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Warming of sea surface temperatures and alteration of ocean chemistry associ-

ated with anthropogenic increases in atmospheric carbon dioxide will have

profound consequences for a broad range of species, but the potential for sea-

sonal variation to modify species and ecosystem responses to these stressors

has received little attention. Here, using the longest experiment to date (542

days), we investigate how the interactive effects of warming and ocean acidi-

fication affect the growth, behaviour and associated levels of ecosystem

functioning (nutrient release) for a functionally important non-calcifying inter-

tidal polychaete (Alitta virens) under seasonally changing conditions. We find

that the effects of warming, ocean acidification and their interactions are not

detectable in the short term, but manifest over time through changes in

growth, bioturbation and bioirrigation behaviour that, in turn, affect nutrient

generation. These changes are intimately linked to species responses

to seasonal variations in environmental conditions (temperature and photo-

period) that, depending upon timing, can either exacerbate or buffer the

long-term directional effects of climatic forcing. Taken together, our obser-

vations caution against over emphasizing the conclusions from short-term

experiments and highlight the necessity to consider the temporal expression

of complex system dynamics established over appropriate timescales when

forecasting the likely ecological consequences of climatic forcing.
1. Introduction
Since the industrial revolution, CO2 emissions from the burning of fossil fuels

and changes in land use have steadily increased atmospheric CO2 concentration

from preindustrial levels of 280 ppm to currently approximately 385 ppm; these

levels are projected to increase to 700–1000 ppm by the end of the twenty-first

century [1], causing concomitant changes in global sea surface temperature

(2–4.58C rise [2]) and chemistry (e.g. 0.4–0.5 pH reduction [2]). Although his-

torical records indicate that atmospheric CO2 concentrations and sea surface

temperatures have undergone significant oscillations and have exceeded pre-

sent-day levels in the past [3,4], it is the unprecedented rates of change that

are fuelling concerns over whether organisms will retain the capacity to mediate

vital ecosystem functions and services [5,6]. A key component in answering this

question will be a need to establish the likelihood, and realized extent, of

species acclimation (or adaptation) to environmental change [7,8] and, if

common across functionally important taxa, how such coping and adaptive

strategies will alter species–environment interactions in the long term [9].

Over the last decade, the impacts of warming and ocean acidification have

received considerable attention, and there is a clear consensus that a continued

upward trend in these stressors will have far-reaching consequences for the struc-

ture and functioning of food webs [10–13]. However, much of the evidence in
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support of this view stems from experiments that have focused

on a restricted number of calcifying (shell-forming) organisms

exposed to non-varying conditions [14,15]. These species,

including molluscs, echinoderms, corals and coccolithophores,

do not necessarily provide a representative indication of the

broader ecological impacts of ocean acidification (for counter

argument based on the variability of crustacean responses,

see [16]), because the declining saturation level for calcium

carbonate minerals required to maintain calcite- and arago-

nite-based shells and skeletons means that these species

may be disproportionately negatively affected relative to non-

calcifying species [14,15,17,18]. Such a process-orientated

focus [19] understates the importance of species that do not

have calcified shells or skeletons and ignores other critical

responses to climatic forcing, such as change in behaviour or

ecological role [20], that can influence the mediation of many

ecosystem functions [21,22] or, indeed, the structure of entire

ecosystems [23,24]. Establishing an overview, however, has

been complicated by the variability in documented responses,

not least because of differences in timing (life stage, season) and

context (habitat condition, exposure history) between investi-

gations, but the influence of these aspects has not been

considered. Without a more holistic consideration of the variety

and timing of responses to climate change [25,26], summarizing

the most likely net response across multiple habitats will remain

challenging [27] and subject to a great deal of uncertainty [12],

and could lead to misleading conclusions.

