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The common view of Alzheimer’s disease (AD) is that of an age-related

memory disorder, i.e. declarative memory deficits are the first signs of the

disease and associated with progressive brain changes in the medial tem-

poral lobes and the default mode network. However, two findings

challenge this view. First, new model-based tools of attention research

have revealed that impaired selective attention accompanies memory deficits

from early pre-dementia AD stages on. Second, very early distributed lesions

of lateral parietal networks may cause these attention deficits by disrupting

brain mechanisms underlying attentional biased competition. We suggest

that memory and attention impairments might indicate disturbances of a

common underlying neurocognitive mechanism. We propose a unifying

account of impaired neural interactions within and across brain networks

involved in attention and memory inspired by the biased competition prin-

ciple. We specify this account at two levels of analysis: at the computational

level, the selective competition of representations during both perception

and memory is biased by AD-induced lesions; at the large-scale brain

level, integration within and across intrinsic brain networks, which overlap

in parietal and temporal lobes, is disrupted. This account integrates a large

amount of previously unrelated findings of changed behaviour and brain

networks and favours a brain mechanism-centred view on AD.
1. Introduction
Imagine a 60-year-old man looking for his car after work. He always parks

his car in the same spot on River Street, but is unable to find it there after

finishing work. Lately, he has had frequent problems with finding things, so

he starts to get nervous and tries to recall the morning’s events in more

detail. Being agitated, his recollection is a bit jumbled. He searches unsuccess-

fully for his car along River Street and on neighbouring streets, but repeatedly

finds himself back in the same spot, searching in vain and with increasing frus-

tration. After a while, he phones his wife and asks her to pick him up. She calms

him down and then reconstructs the morning together with him. ‘You bought

some bread in Mountain Street, didn’t you?’ she asks. ‘Oh yes, here is the bag in

my hand, now I remember. I parked the car in front of the store, and decided

to walk to the office because of the sunny weather. I must have overlooked

it before.’

This episode is taken from the report of a man who came to the memory clinic

of the Technische Universität Munich owing to subjective memory problems.

Although not detected by neuropsychological assessment, his wife, friends

and colleagues all confirmed his cognitive problems. In fact, during the follow-

ing 5 years, his memory impairment became more evident. In addition, annual

brain scans revealed the first signs of Alzheimer’s disease (AD), with increasing

parietal hypometabolism and medial temporal lobe (MTL) atrophy.
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A typical neuropsychological account of the patient’s ear-

liest problems focuses on the memory side, and explains his

difficulties with respect to impaired episodic memory due

to MTL pathology. Here, we want to extend this ‘convention-

al view’ for two reasons: first, this analysis does not offer an

explanation for several problems of patients with prodromal

AD, of which the case described earlier showed some repre-

sentative features: for instance, why did this patient overlook

his car although it was clearly visible to him? And why did

his search repeatedly end in that part of River Street with

which he was most familiar? Second, the conventional view

neglects two types of recent findings concerning attention

deficits and extra-MTL brain changes that accompany

memory deficits in very early AD. These novel findings

suggest that there may be a more general, unifying neurocog-

nitive mechanism that potentially contributes to both

memory and attention deficits of patients. Here, we will elab-

orate on this idea, which is centred on impaired neural

interactions within and across brain networks involved in

attention and memory and is inspired by the biased compe-

tition principle. We will describe this view at two levels of

analysis: at the computational level, we suggest that in

early AD, subtle and regionally specific cortical lesions

induce an imbalance both in the perceptual and the

memory domain when representations have to be selected

in the presence of competing alternatives. At the large-scale

brain level, we propose that the disrupted integration

within and across intrinsic brain networks (IBNs), which

overlap within the parietal and the temporal lobes, is the

cause of the imbalance in selection. We will explain both

levels in more detail in §3. In §2, we review recent findings

of attention deficits in very early AD and their relation to

impaired parietal cortex activity. We start with some basic

facts about early AD.
2. Challenges for the conventional memory-
focused view on Alzheimer’s disease:
evidence for lateral parietal lesions, impaired
attention and the impact of parietal lesions
on attentional selection performance in very
early Alzheimer’s disease

