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We introduce a model of eye movements during categorical search, the

task of finding and recognizing categorically defined targets. It extends a

previous model of eye movements during search (target acquisition

model, TAM) by using distances from an support vector machine classifi-

cation boundary to create probability maps indicating pixel-by-pixel

evidence for the target category in search images. Other additions include

functionality enabling target-absent searches, and a fixation-based blurring

of the search images now based on a mapping between visual and collicular

space. We tested this model on images from a previously conducted variable

set-size (6/13/20) present/absent search experiment where participants

searched for categorically defined teddy bear targets among random cat-

egory distractors. The model not only captured target-present/absent

set-size effects, but also accurately predicted for all conditions the numbers

of fixations made prior to search judgements. It also predicted the per-

centages of first eye movements during search landing on targets, a

conservative measure of search guidance. Effects of set size on false negative

and false positive errors were also captured, but error rates in general were

overestimated. We conclude that visual features discriminating a target cat-

egory from non-targets can be learned and used to guide eye movements

during categorical search.
1. Introduction
Decades of research has made visual search one of the best-understood para-

digms for studying how information is selected from the world. During this

long and fruitful endeavour (for reviews, see [1,2]), the visual search literature

has evolved in both its behavioural methodology and its computational sophis-

tication. There have been at least two substantive advances in behavioural

methodology. One is in the preferred dependent measure. Whereas early

studies of visual search relied almost exclusively on manual reaction time

(RT) and accuracy-dependent measures [2], in the mid-1990s, the mainstream

search community started to embrace eye movement-dependent measures

([3–6] for notable earlier studies, see also [7,8]). This trend has accelerated

over the years, with oculomotor measures such as initial saccade direction

now considered to be a golden standard of search guidance [9,10]. Another

advance in behavioural methodology involves the choice of search stimuli.

Whereas very simple patterns had been the norm in search studies, this too

started to rapidly change in the mid-1990s with the adoption of more visually

and semantically complex stimuli, first photo-realistic images of objects [11],

then line drawings of scenes [12] and eventually fully realistic scenes [13,14].

Paralleling this evolution in behavioural methods was an evolution in the

computational techniques used to study visual search. Modern models of

visual search are designed to work with arbitrarily complex stimuli, typically

arrays of real-world objects or scenes depicting complex environments. These

models differ from their simpler counterparts in many respects but fundamen-

tally in terms of the types of input they accept. Whereas earlier models might

have input a list of item locations in a search array and the feature values associ-

ated with each of these items, newer models accept only an image—an array of
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pixels that has not been preprocessed into objects or even

features. An important contribution of these image-based
models is that they therefore make explicit how information is

extracted from the world and used by the operations control-

ling search. This information is commonly represented as a

pixel-by-pixel map of prioritized activity indicating where in

a scene the search process should next be directed. Whether

it is called an activation map [15], a saliency map [16], a

target map [17] or a priority map [18], the importance of this

stage of processing should not be underestimated. To derive

these maps, decisions must be made about the types of feature

that are used to represent information in images, how to build

these features using techniques true to human neurobiology,

how to combine and potentially weight these features in

order to capture priority and how these prioritized signals

change over time owing to lateral interactions or top-down

inputs. Once answers are found to all of these questions,

there is arguably little left to explain about visual search.

Combining these modern behavioural and computational

methodologies, several models have attempted to predict the

objects or patterns in an image that are fixated during search

[19–22]. Most of these models, however, share a common

limitation. Information on the map used to direct search is

essentially rank ordered, with gaze sent to the location on

this map having the highest ranking following the outcome

of an explicit or assumed winner-take-all (WTA) process.

Should the corresponding location in the search display not

be the target, this location on the priority map is inhibited

and the process repeats with gaze sent to the next lower-

ranked pattern until the target is eventually fixated or some

termination criterion is achieved. While implementing a

reasonable scanning heuristic, this reliance on a WTA process

means that a single pattern is selected for each fixation and

that gaze is sent directly to that pattern. Such a peak-picking

dynamic, however, limits the usefulness of these models as

realistic accounts of eye movements during search because

not all eye movements land on objects. The clearest example

of this is the global effect [23], where gaze is directed to the

centre of mass of two or more objects. Other examples are

off-object fixations, cases in which gaze lands near but not

on objects, and background fixations, cases in which rela-

tively unstructured regions of a scene are fixated [11].

Because these models pick peaks of activity to fixate, and

because peaks almost always correspond to salient patterns

or objects, these off-object fixation behaviours cannot be

explained and are therefore dismissed as errata by image-

based models of search.1 This is unfortunate as these

‘errors’, by some estimates, can account for up to 28% of

the total fixations made during search [24].

The one image-based model of overt visual search that

does not have this limitation is the target acquisition model,

(TAM; [17]). TAM works by taking a filter-based decompo-

sition of a target image, presumed to be maintained in

visual working memory (VWM; [25]), then correlating these

target features with a search image that has been blurred to

reflect the retinal acuity limitations existing at each fixation.