Provision of more accurate projections of the ecological con-

sequences of warming and ocean acidification requires an

improved understanding of longer term processes that moder-

ate the susceptibility of species to a changing environment

[28,29]. Much of the currently available evidence stems from

short-term experimental manipulations, typically performed

over days to weeks [30], that do not allow the development

of diachronic response mechanisms, such as acclimation, adap-

tation [29,31,32], physiological or behavioural compensatory

mechanisms linked to biodiversity–environmental context

and/or seasonal timing [16,33,34]. These emergent properties

of ecological communities can radically alter (perceived or rea-

lized) species vulnerabilities and ecosystem responses to

climatic forcing and, when considered collectively, have the

potential to lead to scenarios that differ from those suggested

by current projections [35]. Form & Riebesell [29], for example,

show that calcification rates in the cold-water coral Lophelia
pertusa decrease after 8 days of exposure to high CO2 but

increase over the medium term (6 months), because compensa-

tory metabolic pathways may take extended periods of time to

become established, depending on other factors such as life

cycle phase [28] or exposure history [36]. These compensatory

mechanisms are only identifiable during prolonged obser-

vations, although they may not be sustainable without

significant cost to other physiological (e.g. muscle depletion

[37], intestinal base loss [38]) or behavioural functions (e.g.

predator avoidance [39]). One way to account for such feed-

back mechanisms is to extend the duration of experiments or

observations, but doing so raises the probability of including

other processes that operate over longer timescales and have

the potential to modify the outcome. For example, at different

times of the year or life cycle [40], species sensitivities to warm-

ing and CO2 may integrate in such a way that elevated CO2

levels may enhance the sensitivity of organisms to their ther-

mal extremes or vice versa [41,42], changing the way in

which species respond to a given level of climatic forcing.
Indeed, the synergistic effects of warming and ocean acidi-

fication on biological process rates, species behaviour and

ecosystem functioning [43–48] demonstrate strong interdepen-

dencies between climatic forcing and a range of variables that

are known to vary over time, including differences in species

physiology [49–51], behaviour [52], process rates [51,53], com-

munity composition [44], ecosystem structure [54] and other

ecosystem properties (e.g. food availability [55], irradiance

[56]) that influence species performance. How spatio-temporal

variability in local environmental conditions and species com-

position will affect the response of ecosystems represents a

significant knowledge gap; the paucity of longer term exper-

iments and lack of consideration of such response modifiers

are likely to go some way in explaining apparently divergent

results between studies [16].

Previous work has shown that individual drivers in

isolation, including biodiversity loss [57] and changes in temp-

erature and ocean acidification, affect species behaviour and,

subsequently, nutrient turnover and primary production at

the ecosystem level [44,47]. It is also known that species are

not necessarily sedentary and move between habitat patches

that differ in terms of resource availability, thereby altering

species composition and density distributions which, in turn,

can affect ecosystem processes at the local scale and ecosystem

functioning at larger scales [16,58]. These context-dependent

changes in behaviour and species–environment interactions

mean that the functional role of an individual species may fun-

damentally change in response to sources of temporal (diurnal,

seasonal and interannual) and/or spatial (vertical and horizon-

tal) variation [26,51,59–61], yet these factors have not been

included in investigations of the ecological impacts of warming

and ocean acidification. This is surprising, given that consider-

able differences in both the nature and magnitude of responses

to warming and ocean acidification have been documented

when behavioural dynamics have been assessed over time

and/or space [54,62,63], even for species considered to have

high acclimation potential [64,65]. To reliably predict the eco-

system consequences of climatic forcing in natural systems, it

is critical to perform experiments that incorporate, or at least

acknowledge, the sources and mechanisms of temporal varia-

bility in order to improve summaries and assessments of the

long-term effects of climatic forcing [66].

Coastal species in intertidal habitats are regarded as being

particularly tolerant to changes in temperature and pH because

they are subjected to tidal and seasonal-induced environmental

fluctuations [61,67]. However, many intertidal species may

already be living at their upper tolerance limits, such that

further increases in environmental stress imposed by climatic

forcing are likely to have significant physiological and ecologi-

cal impacts [68]. Coastal and shelf sediments support critical

biogeochemical processes that are important at a global scale

[69] as they supply nutrients vital for primary production

[70]. These biogeochemical processes are significantly influ-

enced by infaunal burrowing and irrigation activities, which

enhance microbial regeneration of organic matter [71,72]. As

microbial–faunal activities can be strongly mediated by temp-

erature [53,65,73], warming has the potential to significantly

affect global balances of carbon and nutrients [74]. The effects

of ocean acidification on infaunal behaviour and the associated

effects on biogeochemical processes, however, have received

comparatively little attention. Limited evidence suggests that

although ocean acidification may not directly affect the behav-

iour of infaunal organisms over the short term (e.g. Nereis



Table 1. Summary of experimental design for investigating the short- and long-term effects of enhanced temperature and atmospheric [CO2] on the behaviour
of A. virens and changes in ecosystem functioning.