(a) Alzheimer’s disease and being at-risk for
Alzheimer’s disease

AD is a neurodegenerative disease that accounts for about

60% of age-related dementia cases; worldwide about 80

million cases of dementia are expected by 2040 [1]. AD is

characterized by several neuropathological features. First,

amyloid plaques are present several years before first symp-

toms arise; plaque deposition starts in neocortical areas and

spreads out to the rest of the brain. Second, neurofibrillary

tangles (tau pathology) and cell loss start in the MTLs and

spread out in limbic areas followed by the neocortex and

the rest of the brain [2]; tau pathology and cell loss start at

about that the same time as first cognitive symptoms

appear. According to the traditional view of AD, first (pre-

dementia) symptoms concern episodic memory, whereas

attentional impairments do not become relevant before the

stage of mild dementia [3]. The current diagnostic criteria
of AD demand the presence of a dementia syndrome [4]; how-

ever, the past 10–15 years of research has enabled clinicians to

now identify subjects at risk for AD at a stage when dementia is

not yet present. These individuals, suffering from mild cogni-

tive impairment (MCI), are characterized by subtle cognitive

dysfunction, which lies between normal age-related cognitive

decline and dementia [5]. The rate of conversion to AD is

approximately 10–15% within 1 year [6] and 19–66% within

the following 3–5 years [7]. In vivo biomarkers such as fluoro-

desoxyglucose positron emission tomography (FDG-PET),

Pittsburgh-compound-P (PiB)-PET (sensitive for amyloid

plaques) or cerebrospinal fluid-based amyloid-b-42 peptide

allow for the identification of those in the MCI population bear-

ing an especially high risk for AD [8]. The term ‘prodromal AD’

describes patients with MCI and at least one positive biomarker

for AD, whereas ‘preclinical AD’ is defined by the presence of at

least one positive biomarker but an absence of cognitive symp-

toms [9]. In the following, we use ‘pre-dementia AD’ as an

umbrella term for both preclinical and prodromal AD.

(b) Evidence for lateral parietal dysfunction in
pre-dementia Alzheimer’s disease

(i) Regional lesions
Owing to the simultaneous emergence of both MTL tau path-

ology and the first cognitive symptoms, tau pathology has

been thought of as the critical pathway of AD for a long

time [2]. However, molecular research of the past decades

revealed that substrates of most genes associated with AD

are critically involved in pathways of amyloid pathology,

such as amyloid precursor protein (APP) or APP-sensitive

enzymes presenelin 1 and 2, which all are linked to familial

forms of AD [3], as well as apolipoprotein A allele 14, which

is associated with sporadic AD [10]. According to these find-

ings, it has been suggested that pathways of aberrant

amyloid peptide processing might be the initial events in the

pathogenesis of AD (the ‘amyloid cascade hypothesis’ [11]).

More specifically, aberrant amyloid peptide processing results

in amyloid peptide accumulation and plaque formation, both

of which are associated with aberrant activity of neighbouring

neurons [12,13]. Plaque deposition seems to start 10–30 years

before the first obvious symptoms appear, mainly in the

areas of the associative neocortex with high levels of both spon-

taneous (i.e. intrinsic) activity and connectivity (the so-called

hubs [14,15]). In vivo PET imaging has demonstrated such a

pattern of plaque deposition in both patients with preclinical

and prodromal AD [8]. In particular, overlapping hypometa-

bolism and plaque deposition have been consistently

observed in patients with MCI, including areas of the lateral

posterior parietal cortex (PPC) [16–20]. Importantly, most of

these lateral parietal areas are known to be essentially involved

in attention functions [21].

(ii) Intrinsic brain network lesions in early Alzheimer’s disease
IBNs are characterized by spatially consistent functional

connectivity of intrinsic brain activity; in other words, robust

large-scale spatial patterns of synchronous ongoing brain

activity define an IBN [22]. Most IBNs cover several distinct

brain regions, such as parts of the ventromedial prefrontal

cortex and the posterior cingulate cortex in the case of the

default mode network (DMN). Remote IBN areas synchronize

in a frequency range of 0.01–0.1 Hz. Beyond their anatomical
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Figure 1. Selective impact of MCI on intrinsic brain networks. (a) Patterns reflecting areas of significant intrinsic functional connectivity (iFC) of resting-state fMRI
activity (blood oxygenation level-dependent signal, one-sample t-test, p , 0.05 FDR corrected). In the first row, the pattern reflects the default mode network
(DMN), the pattern in the second row reflects a bilateral attention network (ATN), (i) data derived from 16 healthy elderly, (ii) data from 24 patients with MCI,
(iii) corresponding glass brain projection for all subjects). (b) (i), pattern of reduced iFC in the DMN of patients, (ii), reduced iFC in the ATN of patients (two-sample
t-test, p , 0.05 FDR-corrected). (Adapted from Buckner et al. [24].) (Online version in colour.)
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extent, IBNs differ with respect to their levels of intrinsic

