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Abstract
A population growth model that represents the growth trajectories of individual subjects is critical
to study and understand neurodevelopment. This paper presents a framework for jointly estimating
and modeling individual and population growth trajectories, and determining significant regional
differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use
non-linear mixed effect modeling where temporal change is modeled by the Gompertz function.
The Gompertz function uses intuitive parameters related to delay, rate of change, and expected
asymptotic value; all descriptive measures which can answer clinical questions related to growth.
Our proposed framework combines nonlinear modeling of individual trajectories, population
analysis, and testing for regional differences. We apply this framework to the study of early
maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional
differences between anatomical regions of interest that are known to mature differently are
analyzed and quantified. Experiments with image data from a large ongoing clinical study show
that our framework provides descriptive, quantitative information on growth trajectories that can
be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of
growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

1. INTRODUCTION
Longitudinal imaging studies with repeated scans per subjects require appropriate analysis
procedures that take into account the special nature of such study designs. These include
correlation due to repeated measures, often with unbalanced spacing due to acquisitions at
different time points and missing data at certain time points. Early brain development is
characterized by large initial growth that flattens off, which favors nonlinear growth
modeling. Typical clinical questions are addressing growth trajectory characterizations such
as delayed or advanced growth, accelerated or slowed growth, or the question if groups can
reach the same level of maturation if they have a delayed start. Diffusion Tensor Imaging
(DTI) provides a unique opportunity to assess the tissue structure of brain white matter in
vivo, and has great potential to provide insight into early development. Previous studies
have mostly focused on morphometry changes such as volume of gray and white matter,
cortical thickness, and shape [1, 2, 3, 4]. Recent methods have also been developed to
combine shape and appearance [5]. There is also considerable research on DTI, however
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these are cross sectional studies and/or studies on children older than 2 years [6, 7]. While
longitudinal DTI of infants covering the few years of life are becoming available, analysis
methodologies for assessing longitudinal changes of individuals and populations, to our
knowledge, are limited.

In this study, we focus on developing longitudinal models for diffusion parameters which
are obtained from repeated scans of children imaged at 2 weeks, 1 year and at 2 years of age.
DTI indices have been shown to provide relevant information about brain maturation and the
underlying tissue changes as they indicate water content and myelination [2]. Describing and
analyzing the non-linear changes of white matter are difficult as regions in the brain begin to
mature at different times, with different rates [6]. We quantify these differences using
Gompertz functions that provide an intuitive parametrization representing delay, growth,
and saturation rate in each region. In contrast to previous studies, we analyze growth
trajectories based on an explicit growth function and a nonlinear mixed effect modeling
scheme [8]. Diffusion changes are modeled in a hierarchical fashion, with the global
population trend as a fixed effect and individual trends as random effects. Mixed effect
models are well suited for longitudinal data, where each time series constitutes an individual
curve. Classical statistical approaches assume each observation is independent and
identically distributed (i.i.d.), which are not appropriate for repeated measures. We apply our
framework to compare a set of white matter regions that are known to have different growth
patterns and myelinate at different time periods. Quantitative analysis of these regions will
provide further insight into brain maturation process and allow us to predict subject-specific
growth trajectories with the potential of detecting pathological brain development related to
brain disorders. We show that the statistical quantitative analysis results in parameters that
use the clinician’s vocabulary for assessment of growth trajectories.

2. METHOD
Non-linear Mixed Effects Modeling

We use a non-linear mixed effects (NLME) model to analyze the longitudinal DTI data.
Compared to cross-sectional regression analysis which uses least-squares fitting, this is a
true longitudinal model where the average of all individual trajectories is the estimated
population mean. As is shown in (Fig. 1) the cross-sectional model does not capture any
individual trends and can give misleading estimates if interpreted as the “average” trend.
The mixed effect model is also robust to outliers as it accounts for the variabilities within
individuals. In this subsection, we present a review of the non-linear mixed effects model.
We will present our approach for analyzing longitudinal DTI data using NLME in the next
subsection. In the mixed effects model, the observed data is assumed to be a combination of
both fixed effects, parameters associated with the entire population or at least within a sub-
population, and random effects that are specific to an individual drawn at random. In non-
linear mixed effects models, some or all of the fixed and random effects parameters present
nonlinear responses. This makes nonlinear mixed effects model a natural and common
choice for longitudinal data. We use the NLME model proposed by Lindstrom and Bates
[8], where the jth observation on the ith individual is modeled as:

(1)

where M is the number of individuals, ni is the number of observations on the ith individual,
f is a nonlinear function of the covariate vector tij and parameter vector φi, and eij ~ N(0, σ2)
is an i.i.d. error term. The parameter vector can vary among individuals. This is incorporated
into the model by writing φi as
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(2)

β is a p-vector of fixed effects, and bi is a q-vector of random effects associated with
individual i with variance-covariance Ψ. Ai and Bi are design matrices.