experiment total n time point temperature regime (88888C) atmospheric [CO2] ppm

short-term 24 7 days 10 or 14 380 750 1000

long-term 48 3, 6, 12, 18 months ambient 380 750 1000

long-term 32 3, 6, 12, 18 months ambientþ4 380 750

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130186

3

virens, five weeks [21] and Amphiura filiformis, 40 days [75]),

nutrient generation is affected, probably in response to compo-

sitional changes in the microbial communities responsible

for nutrient transformations [62,71]. Here, we investigate

how long-term (542 days) exposure, incorporating seasonally

changing environmental conditions (temperature and photo-

period), to warming and ocean acidification affects the

growth, behaviour and contribution to ecosystem functioning

(nutrient release) of a functionally important intertidal species

(Alitta virens). We hypothesize that the effects of warming and

acidification will develop over an extended period of time

(months) but will be more pronounced as species respond to

seasonal changes in temperature and photoperiod. If emergent

response mechanisms are present, establishment of the impor-

tance of environmental variability and context will have

significant implications for determining ecosystem responses

to climate change.
2. Material and methods
(a) Faunal and sediment collection
Individuals of the infaunal polychaete A. virens (Sars (1835);

Polychaeta, Nereididae) were obtained from Dragon Baits Ltd.

(Port Talbot, UK) in October 2010 and maintained at ambient

temperature and photoperiod at the University of Aberdeen

(Aberdeen, UK). Surficial sediment (less than 3 cm depth, total

organic carbon content approx. 4% and mean particle size

approx. 50 mm [71]) was collected from the Ythan Estuary (Aberd-

een, UK) (57820.0850 N, 0280.2060 W) in early December 2010,

sieved (500 mm mesh) in a seawater (10 mm filtered, UV sterilized

and salinity 33) bath to remove macrofauna, allowed to settle for

24 h to retain the fine fraction (less than 63 mm) and homogenized.

(b) Experimental set-up and design
Aquaria (total ¼ 104) consisted of transparent Perspex square

cores (internal dimensions, LWH: 12 � 12 � 33 cm) containing

sieved sediment (12 cm depth) overlain by 20 cm of seawater

(UV sterilized, 5 mm pre-filtered, salinity 32.4+ 1; see electronic

supplementary material, figures S1 and S2). Aquaria were conti-

nually aerated by bubbling a treatment-specific air–CO2 gas

mixture (see below) through a glass pipette and maintained

under a natural day–night cycle (Aqualine T5 Reef White 10 K

fluorescent light tubes, Aqua Medic). The number of daylight

hours (UK Hydrographic Office; see electronic supplementary

material, table S1) and water temperature (daily monitoring

records, Oceanlab, University of Aberdeen) were adjusted to

reflect the historic (5 year archive) monthly mean level on the

first day of each month. Two experiments were conducted to

enable the separation of short- (7 days) versus long-term (3,

6, 12 and 18 months) effects. In each experiment, three individ-

uals (i.e. 208 individuals m22) of A. virens were added (total

biomass: short term, 4.3380+ 1.2116 g aquarium21; long term,

4.2411+0.6179 g aquarium21) and were supplied with
approximately 0.03 g of tropical fish flake food (Aquarian Tropi-

cal Flake) every 2 days.

Aquaria in the short-term experiment were held in a seawater

bath at a constant temperature (Titan 1500 chiller unit, Aqua

Medic) to reflect either the annual mean temperature of the

study site (10.24+0.028C; see electronic supplementary material,

figure S2) or a warming scenario ofþ48C (14.36+0.128C; see elec-

tronic supplementary material, figure S2). Levels of atmospheric

[CO2] were maintained at present-day level (380 ppm) and indica-

tive future projections (750 and 1000 ppm). Each temperature �
CO2 treatment was replicated four times (n ¼ 24; table 1). For

the long-term experiment, the constant temperature regimes of

the seawater bath were replaced with a seasonal cycle (adjusted

monthly; see electronic supplementary material, figure S2) to

match either historical mean monthly temperatures at the study

site (ambient) or a warming scenario (ambient cycleþ48C).

