. [61] characterize the stunting effect of ocean acidifi-

cation on the arm growth response of echinoplutei larvae of

15 species of sea urchin from different climatic regions (tropical,

temperate, polar) and with different bathymetric distributions

(intertidal and subtidal). Although they show reduced larval

arm growth in all species investigated, species from different

climatic regions varied in their sensitivity to ocean acidification.

In polar and subtidal species arm growth is mainly affected by

pCO2, whilst in tropical species it was mainly affected by

decreased carbonate saturation status. Variation in the sensi-

tivity of larvae from different climatic regions may therefore

lead to asymmetrical changes in sea urchin recruitment and

subsequently alterations and shifts in species geographical

ranges and changes in assemblage structure and dynamics.

Phenotypic plastic responses will play a major role in defin-

ing species resilience to ongoing environmental change [12,62].

However, to what extent phenotypic buffering can help species

to compensate for the negative effect of ocean acidification,

and whether adaptation is possible and should be favoured

(particularly in metazoans) is still to be firmly established

(cf. [46,63]). Using in situ transplantation experiments of non-

calcifying polychaetes from the CO2 vent of Ischia (Italy),

Calosi et al. [64] provide evidence that both adaptation (gene-

tic and physiological) and phenotypic plasticity are viable

strategies to persist under elevated pCO2; species overall show-

ing elevated levels of metabolic control. Other species found

only outside the CO2 vent showed a marked departure from

their ‘original’ metabolism under elevated pCO2 conditions.

These differences in metabolic control likely explain the distri-

bution of polychaetes around the CO2 vent, shedding light on

how alteration in energetics may have caused species

extinction during climate change events.

Marine microorganisms that drive many global ocean

processes (e.g. oxygen production, primary productivity and

biogeochemical cycling) are able to adapt to ocean acidification

[49]. However, understanding of whether these organisms are

also able to adapt to the combined changes in pCO2 and temp-

erature is still lacking. Benner et al. [65] consider this issue

using over 703 cultured generations of the coccolithophore

Emiliania huxleyi. They show that long-term acclimatization or

adaptation to warm and acidified conditions could change

or even reverse the negative calcification responses observed in

short-term studies, and thus alter feedbacks to the global

carbon cycle. Moreover, for the first time, they show that changes
in whole-organism phenotypic responses are accompanied by

changes in the expression of genes related to intracellular regu-

latory processes rather than genes thought to be essential for

calcification. Therefore observed increases in energetic costs

are more likely linked to cell homeostasis rather than calcifica-

tion as previously thought. Furthermore, even if organisms

will be able to adapt to ocean acidification and warming,

species-specific competitiveness might be modified. In the

final paper of this issue, Tatters et al. [66] study the competitive-

ness of natural diatom communities incubated under future

environmental conditions for two weeks, after which the domi-

nant species were isolated and then incubated again for over a

year before recombining the now conditioned species to recon-

struct the original community. Inter-specific competition was

found to be similar in both the unconditioned natural and the

conditioned artificial community, suggesting that for diatom

communities, short-term manipulative experiments may be

used to predict the effects of long-term environmental forcing

on community structure. Although both pCO2 and temperature

were found to affect community structure, elevated temperature

was the main driver of change for reducing species richness in

this study.
2. Conclusion
Ocean acidification and ocean warming are predicted to have

substantial impacts not only on marine biodiversity [4,9,10] but

also on ecosystem functioning and service provision [41,67].

Whilst much has been learned in the past decade about the

potential implications of climate change on marine organisms

and ecosystems, substantial knowledge gaps still exist.

In this issue, we have identified and addressed three major

knowledge gaps of the organismal, ecological and ecosystem

consequences of ocean acidification and ocean warming:

(i) species interactions, (ii) biotic mediation of ecosystem function-

ing and (iii) capacity for phenotypic buffering and adaptation.

It has become clear that future empirical studies will

need to incorporate longer incubation periods that allow to

incorporate seasonal environmental processes, and, where

possible, multiple generations, to enable organisms to fully

express their phenotypic plasticity, as drawing conclusions

based only on short-term exposures may over- or underestimate

the consequences of future climate change. Combining results

from laboratory studies with manipulative or observational

studies conducted at naturally elevated pCO2 sites will provide

a more holistic view of the consequences environmental

change. In addition, it is of fundamental importance that we

refocus the current ‘single stressor’ focus to studies investigating

the combined effects of multiple environmental and anthropo-

genic drivers (e.g. elevated temperature, pCO2, pollution,

overexploitation) in order to establish generality of the effects

that complex interactions between drivers of change may

have for organisms and ecosystems (see also [68]). In addition,

this special issue highlights the importance of considering the

capacity of organisms for phenotypic buffering and evolution-

ary adaptation in future predictions on community structure

and ecosystem function, including the use of gene expression

profiling, which will help to better understand the mechanisms

underpinning organisms’ responses to global change.

The contributions and recommendations in this issue sub-

stantially advance our knowledge of the likely organism and

ecosystem consequences of ocean acidification and warming
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that should be considered in future studies and will be

important for the development and implementation of

management and conservation strategies.
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