Regional Analysis of Longitudinal DTI Patterns
We perform quantitative analysis on a population of longitudinal DTI data within
anatomical regions. We model DTI features as non-linear mixed effects, which combines
regional population trends and individual subject trends. For this section, we assume that DT
MR images have been registered to a standard reference space. The primary goal for our
analysis of growth trajectories is to determine whether patterns of growth are different
among different regions, and if we can provide a descriptive, intuitive parametrization for
each region that can be compared to other regions of brain. As the human brain undergoes
rapid changes in the first year of development and slows considerably in later years, we
model early development patterns in DTI using the Gompertz function. Specifically, we
model temporal growth for an individual i, time points tij, and region r by nonlinear mixed
effect model of the Gompertz function

(3)

where the mixed effects are , the fixed effects,

, for region r represent mean values of parameter  in the population

and the random effects for each subject i, , explains individual
variation from the mean. In this model, p and q are same size vectors, and the design
matrices A and B are identity. We note that an alternative representation for Gompertz
function is

This parametrization intuitively decomposes the mean of temporal changes of a population
as saturation (β1), delay (β2), and speed (− log β3) as shown in Fig. 2.

We obtain mixed effect model parameters using maximum likelihood estimation (MLE) on
the marginal density of the response y: p(y|β, Ψ, σ2) = ∫ p(y|β, b, σ2)p(b|Ψ)db There is
generally no closed form solution, so we use the approximation method proposed by
Lindstrom and Bates [8], using the nlme function in R1, to obtain model parameters, β, b,
Ψ, σ. Once all the model parameters are estimated, we can conduct hypothesis testing and
determine the significant modes of longitudinal changes in terms of asymptote, delay, and
speed between regions. With N number of regions, we accomplish this through 
pairwise fitting of nonlinear mixed effect model and test for fixed effect significance
through t-test; corrected for multiple comparisons using Bonferroni correction. The
parameters that are found to be significant can then be interpreted as the distinguishing
feature between the longitudinal patterns of the two regions.

1http://r-project.org
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3. RESULTS AND CONCLUSIONS
Validation on Synthetic Data

We generated synthetic longitudinal data to ensure our analysis methodology can capture
underlying differences as presented in the synthetic data. Random data representing two
regions is generated, and we verify that the overall trend of the subjects and each subject’s
specific growth trajectory matches the known ground truth. We also verify that the
Gompertz parameters are significantly different between the two regions in a way that
matches the synthetic model. Synthetic longitudinal data are generated following equation 3
where βR1 = [1, −2, .989], Ψ = diag(0.042, 0.022, .0022) and σ2 = 0.0012. Values for four
time points of three subjects are generated while keeping some of the fixed parameters of
βR2 the same as βR1. We then vary one of the fixed parameters of R2 and perform three
tests: βR2 = [1.1, −2, .989], βR2 = [1, −1, .989], βR2 = [1, −2, .992], and test for significant
differences between two regions. Fig. 3 summarizes our experimental results. The results
demonstrate that our approach can detect significant discriminatory features of growth
patterns in a pair of regions in terms of Gompertz parameters.