Levels of atmospheric [CO2] were 380, 750 and 1000 ppm for

the ambient treatment, and 380 and 750 ppm for the ambientþ48C
treatment. To avoid the excessive accumulation of nutrients and

metabolites, we performed a partial (80%) seawater change on

each aquarium once a week. Alitta virens growth, behaviour and

ecosystem function were examined after 3, 6, 12 and 18 months

of exposure (table 1). Each CO2 � time point treatment was repli-

cated four times (ambient, n ¼ 48; ambientþ48C, n ¼ 32; table 1).

(c) Measurements of growth and species behaviour
The growth (biomass, g) and behaviour (sediment particle

reworking, hereafter bioturbation; ventilation activity, hereafter

bioirrigation) of A. virens were determined at each time point.

Bioturbation was estimated from sediment profile images

(Canon 400D, 3900 � 2600 pixels, i.e. 10.1 megapixels, effective

resolution 67 � 67 mm per pixel) of the redistribution of particu-

late tracers (dyed sediment that fluoresces under ultraviolet light;

15 g luminophores aquarium21, 125–250 mm diameter) over a

period of 6 days [76,77]). Bioirrigation was estimated from absol-

ute changes in the concentration (mean starting concentration ¼

1081.13+44.28 mg l21) of the inert tracer sodium bromide

(D[Br2], mg l21; negative values indicate bioirrigation activity;

[78]) over an 8 h period, determined using a Tecator flow

injection auto-analyser (FIA Star 5010 series).

(d) Measurements of ecosystem function
Water column concentration (mg l21) of NH4-N, NOx-N (i.e.

NO3-N þ NO2-N) and PO4-P were determined over a 6-day incu-

bation period at each time point from standardized water

samples (approx. 10 cm depth, 0.45 mm NALGENE filtered)

following standard protocols using a Tecator flow injection

auto-analyser (FIA Star 5010 series).

(e) Controlling and monitoring seawater
carbonate chemistry

Levels of [CO2] were controlled using a CO2–air mixing system,

adapted from Findlay et al. [79], which continually maintained

and monitored [CO2] in the air mixture supplied to each
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Figure 1. The independent effects of (a) the length of exposure (time point (months)) and (b) [CO2] ( ppm) on the biomass (g, mean+s.e.) of A. virens under
ambient temperature conditions.
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aquarium using infrared gas analysers (Licor LI-840A, 1 per [CO2]

treatment). To minimize ambient air exchange and to ensure that

the seawater carbonate system within each aquarium developed

naturally and equilibrated with the head space conditions, each

aquarium was covered with a clear Perspex lid. pH (NBS scale,

Mettler-Toledo InLab Expert Pro temperature–pH combination

electrode), temperature and salinity (Mettler-Toledo InLab 737

IP67 temperature–conductivity combination electrode) were

measured every 7 days and total alkalinity (AT) was measured

once a month. Total alkalinity was analysed by titration (Apollo

SciTech Alkalinity Titrator AS-ALK2) following standard proto-

cols at Plymouth Marine Laboratory, Plymouth, UK and

the Carbonate Facility at the National Oceanography Centre,

Southampton, UK. Concentrations of bicarbonate (HCO3
2), car-

bonate (CO3
22) and pCO2 were calculated from measured pH,

AT, temperature and salinity [80,81] using CO2calc [82] with

appropriate solubility constants ([83], refit by [84]) and KSO4 [85]

(see electronic supplementary material, figure S3).
( f ) Statistical analyses
Analysis of variance (ANOVA) models were developed for the

dependent variables (growth, bioturbation, bioirrigation, NH4-

N, NOx-N and PO4-P) with the independent nominal variables

CO2 and temperature (short-term experiment), CO2 and time

point (long-term experiment, elevated CO2 under ambient tempera-

ture conditions) or CO2, temperature regime and time point (long-

term experiment, elevated CO2 under warming conditions).