activity (with the highest levels in the DMN, see [23]) and

their level of connectivity with other networks, with parts

of some networks acting as ‘hubs’ for inter-network syn-

chronization (with the DMN and attention networks having

the strongest ‘hubness’, see [23,24]). Because IBNs are consist-

ent across persons, states, development and ageing, and

even species [25], they constitute a basic form of the brain’s

large-scale organization.

Early AD appears to be associated with selectively

disrupted intrinsic functional connectivity (iFC) of IBNs, par-

ticularly in the DMN (figure 1) [26,27]. The DMN covers

frontoparietal midline structures, parts of lateral temporal

and parietal cortices and the MTL. It is active during self-

focused processes such as remembering and deactivates

during world-focused processes such as allocating attention

to the environment [23]. Particularly, in very early AD,

regions of plaque deposition and hypometabolism overlap

with the DMN and predict iFC disruptions [16,28]. It has

been suggested that elevated intrinsic activity of the DMN

predisposes for amyloid pathology in AD, marking AD pri-

marily as a disease of the DMN [15,29]. However, beyond

the DMN, very recent imaging studies have demonstrated

disrupted iFC also within a lateral frontoparietal IBN, even

in prodromal stages of AD [27,30–32]. Such lateral IBNs are

called attention or central executive networks, because the

areas they cover contribute to attention and cognitive control

processes [25,33]. Impaired iFC in such attention networks

corresponds with aberrant structural connectivity within

these networks [34]. Furthermore, in prodromal AD, there

seems to be a close spatial correspondence between plaque

deposition and iFC disruption within attention networks

[35]. In two recent studies in prodromal AD, impaired iFC of
attention networks has been linked to impaired behavioural

performance in a selective attention task (conflict processing

in a flanker task). It was demonstrated, for the first time, that

prodromal AD disrupts effective connectivity within an atten-

tion network during conflict processing. Second, it was shown

that the relationship between task effective connectivity and

resting-state iFC was aberrant in patients [32,36]. In summary,

these studies strongly suggest that even in very early AD

not only the DMN but also lateral frontoparietal attention

networks are disrupted and related to impaired attention

(c) Evidence for impaired visual attention in
pre-dementia Alzheimer’s disease

It is well established that tasks involving a high load on visual

processing—such as visuoconstruction, complex pattern dis-

crimination or visual search—are already affected in early

AD [37–40]. Figure 2 presents an example. During such

tasks, visual information has to be sampled and integrated

across a series of fixations. Therefore, disorders of visual atten-

tion—such as increased interference by distracting visual

stimuli or a spatial imbalance during the inspection of the

visual array—could decisively contribute to unsuccessful

performance (as shown in the example). In fact, several studies

have demonstrated impaired visual attention in early stages of

AD dementia [41–45], and even in pre-dementia AD [42–47].

Importantly, single cases with AD dementia have been

reported to show a pathological spatial preference towards

one visual hemi-field [48] that is comparable with the chronic

bias of spatial attentional weighting found in patients with

visual hemi-neglect following damage to (mostly the right-

hemispheric) parietotemporal areas [49–52]. These results are

in line with the finding that neurodegeneration is often



Figure 2. The right-hand side of the figure shows the copy of the Rey complex figure ( presented on the left-hand side) by a 58-year-old-male patient with
prodromal AD. His performance proves the presence of a visuoconstructive deficit. Besides the displacement of figure details, the patient also clearly neglects
parts of the right half of the figure.
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asymmetric, particularly in temporoparietal regions, in

patients with AD [53–58].