This operation produces a map of target-distractor similarity

referred to as a target map, with the point of maximum corre-

lation on this map referred to as the hotspot—TAM’s best

guess as to the likely location of the target. However, and

unlike other map-based methods of prioritizing search be-

haviour that assume a WTA operation, TAM does not send

its simulated fovea directly to the hotspot location. Instead,
gaze is sent to the weighted average of the target map acti-

vation, similar to the population coding of eye movements

that takes place in the superior colliculus [26]. After this eye

movement, a new search image, one blurred to reflect

acuity limitations at the new fixation position, is again com-

pared with the target features in VWM to obtain a new

target map, and this process repeats. To generate sequences

of eye movements that are guided to the target, TAM

prunes from the target map over time the activity that is

least correlated with the target, a dynamic that results in an

initially strong expression of averaging behaviour that gradu-

ally lessens with each eye movement until the hotspot is

selected and the suspected target is acquired.

This relatively simple model was found to capture seve-

ral aspects of search performance, including: set-size effects,

target guidance effects, target-distractor similarity effects, eccen-

tricity effects and even a search asymmetry effect (see [17], for

additional details about the model’s methods and how it

compared with human behaviour). More recently, TAM was

also shown to predict off-object fixations and centre-looking

fixations—cases in which the initial saccade during search is

directed to the centre of a scene regardless of its starting position

[27]. Centre-looking fixations result from averaging over a target

map that is still highly populated with activity, as the centroid of

this activation will typically be at the scene’s centre. Off-object

fixations and demonstrations of a global effect are typically

observed later during search, when the target map is sparser

and averaging is done over smaller, and often more local, pock-

ets of activity (consult [24] for additional details). These

behaviours make TAM the only image-based model of search

that predicts not only the core eye movement patterns accom-

panying search, but also the oculomotor errata that have been

neglected by other image-based models. Of course these other

image-based models could also adopt a population code for

programming eye movements and potentially explain some of

these behaviours, but currently they do not.

However, this version of TAM also has serious weaknesses

(detailed in [17]), with perhaps the biggest being that the

filter-based features and the correlation method that it uses to

generate its target map are both overly dependent on knowl-

edge of the target’s exact appearance. This is a problem

because this situation almost never exists in the real world.

Even when searching for a very familiar target that has been

seen hundreds of times before (e.g. car keys), on any given

search variability in perspective, scale, lighting, etc., make it

impossible to know exactly how this object will appear. This

variability, by weakening the match between the target

representation and its appearance in the search image, creates

a problem for TAM and every other image-based model of

visual search. A related but even more serious problem is that

searchers often do not even know the specific type of object

that they are searching for. If you are in an unfamiliar building

and you want to throw away a piece of trash, you need to find

any trash bin, not a particular one. But these things come in

many different shapes and sizes and colours. This is the pro-

blem of categorical search—searching for a target that can be

any member of an object class—and this is an extremely diffi-

cult problem as it requires somehow representing a search

target that can literally be very different objects.

Of course our everyday experience tells us that a solution to

this problem exists and that it is possible to search for categori-

cally defined targets, but at issue is whether this search is

guided. Early work on this topic showed that search is more
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efficient for a target designated by a picture preview compared

with a categorical word cue [28,29], leading some researchers

to conclude that it was not possible to guide search to a

target category based on a preattentive analysis of visual fea-

tures [30]. However, an inefficient search is not necessarily

unguided, a point made by more recent studies using eye

movement-dependent measures. Yang & Zelinsky [31] had

observers search for a teddy bear target that was designated

either by picture preview (specific) or by instruction (categori-

cal). Although replicating the previously observed advantage

for specific targets, they also found that categorical targets

were fixated first during search more often than would be

expected by chance. Concurrently, Schmidt & Zelinsky [32]

found a preferential direction of initial saccades to a wide

range of target categories, with this level of guidance increas-

ing with the amount of information about the target

provided in the word cue. Subsequent work has extended

these findings, showing that categorical target guidance is

sensitive to visual similarity relationships (gaze is preferen-

tially directed to distractors that were rated as visually

similar to the target category [19]), and that search guidance

is also affected by the level that a target is designated in the cat-

egorical hierarchy (stronger guidance for subordinate targets,

but faster verification for basic-level targets [33]).

Image-based theories have not kept pace with this new

research into categorical search. This is because the task of

categorical search requires the use of tools that are not yet

familiar to the behavioural visual search community.

Although the use of scale and orientation-selective filters

(e.g. Gabors) have long been used by vision scientists to

extract and represent the visual features of objects [34,35],

simple applications of these tools to categorical search are

doomed to failure—obviously, the features extracted from

the word ‘teddy bear’ would bear no resemblance to those

of an actual teddy bear, leading to no guidance. However,

the computer vision community has been working on the

problem of object class detection for decades and has made

reasonable progress, now able to reliably detect many dozens

of object categories [36–38]. Central to these techniques is

the development of robust visual features to deal with the

variability among members of an object class, and the use of

machine learning methods to learn these features from training

sets—exemplars of target images not used during testing.

From these categorical features, object detectors can be built

and used to derive a probability that a member of the target

category exists in an image, with the totality of these proba-

bilities for each location in an image creating again a sort of

priority map that can be used to guide search. This concep-

tual similarity means that it may be possible to borrow these

techniques from computer vision and use them to build

behavioural models of categorical visual search.