Where there was evidence of a violation of homogeneity of variance

(long-term experiments), the data were analysed using a VarIdent

variance–covariate structure and a generalized least-squares

(GLS) estimation procedure (following [86,87]) to allow the residual

spread to vary with individual explanatory variables. For the ana-

lyses of the long-term effects of elevated CO2 under ambient

temperature conditions, the residual spread varied with time

point for growth, bioirrigation and NH4-N concentration or

CO2 � time point for NOx-N concentration. For the analyses of

the long-term effects of elevated CO2 and warming, the residual

spread varied with time point for growth and PO4-P concentration,

time point � temperature regime for NH4-N concentration and

CO2 � temperature regime for NOx-N concentration. We deter-

mined the optimal fixed-effects structure for each ANOVA model

using backward selection informed by Akaike Information Criteria

(AIC) and inspection of model residual patterns. For the GLS ana-

lyses, the optimal variance–covariate structure was determined

using restricted maximum-likelihood (REML) estimation; the initial

ANOVA model without variance structure is compared with the
equivalent GLS model incorporating specific variance structures

using AIC and visualization of model residuals. The optimal fixed

structure is then determined by applying backward selection

using the likelihood ratio test obtained by ML estimation [87,88].

All analyses were performed in R [89]. GLS analyses were con-

ducted using the nlme package [90] and figures were constructed

using the packages sciplot [91] and ggplot2 [92].
3. Results
(a) Short-term effects of warming and enhanced CO2
All individuals of A. virens survived. Short-term exposure

(6 days) to enhanced CO2 did not significantly impact

A. virens bioirrigation activity (F2,21 ¼ 2.502, p ¼ 0.106) or

water column [NOx-N] (F2,21 ¼ 2.304, p ¼ 0.125). However,

there was some weak evidence that bioirrigation activity was

highest at 1000 ppm CO2 and [NOx-N] was highest at 750

ppm CO2 (see electronic supplementary material, figure S4).

Bioturbation activity and [NH4-N] were not affected by either

warming or enhanced CO2 (both ANOVA intercept only

models).

(b) Long-term effects of enhanced CO2 under ambient
temperature conditions

It was possible to relate our response variables to species

behaviour in all but four aquaria (100% mortality: one

aquarium after 12 months in the ambientþ48C 380 ppm

[CO2] treatment; two aquaria after 18 months in the ambient

þ48C 380 ppm [CO2] treatment and one aquarium after 18

months in the ambientþ48C 750 ppm [CO2] treatment), so

these replicates were removed from the statistical analysis.

Based on the remaining aquaria, we found that A. virens signifi-

cantly increased in biomass over the 18 months exposure

period (L. ratio ¼ 20.780, p , 0.0001, d.f.¼ 3) from 6.64+
0.29 g in month 3 to 10.42+1.16 g after 18 months (figure

1a). Irrespective of the length of exposure, growth was signifi-

cantly reduced under enhanced CO2 conditions (L. ratio ¼

14.044, p , 0.0001, d.f. ¼ 2; figure 1b). Comparison of model

residuals for growth revealed that the increase in growth

over the term of the experiment did not influence any of the

response variables under investigation, providing confidence

that any observed effects were due to our explanatory variables
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(see electronic supplementary material, figure S5). The mean

maximum depth of bioturbation varied with length of

exposure (F3,44¼ 8.842, p , 0.001; figure 2a), but there was

no evidence of a directional change with increasing exposure

time. Instead, an increase in bioturbation depth in the

warmer months (3.21+0.31 and 1.90+0.17 cm after 6 and

18 months) relative to colder months (2.03+0.21 and 1.43+
0.25 cm after 3 and 12 months) suggests seasonal differences

in species behaviour, although this winter–summer shift is

much weaker in the second half of the experiment. Bioirriga-

tion activity also varied with length of exposure, but these

effects were dependent on the level of CO2 (time point �
CO2, L. ratio ¼ 21.208, p , 0.01, d.f.¼ 6). In the medium

term (3 and 6 months), enhanced CO2 led to an increase in

bioirrigation activity, whereas over the longer term (12 and

18 months) there was a reduction in bioirrigation activity

with increasing CO2 (figure 2b).