To analyse in more detail which visual attentional subpro-

cesses are impaired in patients and how these changes relate

to underlying computational principles of biased compe-

tition, a series of more comprehensive studies on basic,

spatial as well as non-spatial components of visual attention

were carried out. The conceptual framework used in this

series was the neural interpretation of Bundesen’s theory

of visual attention (TVA; [59–61]). TVA is a mathematical

model with strong relations to the biased competition view

of visual attention [49]. On this view, visual objects are

processed in parallel and compete for selection, i.e.

conscious representation. In TVA, selection of an object is

synonymous with its encoding into a visual short-term

memory (vSTM) store. This store typically has a limited

capacity of around four items in normal participants

[62,63]. Competition for selection is decided according to a

speed criterion, i.e. those objects with higher processing

speed have a higher probability of becoming encoded into

vSTM, until the vSTM store is filled. Objects receiving

higher attentional weighting (e.g. due to their spatial position

or due to their task relevance) gain a speed advantage com-

pared with other competitors and are therefore more likely

to be selected. In this way, TVA models the visual selection

of objects on the basis of several parameters reflecting aspects

of both specific (e.g. spatial or task-related) weighting of

attention and general capacity aspects of attention (visual

perceptual processing rate and vSTM storage capacity). The

neural interpretation of TVA (NTVA [61]) holds that atten-

tional weighting (i.e. the allocation of limited capacity) is

reflected by a dynamic remapping of receptive fields of

those neurons that are representing the perceived object. Fur-

thermore, NTVA suggests that the processing speed of an

object is determined by the number of these neurons

(which is related to the attentional weight of the object com-

pared with other objects in the display) and the activation

level of those neurons (which is linked to a perceptual bias

for important categorizations). In our account, the concept

of biased competition will be linked only to the allocation

of attentional weights.

The aim of our TVA-based studies was to use this frame-

work to investigate in more detail which of the spatial and

non-spatial components of visual attention are already

affected at the stage of prodromal AD. This was performed
by establishing, in each participant, individual estimates of

latent attentional parameters that underlie the selective pro-

cessing of visual information, as conceptualized in TVA.

The method applied was partial report of briefly presented

letters, where subjects have to report red target letters only,

while ignoring green distractor letters. TVA-based modelling

of the probability of correct target letter report, both in the left

and the right visual hemi-fields, provided estimations of

attentional parameters reflecting top-down-related and

spatial weighting [50,64].

The results demonstrated specific changes to the par-

ameters relevant for the attentional weighting of incoming

information, even at the pre-dementia stage of AD [65].

More precisely, the efficiency of top-down-controlled prioriti-

zation of relevant over irrelevant information was already

reduced at the MCI stage, and further deteriorated in AD

participants. These results suggest that very early AD is

associated with changes in competitive attentional selection

processes. The impaired integration within and across lateral

frontoparietal attention networks might lead to this inability

to prioritize relevant over irrelevant visual information.

Furthermore, the distribution of spatial attentional weights

across the two hemi-fields was already unbalanced in

patients with MCI, and was even more lateralized in partici-

pants with AD. At the group level, the lateralization in MCI

and AD patients primarily favoured the left visual field.

However, at the single-case level, evidence was found for a

right-sided as well as a left-sided attentional bias. These spatial

attentional asymmetries were interpreted as resulting from

very early temporoparietal interhemispheric asymmetries. Pre-

dominant neurodegeneration within one hemisphere might

cause an abnormal spatial bias inducing a constant tendency

to favour stimuli from one visual hemi-field over the other.

(d) Relationship between parietal damage and
impaired attentional weighting

To test directly whether temporoparietal lesions of early AD

cause a spatial imbalance of attentional weighting, patients

with prodromal AD were assessed by FDG-PET and a TVA-

based partial report paradigm. An index for the relative distri-

bution of attentional weights derived by Bundesen’s TVA

(attentional weight for left hemi-field divided by the sum of

attentional weights for both hemi-fields) was taken and correl-

ated to a mathematically identical index which describes the



0.54

wl

M
l 

SP
L

M
l 

 IP
L

M
l 

A
ng

-S
M

G

M
l 

pS
T

G

0.4 0.5 0.6

wl

0.4 0.5 0.6 0.7 0.8

wl

wl

L R L R

L R L R
0.4 0.5 0.6 0.7 0.8

0.4 0.5 0.6 0.7 0.8

0.52

0.50

0.48

0.46

0.44

0.54

0.52

0.50

0.48

0.46

0.44

0.54

95

patient HS patient MM

FD
G

-P
E

T

FD
G

-P
E

T90

85

80

75

95

90

85

80

75

FD
G

-P
E

T

FD
G

-P
E

T

95

90

85

80

75

95

90

85

80

75

0.52

0.50

0.48

0.46

0.44

0.54

0.52

0.50

0.48

0.46

0.44

Figure 3. Metabolic biases Ml correlate with spatial bias wl. In analogy to spatial bias wl, we defined an index for the lateral bias of metabolism (Ml) of a given
brain region as Mright/(Mright þ Mleft), where Mright or Mleft represents the mean metabolism in a right- or left-hemisphere ROI. Metabolic biases Ml ( y-axes) of the
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distribution of effective neuronal activity measured by FDG