There have been notable previous attempts to apply

methods from computer vision to categorical search. The

contextual guidance model [39] combines a bottom-up sal-

iency map with a scene gist descriptor to approximate

guidance by top-down knowledge about where categories

of targets are likely to appear in a scene. This model was

shown to predict the distributions of fixations made by obser-

vers searching for three target categories, people, paintings

and cups/mugs, demonstrating that knowledge of a specific

scene type (e.g. a city street) can be used to constrain the

space over which a search is made for a particular class of

target (e.g. people). The SUN model [40] differs from the
contextual guidance model in predicting distributions of

fixations using a probabilistic framework that learns the

appearance-based features that are discriminative of a target

category. It does this by combining simple difference-of-

Gaussian filters (similar to TAM) with a probabilistic support

vector machine (SVM) to train three classifiers: people/

background, paintings/background and mugs/background.

Applying this model to the search data collected by Torralba

et al. [39], they found that target appearance was as useful as

contextual guidance in predicting where people look for tar-

gets. In [41], the contextual guidance model was combined

with information about the target category’s appearance to

again predict distributions of fixations, this time in the con-

text of a pedestrian search task. Target appearance was

quantified using the pedestrian detector from [42]. Perhaps

unsurprisingly, they found that a model combining both

forms of top-down information better predicted fixations

than either model separately.

By integrating object class detection techniques with TAM

[17], the present work also strengthens the bridge between

the behavioural and computer vision communities, while

differing from previous work in several respects. Most

fundamentally, whereas this previous work focused on

where people look for targets, we focus on how people look

for targets (see also [43]). Consequently, our model attempts

to predict not distributions of fixations but rather proper-

ties of the eye movements that people make as they search.

Our analyses consider measures of the number of eye move-

ments made during search, the amplitudes of these eye

movements, and the distances between the landing positions

of eye movements and the nearest objects (indicating whether

fixations were on or off of objects). Crucially, we also report

the percentage of trials in which the very first eye movement

landed on the target. We consider these immediate target fix-

ations to be a true measure of a person’s ability to guide their

search using a preattentive analysis of appearance-based

features. Analyses of distributions or clusters of fixations,

while also measuring guidance in a sense, are less able to dis-

tinguish contributions of preattentive guidance from post-

attentive factors associated with object recognition. Our

work also differs from previous work in its focus on visual

search and factors known to affect search behaviour. We

therefore report the effects of a set-size manipulation in the

context of a target-present/absent search task. Although

[41] also used a present/absence design, [39] and [40] did

not. It is perhaps also worth noting that [39] and [40] used

a task in which participants had to count the instances of a

target class in a scene. While this is undoubtedly related to

search, it is also likely different in that a counting task may

encourage a more systematic inspection of a scene at the

expense of a search urgency that may be needed to fully

engage guidance. In this sense, our work is more closely

related to [41], but adopts the more biologically plausible

features and emphasis on target appearance found in [40].
2. Material and methods
We evaluated this categorical version of TAM against a pre-

viously collected behavioural dataset ([31], experiment 1).

Observers in this study performed a response-terminated pre-

sent/absent search for a teddy bear target in 6, 13 or 20 object

displays (approx. 268�208). The target was designated by

instruction and not by a specific picture preview, making the
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search categorical. Distractors were from random object cat-

egories, and neither teddy bear targets nor distractors were

repeated throughout the experiment. Each of the 12 observers

participated in 180 trials, which were evenly divided into the

present/absent and set-size conditions. Eye movement data

were collected using an EyeLink II eye tracker (SR Research)

with default saccade detection settings.

The computational methods followed those previously

described for TAM [17], with three exceptions: (i) the use of a

categorical target map, replacing the target map used by TAM,

(ii) the inclusion of routines allowing for target-absent search

and (iii) the use of a new method to transform search images

to approximate the retinal acuity limitations existing at each

fixation, replacing the method used by TAM. Each change is

discussed in detail below, but the original sources should be

consulted for additional details regarding the computational

and behavioural methods.
B
368:20130058
(a) Categorical target map
The selection of features and methods used to create the model’s

new categorical target map was informed by recent work compar-

ing and evaluating the potential for several existing computational

models to predict categorical guidance and recognition in the

context of a search task [44]. Out of the nine approaches tested in

this study, the one that best predicted both search components

was a model that combined a simple colour feature with a bio-

logically plausible model of object recognition known as HMAX

[45]. Based on this previous analysis, we therefore adopted

these HMAX þ COLOUR features for use in this study. Our

goal in this initial effort was to simply replace the appearance-

based target map used by TAM with a categorical target map

derived from these features, keeping most of TAM’s other eye

movement-specific routines unchanged. This was done not only

to preserve TAM’s demonstrated ability to predict several aspects

of overt search behaviour, but also to better isolate the effect of this

extension to categorical stimuli on its behaviour.

The HMAX model attempts to describe human object recog-

nition performance using only the initial feed-forward visual

processing known to be performed by simple and complex

cells in primary visual cortex [45]. In the basic four-layer version

of the model, the responses of simple cells (S1), approximated

by a bank of Gabor filters applied to an image, are pooled by

complex cells (C1) using a local maximum operation, thereby

producing limited invariance to changes in position and scale.