Irrespective of identity, nutrient concentrations varied

significantly with length of exposure and were highest in

the summer (i.e. after 6 and 18 months exposure: PO4-P,

F3,42 ¼ 11.724, p , 0.0001; NOx-N, L. ratio ¼ 46.453, d.f. ¼ 3,

p , 0.0001; figure 3a,b). Concentrations of NH4-N, however,

were dependent on an interaction between length of exposure

and CO2 (CO2 � time point, L. ratio: 16.649, d.f. ¼ 6, p , 0.05).

After 6 months of exposure, [NH4-N] was significantly lower in

the 750 ppm treatment (0.76+0.24 mg l21), relative to the 380

ppm treatment (2.42+1.22 mg l21), but this effect was

reversed after 18 months of exposure (1.64+0.65 mg l21 at

380 ppm and 4.86 mg l21 at 750 ppm; figure 3c).
(c) Long-term effects of enhanced CO2 under
warming conditions

Growth of A. virens was positively influenced by the indepen-

dent effects of warming (from 6.42+0.66 g at ambient to

8.60+ 0.52 g at ambientþ48C; L. ratio ¼ 23.361, d.f. ¼ 1,

p , 0.0001; figure 4a) and length of exposure (from 6.33+
0.28 g after 3 months to 9.69+1.51 g after 18 months;

L. ratio ¼ 16.335, d.f. ¼ 3, p , 0.01; figure 4b), but was nega-

tively affected, albeit marginally, by an independent effect of

enhanced CO2 (7.99+0.61 g at 380 ppm, 7.25+ 0.62 g at 750

ppm; L. ratio ¼ 5.747, d.f. ¼ 1, p , 0.05; figure 4c). The mean

maximum depth of bioturbation depended on the interactive

effects of length of exposure and temperature regime (time

point � temperature regime, F3,52 ¼ 3.734, p , 0.05), with

the shallowest (1.36+ 0.28 cm) bioturbation occurring after

12 months under the warming regime and the deepest

(3.23+0.37 cm) bioturbation occurring after 6 months

under ambient conditions. The seasonal increase in
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maximum bioturbation depth observed under ambient temp-

erature conditions did not hold under the ambientþ48C
temperature regime; the maximum bioturbation depth was

consistently less at ambient temperature during the first 12

months of exposure (figure 5a). Bioirrigation activity was

affected by the interactive effects of CO2 � temperature

regime (F1,50 ¼ 4.338, p , 0.05) and length of exposure �
temperature regime (F3,50 ¼ 2.905, p , 0.05). Hence, after an

initial reduction in activity after 6 months of exposure, bioirri-

gation is most pronounced after longer exposures under a

warming regime (figure 5b). At the same time, there is also

evidence that enhanced CO2 reduces bioirrigation, although

this effect is less marked under a warming regime (figure 5c).

Overall bioirrigation activity was higher under the ambientþ48
C regime and followed a seasonal pattern of activity, increasing

during the winter (after 3 and 12 months exposure) and

decreasing during the summer (after 6 and 18 months

exposure) (figure 5c).

Nutrient concentrations, in all cases, were highest after 6

and 12 months but depended upon complex interactions

between the length of exposure time and other variables

(figure 6). These were temperature regime for [PO4-P], which

were highest under the warming regime (time point � tempera-

ture regime, L. ratio¼ 17.248, d.f. ¼ 3, p , 0.0001; figure 6a), and

enhanced CO2 for [NH4-N], which were higher with increasing

CO2 (time point � CO2, L. ratio¼ 8.729, d.f.¼ 3, p , 0.05;

figure 6b). For the latter, differences in [NH4-N] were greatest

after 6 and 18 months of exposure (figure 6b). [NOx-N] were

dependent on the interactive effects of length of exposure time

and temperature regime (time point� temperature regime,
L. ratio¼ 18.878, d.f. ¼ 3, p , 0.0001; figure 6c) as well as the

interactive effects of enhanced CO2 and temperature regime

(CO2 � temperature regime, L. ratio ¼ 4.205, d.f. ¼ 1, p , 0.05;