activity across hemispheres (regional activity in the right

hemisphere divided by the sum of the activity in homologous

regions of both hemispheres). These analyses revealed that

the bias of spatial attentional weights was significantly correl-

ated to the bias of activity within two areas of the lateral

parietal spatial attention system, i.e. within the intra-parietal

lobule and the angular/supramarginal gyri of both hemi-

spheres (figure 3). Importantly, these areas were characterized

by significant hypometabolism indicating subtle AD-induced

lesions [20]. In terms of NTVA [61], this suggests that in patients

with prodromal AD, a left-sided spatial bias is the result

of a permanently decreased competitiveness of processing

units responsible for the right hemi-field (compared with

left hemi-field units). At the neural level, the competition

between neuronal populations encoding objects in different

hemi-fields seems to be biased in favour of right-hemispheric

neurons because of a larger loss of effective neurons in the

homologous left-hemispheric populations (see [20] for a more

comprehensive discussion).
(e) Interim summary: parietal damage in prodromal
Alzheimer’s disease leads to changes in the biased
competition of visual attention

We have presented empirical evidence that model-based

assessment tools for attentional functions reveal early

changes in prodromal AD, especially in visual selection

[65,66], which are correlated to activity changes in posterior

parietal areas [20,32]. Thus, we suggest that localized neural

degeneration within lateral parietal systems and impaired

integration within and across frontoparietal brain networks
leads to changes in biased competition within the visual

system, i.e. both the ability to focus on currently relevant

visual target information when presented with additional

distracting information, and the ability to optimally balance

spatial attention when searching for objects within the

visual field. This behavioural consequence might be triggered

by an underlying bias of selective weighting processes within

functionally connected brain areas resulting from impaired

interaction between corresponding neural units.
3. A biased competition account of cognitive
symptoms in early Alzheimer’s disease

(a) Biased competition changes as a unitary principle of
early cognitive symptoms in Alzheimer’s disease

In this section, we will consider whether impaired biased com-

petition within and across brain regions may not only be

responsible for the behavioural deficits in visual attentional

selection. Rather, it might also play a more general role for

the cognitive impairments in AD, including early episodic

memory deficits. We suggest that it could be worthwhile to

consider how the neural lesions in early AD give rise to a

variety of cognitive symptoms depending on the affected

brain area, even though the nature of the cognitive impairment

may be explained by a single neurocognitive mechanism. More

specifically, lesion-induced changes in biased competition

among interacting brain areas may lead to analogous impair-

ments in different cognitive domains such as memory and

attention. First, we will analyse the type of episodic memory

deficit in early AD. Then, we will describe new insights into

the role of the parietal lobes for episodic memory, allowing
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us to explain our account at the level of neural implementation

(i.e. the level of large-scale brain networks) and of computation

(i.e. adapting the biased competition principle for both

memory and perception).

(b) What is the precise nature of episodic
memory deficits in the prodromal phase of
Alzheimer’s disease?

In order to theoretically classify the earliest episodic memory

deficits in AD, it is important to differentiate between two

dissociable phenomena underlying recognition judgements,

recollection and familiarity [67–69]. Patients with prodromal

AD seem to suffer from a relatively selective impairment in

recollection. For example, when presented with a visual item

recently encountered (such as a repeatedly displayed picture

of an object or a word in a recognition memory test), they

might be unable to vividly retrieve, in a conscious and con-

trolled manner, the specific contextual information about this

item and about the event in which they encountered it.

Owing to this deficit, they tend to rely on familiarity more

than healthy participants. Familiarity is a more general

non-contextual, automatic feeling of prior exposure which is

relatively spared in prodromal AD ([70–75]; but see [76]).

Thus, when searching for his/her car in a street, a person

with first symptoms of AD (like the patient from our example

mentioned in §1) might be guided by the familiarity of

the visual environment to a stronger degree than a healthy

person. The inability to recollect the particular visual scene

encountered in the morning hours might then lead

to repeated attempts to search at the most familiar location,

i.e. where the car is usually parked.