Category learning is accomplished by randomly selecting C1

layer patches from training images of the category. These

C1 layer maps are then filtered by simple cells (S2) to obtain fea-

ture maps for each of the sampled training patches. The final C2

features used for object detection are obtained by taking the

maximum response within the S2 maps for each patch, forcing

the number of features to equal the number of patches. Our

implementation used a bank of Gabor filters with 16 scales and

eight orientations and extracted 1000 C1 patches from positive

training samples for use as prototypes for classification.

The HMAX model accepts only greyscale images, but colour is

known to be an important feature for guiding search [46–48]. We

therefore combined the HMAX model with a simple colour histo-

gram feature [49]. Colour was defined in DKL space [50]. This

colour space approximates the sensitivity of short-, medium- and

long-wavelength cone receptors, and captures the luminance and

colour opponent properties of double opponent cells. The colour

histogram feature used 10 evenly spaced bins over three channels,

luminance, red–green and blue–yellow, each normalized to the

[0, 1] range. To compute this feature, we first converted images

from RGB space to DKL space using the conversion described in

[20], then built an image pyramid using three scales per image.

From each layer of this pyramid, we sampled 24� 24 pixel image
patches, where each patch was separated by 12 pixels, and com-

puted a colour histogram for each sampled patch. Prototypes

were obtained by randomly selecting 250 patches across the three

pyramid layers from positive training samples, with the maximum

response to each prototype over a window becoming the colour fea-

ture for that window. Note that this produces a C2-like feature for

colour similar to the Gabor-based features used by the HMAX

model. Concatenating this colour feature with HMAX produced a

1250-dimensional HMAXþCOLOUR feature.

Using these HMAXþCOLOUR features, we trained a linear

SVM classifier [51] to discriminate teddy bears from non-bears.

The positive training samples were 136 images of teddy bears

[31]; the negative samples were 500 images of non-bears randomly

selected from the Hemera object collection. None of these training

images appeared as targets or distractors in the search displays.

For each search display used in the behavioural experiment,

the 1280 � 960 pixel image was first blurred (see the following sec-

tion on retina transformation) and then processed by sliding an

HMAX þ COLOUR object detector over the image. The resulting

map of detector responses was then converted to probabilities

based on their distances from the linear SVM classification bound-

ary [52] and finally smoothed by replacing each point on the map

with an average computed over a 20 � 20 pixel window centred on

that point. This categorical target map, a pixel-by-pixel estimation

of evidence for the target category, was used by our model to gen-

erate sequences of eye movements following the method described

by Zelinsky [17]. Figure 1 shows two examples of categorical target

maps (figure 1c,d) as they existed at the start of each trial, with the

scan paths that ultimately culminated in correct target-present

(figure 1e) and target-absent (figure 1 f ) search decisions.
(b) Collicular retina transformation
For each fixation that the model made as it searched, the search

image was blurred to approximate the retinal acuity limitations

that would exist when viewing the scene from that fixation.

This retina transformation was done to better equate the visual

information available to human searchers with the information

used by the model. In order to make the model’s target map

more like the one known to exist in the superior colliculus [53],

we replaced the pyramid-based approach used by TAM [54,55]

with the one based on the projection of retinal ganglion cells to

the superficial layers of the superior colliculus.

Visual information on the retina is coded densely at the

fovea, but this density decreases with increasing distance from

the fovea [56]. However, the distribution of retinal afferents on

the collicular surface is roughly uniform with equal density,

resulting in an overrepresentation of information from central

vision relative to peripheral vision [57]. Using the method, par-

ameters and local connectivity assumptions described in [58],

we established a mapping between visual space and collicular

space, then estimated the receptive field for each neuron in the

superficial colliculus. This was done by assuming a fixed-size

and Gaussian-distributed pattern of collicular activation (with

sigma of 0.015 mm in the current implementation, based on a

4 mm colliculus), then finding the region of visual space corres-

ponding to this activation. This allows for a distorted region of

visual space to be approximated by a roughly circular region

of activity on the colliculus. For each neuron, we then averaged

the region in the image corresponding to its receptive field,

weighted by the Gaussian function in collicular space. Applying

this transformation produces an image that becomes increasingly

blurred with distance from the fovea, thereby capturing the pro-

gressive loss of acuity as objects are viewed further in the visual

periphery (figure 1a,b). TAM therefore not only ‘saw’ the same

objects shown to the behavioural participants, but these objects

were also blurred on a fixation-by-fixation basis to approximate
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Figure 1. Representative search displays and behaviour from the model. (a,c,e) and (b,d,f ) Images from two different trials. (a) Set size 6 search display, blurred to
reflect acuity limitations as viewed from the centre. (b) Set size 20 search display, also blurred to reflect acuity limitations as viewed from the centre. (c) Target map
generated from (a), reflecting activation before the initial eye movement. (d ) Target map generated from (b), reflecting activation before the initial eye movement.
(e) Eye movements preceding a correct target-present judgement. ( f ) Eye movements preceding a correct target-absent judgement. Note that each fixation would
have associated with it a new blurred search display (as shown in a,b) and a new target map (as shown in c,d ). The degree of blur can be seen by comparing (a,b)
with (e,f ). (Online version in colour.)
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the information on the collicular map that is available to guide