figure 6d). These analyses indicate that [NOx-N] are higher

during the summer (months 6 and 18) relative to the winter

(months 3 and 12), are augmented under a warming scenario

(figure 6c), and are either further increased (ambient tempera-

ture regime) or reduced (ambientþ48C temperature regime)

by enhanced CO2 (figure 6d).
4. Discussion
When the findings from studies that have experimentally

manipulated climatic variables are combined with obser-

vations from natural systems that are experiencing localized

enhancement of temperature and/or CO2 levels, such as volca-

nic vent sites [93] or regions of upwelling [94], the conclusion

that the impacts of climate change on species, communities

and ecosystems is likely to be extensive becomes compelling

[15,95,96]. The vast majority of these experiments and obser-

vations, however, do not account for the influence of species

and system responses that follow biological rhythms or take

extended periods of time to develop; they are either too

short in duration (median length of experiment for broad

response categories in days: survival ¼ 35(n¼ 68), growth¼

25(n¼ 155), calcification ¼ 21(n¼ 92), photosynthesis¼ 14(n¼ 76)

and development¼ 5(n¼ 29) (K. J. Kroeker 2013, personal com-

munication, based on [30]) or, in the case of field studies, are

sufficiently small in scale that other small-scale processes (e.g.
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spatio-temporal relief from perturbation through avoidance be-

haviour [20], presence of collinear environmental factors [97])

may mask or subsidize the full extent of any response. Here,

we find strong evidence for effects of warming and ocean acid-

ification mediated over approximately 18 months through

complex interactions on species growth, behaviour and related

levels of ecosystem functioning. In the broadest terms, the rela-

tive importance and form of the interdependencies between

warming and enhanced CO2 vary across response variables,

but generally showed negative effects of enhanced CO2 and

positive effects of increased temperature, consistent with expec-

tations based on previous reports for A. virens and closely

related species [44,73,98]. However, these responses were not

present in our short-term experiment and did not appear

until several months had elapsed in both of our longer term

experiments. When they did emerge, they were highly influ-

enced by attributes of the system that varied with season.

These complex relationships, therefore, mean that the magni-

tude and direction of ecological response detected in

laboratory and field investigations may be more dependent

on seasonal and historical climatic context than on the absolute

change in the level of forcing [99].

An important aspect in refining prediction uncertainty is

whether weak or null responses are genuine. The lack of

response following short-term exposure to enhanced levels of

CO2 and temperature documented here confirms the findings

of previous experiments with the same species [21] and lends

support to the weak responses typically exhibited by other

non-calcifying invertebrates [100,101]. Consequently, it is

tempting to speculate that the concomitant effects of climatic
forcing on ecosystem functioning, as mediated by the non-cal-

cifying components of an ecological community, will most

likely be negligible. Indeed, when considered in isolation, our

short-term experiment supports this view because we did

not find any effects of ocean acidification or warming on

nutrient release, presumably because changes in microbial pro-

cess rates are primarily linked to changes in, or contrasts

between, infaunal activity and behaviour [44,71,72]; both

effects were absent in our short-term experimental treatments.

While such conclusions may be regarded as unsurprising

and intuitive, because non-calcifying species lack the pertinent

physiological traits that show the strongest response to climatic

forcing, an alternative and often overlooked hypothesis is that

the presence of weak or null responses reflects fundamental

differences between calcifying and non-calcifying organisms

in both the nature of response and the time required to elicit

a response. Certainly, the effect sizes of processes that have

less or no reliance on the process of calcification, such as

growth, photosynthesis, development and species interac-

tions [30], provide reason to expect that the contributions of

non-calcifying species to ecosystem functioning will be com-

promised under climatic forcing. The capacity to repeatedly

test the behaviour and contribution of A. virens to ecosystem

functioning achieved here meant that it was possible to test

this assertion. In so doing, we found temporal differences

across all of our response variables that strongly suggest that

the net susceptibility of species to climatic perturbation, and

their associated effects on ecosystem properties, will reflect

the summation of both trait-based responses that tend to be

immediately expressed (positive [102,103] or negative [15])
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and other responses that take extended periods of time to

develop, such as physiological compensatory mechanisms,

change in sensitivity levels and alteration of species behaviour

and interactions [104]. In turn, these results imply that a priori
arguments about the likely impact of climatic forcing on

species or communities that are based on assumed differences

in trait vulnerability (e.g. calcifying versus non-calcifying

species) are unlikely to provide a useful means of estimating

either the long-term survivorship or the per capita contributions

of species to functioning, because the net effect of climatic forcing

must balance both short- and long-term response mechanisms.