(c) Level of implementation: large-scale brain
network interaction

(i) Role of posterior parietal cortex for episodic memory retrieval
Lateral parietal cortex lesions do not lead to retrograde or

anterograde amnesia as is known from patients with MTL

lesions [77], and also considered as the hallmark of AD-

related memory symptoms. However, they seem to induce

more subtle impairments during free recall of episodic

memory events (see [78] for a comprehensive review). For

example, a single-case report study on a patient with bilateral

posterior parietal damage following closed head injury [79]

who was not able to spontaneously recall autobiographical

incidents from his life prior to the accident, suggested

that the integrity of lateral parietal cortex is critical for

the conscious retrieval of episodic memory. Using more

sophisticated episodic memory paradigms, it was shown

that patients with bilateral ventral parietal lesions have im-

poverished autobiographical memory reports with a lack of

detail (e.g. specific perceptual features). However, when

recall is guided by explicit probe questions about memory

details, no impairment is found [80]. Similar results were

obtained in a source memory test [81]. Here, patients with

unilateral left or right-sided lateral parietal lesions reported

not to have the subjective impression of remembering pre-

viously encountered items but performed normally when

required to judge the familiarity with the stimulus material.

To summarize, evidence is accumulating to suggest that certain,

multimodal, episodic memory retrieval deficits are found after
parietal damage. They occur especially in conditions with low-

retrieval support which require top-down-controlled memory

search for previous events. Interestingly, these deficits bear

striking similarities to the earliest episodic memory retrieval

deficits seen in AD.

The PPC has direct anatomical connections to the dorsolat-

eral prefrontal cortex, temporal cortex and medial parietal

cortex, as well as to the entorhinal, parahippocampal and

hippocampal structures of the MTL [82]. Coherent spontaneous

activity implies a hippocampal–parietal functional network

[83]. Parietal activations are seen frequently in fMRI studies of

episodic memory, for example, in recollection versus familiarity

conditions and in source memory versus item memory tasks

[84,85], i.e. especially in the conditions of explicit memory

that require the intention to remember and to voluntarily

direct attention to memory contents (see [86]).

On the basis of these findings and a comprehensive review

of the neuropsychological and functional imaging literature,

Cabeza et al. [86] proposed that the lateral PPC is critical for

attentional processing for remembered episodic information

during memory retrieval in a similar vein as it is for incoming

sensory information during visual perception (‘attention-to-

memory (AtoM) model’, but see [84,87] for related ideas). For

the visual domain, it is well established that the PPC is critically

involved when spatial attention has to be intentionally

redirected, because a target stimulus cannot be accessed auto-

matically, such as after presentation of an invalid cue [88].

Comparably, for the memory domain, the PPC is thought to

play a decisive role in indirect episodic retrieval, when a target

memory is not automatically elicited by a retrieval cue, but

has to be recovered by effortful memory search processes. More-

over, distinct functions are attributed to the dorsal and ventral

PPC, respectively, complementary to their differential roles in

visual attention [89]. In the AtoM model, it is assumed that

top-down scheduling of attentional resources during effortful

memory searches is a function of the dorsal PPC, whereas the

ventral PPC is captured, in a bottom-up manner, by automati-

cally elicited and thus directly retrieved memories mediated by

MTL that signal the necessity of attention shifts. Hence, accord-

ing to this view, the dorsal PPC exerts a top-down influence on

MTL-activity, while the ventral PPC is driven by the MTL (and

dorsal PPC) in a bottom-up manner. Although some studies

have questioned the exact anatomical overlap of regions

involved in the control of attention and memory [90,91],

recent neuroimaging and lesion-mapping evidence supports

the AtoM model view of the dorsal PPC as a domain-

general top-down controller for biased memory retrieval

and attentional allocation [92–97].

(ii) A network perspective on attention and memory deficits in
early Alzheimer’s disease

Relating the neuroanatomical considerations of the AtoM model

to AD, we predict that the lateral parietal damage in prodromal

AD reviewed above plays a decisive role not only in visual

perceptual processing but also in memory retrieval. We have

already concluded that the dorsal PPC is impaired in

prodromal AD, and that this impairment should lead to difficul-

ties of top-down control. This could also explain the memory

deficits of prodromal AD: if the dorsal PPC cannot control the

MTL to retrieve currently relevant episodes from memory,

then a patient’s recollection will be driven by the bottom-up

familiarity signals which primarily require the MTL (and

possibly the ventral parietal cortex) but not the dorsal PPC.
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Importantly, the involvement of the domain-general dorsal