eye movements during search.
(c) Target-absent search
The previous implementation of TAM was purely a model of target

acquisition—how gaze is directed to a target when it is present in

a search display; functionality did not exist to terminate search

in the absence of a target. To extend TAM to target-absent

search, we therefore added a termination criterion in the form of

a target-absent threshold. The target-absent threshold works

much like the target-present threshold in TAM. Just as TAM pre-

attentively monitors its target map for activity exceeding a high

target-present threshold—which would allow its search to termi-

nate with a target-present response—it now also monitors its

target map for activity exceeding a target-absent threshold. Like

the target-present threshold, this target-absent threshold is also

a probability [0, 1]. Search continues so long as any activity on

the target map exceeds this threshold, with the model making

eye movements to suspected targets and ultimately rejecting

these patterns as distractors in the case of a target-absent trial.

Because each of these distractor rejections is accompanied by an

injection of spatially localized inhibition on the target map [17]

that implements a form of inhibition of return [59],2 the net
effect of this behaviour is the progressive removal of the acti-

vation peaks from the target map—the activity arising from

the most target-like patterns. With the removal of these hot-

spots of peak activity, the maximum probability on the

target map steadily decreases, eventually dipping below the

target-absent threshold and causing the model to terminate

with a target-absent response. In the present implementation,

the target-absent threshold was set at 0.008 and not varied

across search conditions. Inhibition was administered over a

150 � 150 pixel window. This window size was chosen to

cover the objects appearing in the search display and was

also fixed across conditions.
3. Results and discussion
All behavioural data were from Yang & Zelinsky ([31]; experi-

ment 1). The search displays from this experiment were input

to the model, which generated simulated eye movement

and search behaviour for comparison to the behavioural par-

ticipants. The parameters used for these simulations are

described in detail in [17], although the model’s three main



30(a)

(b)

15

20

25

5

10

15

0

20

25

30

10

15

0

set size

6 13 20

5

er
ro

rs
 (

%
)

er
ro

rs
 (

%
)

present absent

present absent
model

human

present absent

present absent
model

human

Figure 2. Percentages of false negative (solid lines) and false positive
(dashed lines) errors for the human searchers (green (light) lines) and the
model (red (dark) lines) as a function of set size. Error bars attached to
the behavioural means indicate a 95% CI and trend lines are fit to the
model data. (a) Data from all trials, regardless of eye position relative to
an object. (b) Data from target-absent trials in which gaze was within 18
of a distractor at the time of the target-present search decision. Note that
the behavioural data are essentially unchanged from (a), reflecting the
fact that human observers almost always looked at an object prior to
making their search decision. (Online version in colour.)

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130058

6
user-supplied parameter settings were changed to: target-
present threshold ¼ 0.9; target map increment threshold
(þTMT) ¼ 0.2, and target map decrement threshold (2TMT) ¼

0.0001. These changes were made to better capture the different

levels of confidence that likely exist between target-specific and

categorical search. When TAM is searching for a specific target,

knowledge of the target’s appearance means that a very high

target-present threshold can be used to minimize false positive

errors. However, in the case of a categorical target, greater

uncertainty in appearance requires a lower target-present

threshold. Had the threshold from the study of Zelinsky [17]

been used, the model would have terminated each trial with

a target-absent response—not because targets would be

missed, but because they would not be recognized. A similar

logic applies to the target-absent threshold. In piloting, we

explored a range of target and distractor values on the categori-

cal target map in order to gain a sense of the signal-to-noise

ratio in this task, then set the target-present and target-

absent thresholds to obtain reasonable error rates. We

assume that human participants engage in a similar learning

process when settling on their decision criteria and perhaps

in setting the size of their rejection window. The þTMT par-

ameter affects the thoroughness in which the search display

is inspected by gaze, whether it is conservative with many

small saccades or more liberal with larger saccades. A smaller

value was used in [17] to accommodate the scene stimuli used

in that study (experiments 1 and 2), and the relatively small

inter-item spacing (2.18) among the object array stimuli (exper-

iment 3a–c). The minimum inter-item spacing in the present

experiment was 48, making a highly conservative search

unnecessary and the adoption of a larger þTMT reasonable.

This, too, is something that human participants might realisti-

cally learn during practice. The range of þTMT values was

explored only coarsely, and no attempt was made to find the

optimal setting for this parameter. As for the –TMT parameter,

this value was changed to 0.0001 because the value used in [17]

was found to be unnecessarily small and needlessly increased

model run-time.
(a) Search accuracy
Both the model and the behavioural participants made a

target-present or target-absent decision in response to each

search display. Although not the principle focus of this study,

these decisions can be evaluated as a measure of task accuracy.