Although not previously an explicit feature of investi-

gations of the effects of warming and ocean acidification,

the extent and relative importance of physiological, behav-

ioural and ecological response mechanisms have been

recognized [29]. In the present investigation, we did not

attempt to determine the precise physiological mechanism(s)

underpinning the net observed responses, but the combined

results from both short- and long-term experiments indicate

that these do take several months to develop, expressed

here through notable changes in growth, bioturbation and

bioirrigation behaviour that, in turn, affected important eco-

system-level properties (nutrient concentrations). This most

striking and consistent feature across all of our analyses

returned distinct changes in the strength and, in some cases

(bioirrigation), direction of response over the course of the

experimental period (18 months). These patterns reflected,

at least in part, a sustained response to prolonged exposure

to climatic forcing, as both CO2 and temperature commonly

featured in our statistical models. However, our analyses

revealed a dominant effect of time point that tracked

the experimentally imposed collinear seasonal cycles of

temperature and photoperiod [98,105]. This was particularly

prominent at the lower and higher ends of the seasonal

range, where alterations in behaviour (type and magnitude

of activity, alteration of the sediment mixing : bioirrigation

ratio) led to detectable changes in the level of ecosystem func-

tioning [73,106]. These effects were mostly driven by absolute

temperature, rather than enhanced levels of CO2, and were

exacerbated by supplementary warming. Consequently, the

addition of the warming regime effectively shifted responses

observed during the colder months (winter) towards those

expected for the warmer months (summer), but as tempera-

tures exceeded the bounds of the historic temperature range

during the peak of the summer season, we observed more

erratic responses (as in [73]) in species behaviour with corre-

sponding effects on nutrient concentrations. Whilst one could

speculate that these erratic effects may be expected (and may

alter the seasonal boundary) at the northern and/or southern

edge of a species distributional range, we wish to emphasize

that the dominant effect of temperature observed here is
consistent with findings elsewhere [44,107,108] and reveals

that certain components of climatic forcing can play a funda-

mental and disproportional role in determining the overall

system response [101,109].

We have observed changes in species activity and behav-

iour that affected important aspects of the ecosystem that

were concurrent with both long-term forcing and short-term

sources of natural variation (seasonal shifts in temperature

and photoperiod). As we have shown, responses to short-

term seasonal change (if taken in isolation) were sufficient to

result in apparently divergent effects because of the synergistic

interplay between multiple variables, phenology and natural

sources of variation that operate over longer timescales.

Indeed, the way in which climatic forcing is expressed in natu-

ral systems is not universal, with both spatial (local, regional

and latitudinal) and temporal (periodic pulses and seasonal

cycles) variations in pH and temperature that are sufficient to

affect the direction (positive through to negative) and severity

of effect depending on timing and context [110]. Although

it is clear that further attention is required in defining and char-

acterizing the aspects of this variation (e.g. frequency and

amplitude [44,65]) that lead to differences in species responses,

a more immediate empirical challenge is to characterize and

separate the effects of periodic, stochastic and/or cyclical natu-

ral variations [61] from directional change imposed by long-

term climatic forcing. If the effects of temporal variation

exacerbate (or dampen) the effects of climatic forcing, then

the consequences for the marine environment may exceed (or

reduce) prior expectations, raising significant implications for

the management and conservation of marine ecosystems. A

first and necessary step is to reduce the systematic propagation

of error in the direction and magnitude (imposed by assuming

constancy in short-term experiments) of effect size by embra-

cing the challenges of simultaneously incorporating both

short- and long-term natural variability [111] in empirical

investigations. Secondly, it needs to be recognized that man-

agement of non-climatic stressors that interact and reinforce

the negative effects of warming and ocean acidification can

go some way in mitigating the effects of climate change at

the local level. Further research emphasis is needed in these

areas if we are to reduce uncertainty in modelled forecasts of

the ecological consequences of climate change.
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