PPC control network in AD can be best understood via the con-

cept of IBNs. Neuroimaging in healthy humans suggests that

the dorsal PPC is part of neuroanatomically and functionally

distinct networks centred on the superior parietal lobule (and

possibly parts of the intra-parietal sulcus [25,98,99]), specifically

the dorsal attention network and the central executive network

[89,91]. These two networks are distinct from the ventral atten-

tion network, which covers the ventral PPC, including the

temporoparietal junction and is associated with bottom-up

attention [89,100,101]. In spite of their independence, these net-

works can connect to different domain-specific areas

depending on current task demands, such as the MTL and ven-

tral DMN during memory retrieval [102], and visual cortex

during externally oriented tasks [103,104]. The iFC among

these networks is disrupted in early AD [27,30,31,105], and

parts of these networks are affected by amyloid plaque depo-

sition and hypometabolism in early AD [16,20]. The

prevalence of these lesions in early AD supports the view that

impaired interactions among these attention networks are rel-

evant for patients’ impaired memory and visual attention.

Next, we will propose for the computational level that the

same underlying imbalance of attentional weighting pro-

cesses that have been demonstrated for selective visual

information processing might also play a central role in the

earliest episodic memory retrieval deficits in AD.

(d) Level of computation: biased competition principle
in memory and perception

A computational basis for specific predictions about the

relationship between changes in visual attention in AD that

were found by TVA-based assessment [20,61] and changes

in episodic memory is provided by Logan’s instance theory

of attention and memory (ITAM; [106]). ITAM suggests that

attention as well as memory depends on one and the same

choice process which can be modelled as a parallel race

between competing alternatives. In accordance with the

TVA model [59], ITAM assumes that attentional selection

into vSTM and categorization are simultaneous choice pro-

cesses that follow the assumptions of a biased competition

model [49]. The former is an outward choice between percep-

tual objects presented in the environment and the latter an

inward choice among categories available in memory. ITAM

assumes that objects are represented in a multi-dimensional

similarity space and that similarity between objects is an

(exponential) function of distance within this space. In

attentional selection, the race is driven by similarity between

displayed objects and multi-dimensional target represen-

tations. In memory selection, the race is driven by similarity

between a displayed object and category exemplars of alterna-

tive memory categories. Attentional weighting processes

determine the outcome of the object as well as the category

selection race. In the healthy brain, biased competition is

assumed to optimize memory selection by allocating atten-

tional weights preferentially towards relevant dimensions

in a multi-dimensional similarity space. Attended dimensions

are ‘stretched’, so that exemplars of these dimensions are more

distinguishable from each other. At the same time, owing to the

limited amount of available attentional capacity, unattended

dimensions are necessarily ‘shrunk’.1

Although specific tasks (such as identification, classifi-

cation or recall) might differ with respect to optimal weight
allocation, the central prediction that follows for prodromal

AD, i.e. for a brain state characterized by reduced efficiency

of top-down control [65], is straightforward: these patients

should suffer from several deficits in parallel. That is, they

should be similarly less efficient in favouring relevant over

irrelevant dimensions during memory retrieval as they are

during visual selection. As in the visual domain, the choice

process is triggered to a larger degree by bottom-up saliency

also in the memory domain, in this case, within a multi-

dimensional memory space. Thus, salient memory events,

such as, for example, highly familiar visual scenes that have

been encountered many times before, get more likely to inter-

fere with the selection of a particular episodic visual memory

instance that has been encountered only once. Therefore,

owing to the inability to allocate, via top-down control, atten-

tional weights preferentially on memory dimensions relevant

for events encountered during that same day, the patient with

prodromal AD in our example instead retrieved images of his

car parked in a visual scenery he has seen many times before.

An external (attentional) cue (given by his wife during the

phone call) which activates the correct memory dimension

leads to a competitive advantage of this dimension and to

correct memory retrieval.

In this way, the computational assumptions of TVA and

ITAM provide a basis to consider AD-related deficits as sig-

nificant changes in attentional bias parameters that affect

both perceptual and memory processing.
4. Conclusion: unified biased competition
account of visual attention and memory
deficits in Alzheimer’s disease

Combining the AtoM model [86] with ITAM [106] offers the

opportunity for a unifying neurocognitive account of both

memory and attention deficits in AD that is based on the

biased competition principle. More precisely, this account

explains the memory deficits emerging in prodromal AD

within an attention framework and its neurocognitive mech-

anisms. In this way, when considering prodromal AD, the

focus shifts from a strict ‘memory deficit’ view to an ‘atten-

tional weighting deficit’ view of early AD.