Figure 2a plots false negative and false positive rates from

human searchers and the model. Two patterns are worth

noting. First, behavioural accuracy was superior to the model

in each of the set-size conditions. This reflects the fact that

object recognition is still an open problem in computer vision;

even state-of-the-art methods cannot recognize a member

of an object class as well as humans. Second, behavioural

false negative rates increased with set size, F2,33¼ 137.66,

p , 0.001, but false positive rates decreased slightly as the

number of distractors in the display increased, F2,33¼ 8.56,

p ¼ 0.001. The model captured the former effect of set size on

false negative errors (its slope was within the 95% CI of the be-

havioural slope) but not the latter effect of set size on false

positive errors—as objects were added to a display it was

more likely to mistakenly recognize a distractor as a target.

This departure from the behavioural data with respect to

the false positive set-size effect might again be explained by

the model’s generally weaker object detection ability—each
additional object created another opportunity to confuse a

distractor with a teddy bear. But there is another factor poten-

tially contributing to this discrepancy. Human searchers

invariably chose to fixate an object before using it in a

target-present search decision. This may be owing to either

a strategic desire to accumulate higher resolution information

about the object to inform the decision or simply because the

slower manual response created the opportunity for the faster

eye movement to reach the object before the decision was

made. The model produced neither of these behaviours;

it made a target-present decision as soon as its evidence that

an object was a target exceeded a target-present threshold,

even when this evidence was based on peripherally degraded

information. This means that the model sometimes made

its target-present search decision before fixating an object,

where it might have found contra-indicating target infor-

mation that may have prevented a false positive error. To

evaluate this possibility, we analysed only those target-

absent trials in which the model and searchers responded

target present while fixating within 18 of the distractor’s

centre (figure 2b). Consistent with our prediction, the model

made fewer false positive errors when it was fixating on a

distractor immediately prior to its search decision. Moreover,

this post-fixation false positive rate no longer increased with

set size, and in fact now decreased with set size—bringing its

behaviour more in line with human searchers. This suggests
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that if human searchers were to also maximize the speed of

their search decisions, they too might show a positive

relationship between false positive errors and set size.

(b) Set-size effects
Although subtle set-size effects were found in the error data,

the effect of number of distractors is typically more pro-

nounced in measures of RT for response-terminated search

tasks. Our model does not currently make search RT predic-

tions, but it does predict that the number of eye movements

made before a present or absent search decision should

increase with set size. Because number of fixations correlates

highly with search RT [6], this measure can therefore be used

to estimate search efficiency. Previous work has shown that

TAM can produce a range of fixation-based set-size effects

[17], but this was demonstrated for previewed search targets

and very simple O/Q stimuli. The present work asks whether

set-size effects can also be modelled for real-world objects

and in the context of a categorical search task.

Figure 3 plots the average number of fixations leading up

to a correct search decision, as a function of set size. Included

in this measure is the initial fixation at the display’s centre at

the start of each trial. Human searchers showed clear set-size

effects in both the target-present and target-absent con-

ditions—the more objects in the display, the more fixations

were needed to find the target or to conclude that the

target was absent (target present, F2,33 ¼ 20.53, p , 0.001;

target absent, F2,33 ¼ 200.67, p , 0.001). We also found the

commonly observed interaction between set size and target

presence—the slope of the fixations � set-size function was

steeper for target-absent search compared with target-present

search, t11 ¼ 14.02, p , 0.001. The model captured all of these

seminal search patterns. Moreover, and unlike the error

analyses, its numbers of fixations were within the 95% CIs

surrounding each of the six behavioural means. This is an

impressive level of prediction; not only was the model suc-

cessful in predicting the effect of set size on search efficiency,

but it also successfully predicted the actual numbers of fixations

made by human observers as they searched. This finding also

highlights a significant generalization from TAM, showing

that the processes used by the model to produce set-size effects

are robust to changes in stimulus complexity and knowledge

about target appearance.

(c) Search guidance
Figure 3 showed that for the 13 and 20 target-present set-size

conditions, there were fewer eye movements made during

search than half the number of objects in the display, and that

this was true for both human searchers and the model. This pat-

tern can be interpreted as evidence for guidance—had search

been unguided a random direction of gaze to objects would

have resulted in half of the objects being fixated, on average.

However, a more compelling measure of search guidance is the

percentage of trials in which the first eye movement made

during search landed on the target, what we refer to as an

immediate fixation. Yang & Zelinsky [31] conducted a related

analysis for their observers and found significantly above-

chance probabilities of targets being the first-fixated objects in

each of their set-size conditions. Figure 4 plots a re-analysis of

the Yang & Zelinsky [31] data to show the more conservative

immediate fixation rate, together with the first-fixation-on-

target percentages from the model. Trials in which no eye
movement was made during search were excluded.3 Increas-

ing set size resulted in fewer initial eye movements from

searchers landing on the target, F2,33 ¼ 182.19, p , 0.001.

The model’s search also became less guided as objects were

added to the search displays. More significantly, except for

the set size 13 condition where the immediate fixation rate

inched above the 95% CI surrounding the behavioural

mean, the model was able to accurately predict the percen-

tages of trials in which the first eye movement during

categorical search landed on the target. This suggests that

the guidance signal obtained from the categorical target

map, and ultimately from an SVM-based model using

HMAXþCOLOUR features, is comparable to the guidance

signal used by human observers as they searched for a

categorically defined target.