Analysis of Clinical Data
We perform analysis on a set of repeated scans of eight healthy subjects scanned at
approximately 2 weeks, 1 year and 2 years of age. The images include T2W and DTI. We
apply the unbiased atlas building framework [9] to the set of T2W images at 1 year to obtain
spatial mappings between each subject through the estimated atlas. Scans of other time
points of each subject are registered to this atlas via linear and nonlinear transformations 2.
Tensor maps are calculated for each DTI scan, and are registered to the atlas using
transformations obtained by registering the DTI baseline (B0) images to T2W images. In
this study, we extract the mean, axial, radial diffusivity, and fractional anisotropy features
from the registered tensors, , AD = λ1,  and

 where λi are the sorted eigenvalues of the tensor. For regional
analysis, we select four anatomical regions in the unbiased atlas that are known to mature in
distinctly different patterns and determine the characteristics of these differences. Since all
DT images are registered to a common coordinate space, regions determined in this space
can be automatically transferred to each individual image. We use regions defined by Mori
et al. [10] that were registered to our unbiased atlas and modified through binary erosion for
improved accuracy. The selection of regions in the atlas space allows automatic partitioning
of the subjects’ scans into different anatomical regions. Fig. 4 show a summary of pairwise
comparisons of estimated population means for Genu, Splenium, ALIC, and PLIC regions.
We characterize the differences in an intuitive way using Gompertz asymptote, delay and
speed parameters. When β1: |R1| > |R2|, expected value of diffusion parameter for R1 is
higher than R2 after early development. When β2: |R1| > |R2|, region R1 is delayed in
maturation compared to R2. β3: |R1| > |R2| indicates accelerated growth for R2 compared to
R1.

Conclusions
This paper presents a statistical methodology for characterizing longitudinal patterns of
tissue properties in white matter regions. Our approach provides descriptions of the
significant discriminating features of growth patterns, within a pair of regions or across
patient groups, in terms of the Gompertz asymptote, delay, and speed parameters; a
representation where maturation changes and differences can be interpreted in natural

2http://www.doc.ic.ac.uk/~dr/software
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language terms. This provides an intuitive description of longitudinal trends, with potential
for analyzing biological progression and change from normal in neurodevelopment, aging,
disease progression or recovery. This is in contrast to current modeling and analysis of
developmental and degenerative processes where testing for regional or group differences
does not directly reveal the type, nature and time course of differences. The proposed
analysis can be extended to arbitrary number of regions, performed on other measurements
such as tissue property features extracted from structural MRI, and be extended to
multivariate growth functions similar to a strategy described in [4]. Since the analysis is
based on the regions of interest, we expect the method to be robust to misregistration, but
future validation of the registration framework is needed. We also plan to estimate the p-
value based on Markov chain Monte Carlo sampling from the posterior distribution of the
parameters rather than t-test.

The experimental results from early development of white matter reveal developmental
patterns of individual subjects, whole groups and differences across anatomical locations
and across groups (not shown in this paper). E.g., FA of ALIC is delayed if compared to
PLIC at birth, mostly explained by larger RD at birth but both converging at 2 years (Fig. 4).
FA of splenium is higher than genu throughout the observed time interval, presenting same
MD but explained by lower RD and higher AD. Delay parameter of RD best explains the
temporal sequence of myelination in these selected regions and confirms previous
histological findings [11]. Coupled with cognitive and behavioral scores, such quantitative
analysis might give new insight into developmental processes in healthy and disease, and
may even lead to prediction of onset of disease and eventual planning of early therapeutic
intervention. Using the proposed framework, population models obtained from healthy
subjects will serve as normative data for comparisons of developmental trajectories of at risk
individuals.
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Fig. 1.
Population growth models, represented as black curves, obtained using nonlinear least
squares (nls) on left and nonlinear mixed effect model (nlme) on right. Colored points
represent data observations, and colored curves represent the individual growth trajectories.
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Fig. 2.
Effect of varying the parameters of the Gompertz functions. The red curve show the
reference curve that is held fixed. Left to right: the dashed blue curves show the effect of
increasing values of β1, β2, and β3 respectively.
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Fig. 3.
Example of randomly generated synthetic longitudinal data for two different regions colored
blue (R1) and red (R2). Three different tests were performed. Left to right: varying β1, β2
and β3 between two regions. Estimated β parameters for regions R1 and R2 along with
Gompertz parameters with significant differences (p < 0.001) are shown.
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Fig. 4.
Pairwise testing of different white matter regions, shown in the diagonal. Gompertz
parameters with significant differences (p < 0.001) are denoted. Curves represent the
population trajectory of a region represented by the rows (blue), columns (red). The range of
values are the following: x-axis: newborn to 2-years of age. y-axis: RD: [0.003,.009], AD:
[0.01, .018], FA: [0, 0.8], and MD: [0.004, 0.012]
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