In support of the latter view, we suggest that the same

cognitive mechanism underlies deficits in different functions.

While so far we have presented evidence for an inefficiency

in task-specific allocation of attentional weights in visual selec-

tion in prodromal AD [20,65], we assume that similar weight

allocation changes also impede the task-based selection in

memory retrieval. As a result, patients in the prodromal

stage of AD are less efficient in prioritizing the most relevant

memory categories during retrieval processes. Thereby, there

is an increased probability that non-relevant information

from multiple dimensions in memory space is pre-activated

so that multiple competitors enter the mnemonic race and a

clear-cut access to the most relevant category is rendered

impossible. In case there is high similarity between exemplars

of different memory categories, competition may in fact even

be so strong as to prevent access to the relevant target category.

Then, the affected individual will fail to remember the identity

of a presented object unless further retrieval cues are provided.

The ‘attention-centred’ perspective on early AD is also a

‘brain mechanism-centred’ one: it suggests that distributed
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and progressive neurodegeneration affects interactions of dis-

tant brain regions, resulting in changes of biased competition

in neural activity between these regions. This perspective is

complemented by an IBN view on AD which fits the current

assumption that AD is a disconnection syndrome [109]. It

also links network-level explanations of neurodegeneration

to varieties of cognitive dysfunction, allowing not only for

new explanations for different variants of AD but also for a

novel dementia taxonomy similar to the one introduced by

Seeley et al. [110].

The change in perspective can foster a genuine neurocogni-

tive description and understanding of the neurodegeneration

related to AD. This may not only significantly enhance the pre-

dictive value of assessment early in the disease but also

represent a critical source of evidence for theories of normal

information processing. Testing patients with documented

changes in the biased competition process of attentional selec-

tion offers a critical methodology in order to test theoretical

assumptions on visual attention and mnemonic processing

that are made by cognitive models. For instance, the critical

assumption of the ITAM model [106] that attentional selection

and memory categorization rely on the same competitive race,

could be tested by the use of paradigms that allow us to quan-

tify parameters for attentional selection [50] as well as memory

categorization [111]. Furthermore, the neuroanatomical AtoM

model [86] could be tested by the assessment of patients with

relatively homogeneous neurodegeneration within the parietal

lobe system when neuroscientific methods (e.g. of brain

connectivity measures in AD [20]) are combined with the

assessment of attentional as well as mnemonic processing.
5. Caveats
In presenting our ideas, it should be emphasized that we by

no means want to neglect the severe memory storage deficits

in AD patients, i.e. forgetfulness [112]. For example, Ivanoiu

et al. [113] have shown that prodromal AD is particularly
linked to delayed recall deficits which persist in spite of

reminder cues. In addition, in predicting conversion to AD,

it is specifically amnestic MCI which is a good predictor [5].

We do not reject the amnestic nature of early AD/MCI.

We merely suggest that a substantial portion of patients

subsumed under the global label of ‘amnestic MCI’ have

memory problems that are more attentional in nature, in the

way we have specified in our paper. In our opinion, this possi-

bility may have been underestimated hitherto, and therefore

not specifically investigated in amnestic MCI subjects. As a

result, whether the attentional biased competition view on

memory has a potential for predicting conversion of MCI

patients that is comparable with the traditional ‘amnestic’

view, is currently an unresolved issue and an empirical ques-

tion. If it is true that parietal dysfunction is present at least as

early as MTL pathology, and the parietal lobe is involved in

memory processes, then memory problems of parietal origin

should be detectable from early on, and may independently

or additionally contribute to the memory problems of AD

patients. Thus, specific memory problems may already prevail

before a strict storage deficit has fully developed.
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Endnote
1Proper selection between competing representations, which is the
central assumption of the biased competition approach, requires
that these representations are activated in a stable and reliable
manner. Put differently, if representations are less reliable and
stable, then they will be less distinguishable, and competition
between them will be amplified. As a result, selection will be rendered
more difficult. Modulatory neurotransmitter effects, resulting from the
corticopetal projections of, for example, acetylcholine and noradrena-
line, will certainly play a decisive role in this regard [107,108].
However, a neurochemical discussion of attentional capacity is
beyond the scope of this paper and also appears dispensable in
advancing the basic ideas of our view.
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