(d) On-object versus off-object fixations and
saccade amplitudes

Further analyses of saccades and fixations were conducted to

obtain a more complete picture of how well the model’s
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behaviour captured that of human searchers. The first of

these analyses looked at on-object versus off-object fixations.

As described in [17,24], TAM is unique among image-based

models in that it does not always make eye movements

that land on objects—will this new, categorical version of

TAM preserve this signature behaviour of its predecessor?

Figure 5 shows histograms of mean distance between gaze

and the centre of the nearest object for all non-initial fixations

made during search. Initial fixations were excluded as these

would conflate this distance measure with the minimum 48
object eccentricity used in the experiment [31]. There are

two patterns of note. First, off-object fixations appeared

quite prominently in the target-present data (row (a)).

Given that objects in this task ranged in size from 18 to 48
[31], the two leftmost bars of each histogram indicate cases

in which objects were fixated accurately. Excluding these

on-object fixations, and averaging over the three set sizes,

leaves 17% of the model’s fixations falling off of objects.

This is nearly identical to the 18% off-object fixation rate

from the human searchers. Second, there were fewer off-

objects fixations in the target-absent data (row (b)) compared

with the target-present data. This, however, reflects the fact

that many more fixations were made on target-absent trials.

Because off-object fixations are most prominent early in

search [24], their relative number decreases as the total

number of fixations increases. Note also that the model’s

on-object fixations tended to be more accurate than those

from human searchers. As also discussed in [24], this is an

unsurprising observation given that the model’s behaviour

is perfectly constrained to the average of the object’s spatial

extent. Humans, although also showing this tendency to

fixate the centres of objects [62], will certainly be more

variable in their behaviour.

A second analysis compared saccade amplitudes between

the behavioural participants and the model. The model’s be-

haviour is initially biased towards the centre of the display

configuration, meaning that its initial eye movements may

be relatively short, shorter than the minimum 48 eccentricity
to the nearest object. To evaluate this detailed prediction of

the model, figure 6 shows histograms of saccade amplitudes

for the first and second saccades (row (a) and row (b), respect-

ively), as well as the average amplitudes for all subsequent

saccades (row (c)). This was done only for the target-absent

data, as saccade amplitudes on target-present trials were

highly influenced by the presence of the target. As predicted,

the model’s initial averaging behaviour was expressed in sac-

cade amplitude, but this was modulated by set size. For the 6

and 13 object displays, there was a clear rightward skew in

the saccade amplitude distributions, whereas for 20 object

displays, this distribution flattened with many more small

amplitude saccades. This general pattern appeared for both

the model and human searchers, and in some sense was to

be expected—larger set sizes would, on average, result in

an object appearing at the minimum 48 eccentricity. More

interesting is the fact that saccade amplitudes smaller than

this minimum distance increased in frequency with set size,

so much so that they accounted for the majority of cases in

the set size 20 condition for both human searchers and the

model. We interpret this pattern as evidence for the centre

biasing behaviour discussed in [24]. Given that gaze started

at the display’s centre, the centroid of the dense set size 20

displays would likely be near this starting gaze position,

resulting in the observed small amplitude saccades. How-

ever, for the set size 6 condition, the sparser display

configurations meant that the centroid was often farther

from the display’s centre, resulting in larger amplitude sac-

cades. For the second and subsequent saccades, this pattern

disappeared, and, indeed, patterns overall became less distinct.

However, there was a relatively consistent bimodality in the

amplitude distributions, suggesting a preference for short

(18–38) and long (58þ) saccades. This pattern, appearing

most prominently in the third (and subsequent) saccade ampli-

tude distributions, suggests the use of two functionally

different types of saccade during search, one that brings

gaze to neighbouring objects in an item-by-item fashion and

another that re-orients gaze to new regions of the display.
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This latter behaviour might serve the purpose of inspecting

remote objects or pockets of items missed during search, or per-

haps to revisit previously inspected objects so as to increase

search confidence (see [63] for a related suggestion).
4. General discussion
A new evolution is underway in the search literature. Search

tasks do not always come with specific targets; very often we

need to search for dogs, or chairs, or pens, without any clear

idea of the visual features comprising these objects. Despite

the prevalence of these tasks, the question of how categories

of realistic targets are acquired by gaze during search has

attracted surprisingly little research. The present work adds

to our understanding of this important topic by extending

an existing model of eye movements during visual search,

TAM [17], to the problem of categorical search. The TAM

model was severely limited in that its representation of the

target, and consequently the target map that it used to

guide its search, required knowledge of the target’s exact

appearance in the form of a picture preview. In the present

model, we replaced this target-specific target map with one

capable of capturing information about the target category.

Using this new categorical target map, we showed that mul-

tiple aspects of search efficiency and guidance could be

modelled. It was able to predict accurately the numbers of

fixations that were made before both target-present and

target-absent search judgements, as well as how this behaviour

changed as a function of the number of objects in the search dis-

play. Similarly, it predicted the percentages of trials in which
the first eye movement during search landed on the target—a

very conservative measure of search guidance—and once

again captured how this behaviour changed with set size.

Finally, the model captured the behavioural expression of

off-object fixations and saccade amplitudes suggestive of sac-

cade averaging. Collectively, these findings demonstrate that

the changes made to TAM in order to accommodate categorical

targets did not sacrifice the model’s ability to broadly capture

the patterns of eye movements that people make as they search.

The fact that this model was able to describe these differ-

ent aspects of search is encouraging. Because it differed from

its predecessor only in its target map and not in any of the

processes used to generate eye movements, this suggests

that these processes are generalizable and robust to changes

in search condition—they work for target-specific search as

well as categorical search. Relatedly, although the features

used by this model differed from those used by TAM, these

HMAXþCOLOUR features were still based on responses

from simple Gabor-like filters. Methods from computer

vision for representing categories of objects typically use far

more complex features, raising the concern that the successful

modelling of categorical search would require sacrificing

assumptions of biological plausibility. This appears not to

be the case. Although the present demonstrations were lim-

ited to only one target class, teddy bears, the favourable

comparisons between model and human search behaviour

in this limited context shows that human-like patterns of

search guidance and efficiency are possible using relatively

simple features. An important direction for future work will

be to demonstrate that these same features can be used to

model the search for other target categories.
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We also compared the model’s target detection abilities

to human target detection performance, and in this regard

the model fell short. Object detection is a subtask of visual

search, one that is often treated separately from the ques-

tions of search guidance and efficiency that dominate this

literature. Indeed, many theories of visual search treat the

problem of target detection as a sort of ‘black box’; once

attention is directed to an object, that object is assumed

to be detected as a target or rejected as a distractor by some

largely unspecified process [15,16]. Although the present

model predicted very human-like effects of set size on false

negative and false positive detections, the error rates were

higher overall compared with human searchers. This result

seemingly contradicts recent work that used the same

HMAXþCOLOUR features and found largely comparable

target detection rates between model and humans [44]. How-

ever, that study used only a set size of four and the results

were obtained outside the context of a model making mul-

tiple eye movements en route to an object. This would

seem to suggest that the increased opportunities for false

positives and false negatives accompanying larger set sizes

during free viewing search cannot yet be modelling at a

human level of accuracy, at least not using the current fea-

tures and methods. Whether this means that modelling

object detection performance in the context of categorical

search will require different and more powerful features

than those needed to model search guidance is a question

that must be informed by future work integrating object

recognition with visual search.

Finally, our work has theoretical implications for categori-

cal search. Empirical work has made clear that gaze can be

guided to categorically defined targets [19,31–33], but these

studies only speculated as to how such guidance was poss-

ible. This categorical version of TAM makes explicit this

speculation in the form of a working computational model.

One method of implementing categorical guidance would

be to assume the existence and use of preattentively available

features coding semantic attributes of the target category.

Upon presentation of a search display, these attributes

could be evaluated in parallel for each object, with gaze

sent to the one having the greatest semantic similarity to

the target (for related suggestions, see [64–66]). Although

the present model does not rule out the possibility that pre-

attentive semantic features are used for search guidance, it

shows that these features are unnecessary and that a far sim-

pler possibility exits. According to this model, the features

used for categorical guidance are purely visual, as has been

claimed for target-specific search [17], with the only differ-

ence between the two being how these features are derived
and where they reside. In the case of target-specific TAM,

these target features were presumed to be extracted by per-

ceptual processes directly from the target image shown at

preview and maintained in VWM for use as a guiding tem-

plate. In the case of categorical TAM, discriminative

features are believed to be learned from previous exposures

to targets and non-targets. These features would likely

reside in visual long-term memory, where they can be

retrieved and used as a sort of categorical target template.

In this sense, visual search may have available two paths

by which a guidance signal might originate, one from infor-

mation about a specific target entering the eyes and another

from information about a categorical target that has been

learned and coded into visual long-term memory. Important

directions for future work will be to determine the conditions

under which one form of target representation is used over

the other, and how these two sources of guidance informa-

tion might be combined. It is also important to determine

the resolution of these categorical target representations.

Work by Maxfield & Zelinsky [33] suggests that templates

for categorical targets are available even for subordinate

and superordinate categories, begging the question of what

the limits are to these categorical representations. Can even

a single previously viewed exemplar be used as a guiding

target template, and are there some categories for which

no target representations are available (and if so, why)?

These, too, will be directions for future work.
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Endnotes
1Note that this limitation is in some sense ironic. Because image-
based models are by definition not object-based, they are in principle
able to explain off-object fixations. The fact that they do not results
from their use of a WTA code to programme eye movements rather
than one using a larger population of activity on the priority map.
2Recent work questions the existence of spatial inhibition of return
[60–61], and to the extent that this is true it would violate this
assumption of TAM—and every other image-based model of
search that relies on inhibition of return to avoid becoming trapped
in local minima on a priority map. However, our current position
is that the literature has not yet settled on the role of spatial inhibition
of return in search and scene viewing, and for this reason, we believe
that it is premature for models to excise this mechanism from their
function.
3Note that these trials were not excluded in the data plotted in fig. 3
of Yang & Zelinsky [31].
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