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Abstract

In this paper, we propose a novel approach for intensity based atlas construction from a population
of anatomical images, that estimates not only a template representative image but also a common
optimal parameterization of the anatomical variations evident in the population. First, we
introduce a discrete parameterization of large diffeomorphic deformations based on a finite set of
control points, so that deformations are characterized by a low dimensional geometric descriptor.
Second, we optimally estimate the position of the control points in the template image domain. As
a consequence, control points move to where they are needed most to capture the geometric
variability evident in the population. Third, the optimal number of control points is estimated by
using a log —£1 sparsity penalty. The estimation of the template image, the template-to-subject
mappings and their optimal parameterization is done via a single gradient descent optimization,
and at the same computational cost as independent template-to-subject registrations. We present
results that show that the anatomical variability of the population can be encoded efficiently with
these compact and adapted geometric descriptors.

1 Introduction

Fundamental to Computational Anatomy is the estimation of the template and the template-
to-subject mappings that characterize anatomical variability in a population. For statistical
analysis of a set of images it is crucial to efficiently parametrize the anatomical variability.
One approach consists of extracting features of the mappings, like the Jacobian matrix of the
deformation [3], or its determinant [9]. More comprehensive approaches rely on the
statistical analysis of the displacement fields of the voxels grid by using a log-Euclidean
technique [2], or on the Riemanian characterization of the group of diffeomorphisms
parametrized via the continuous initial momenta map in the LDDMM setting [14].

The intrinsic problem with such approaches is that the fundamental anatomical variability is
parametrized in an infinite dimensional space (practically on the order the size of the
imaging modality), which does not reflect the intrinsic dimensionality of the anatomical
variations in a finite database of images. Indeed, the estimated deformations are usually
constrained to be spatially smooth, thus preventing every voxel from moving independently.
Moreover, the need for deformation is not equally distributed over the domain, since
intensity-based registrations are mostly driven by the level sets of the template image. As a
consequence, we hypothesize that the anatomical variability can be characterized by a
compact geometric parametrization of much smaller dimension. It has already been shown
in [7] that smooth vector fields parameterizing diffeomorphisms can be efficiently
approximated by a small number of momenta via a “matching pursuit” technique, where
momenta stands for vectors attached to control points.

In this paper we propose a control point parameterization of large deformation
diffeomorphisms following [10] to drive template-to-subject image registrations. This
differs from LDDMM image registration, for which the deformation is parameterized by a
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continuous map of momenta that are always parallel to the image gradient [12]. Here, we
propose to use a finite set of momenta, which are not constrained in their direction. Control
points techniques have been widely used for small deformation transformations [8], its use
for large deformation matching of images is challenging. In [13], diffeomorphisms were
built by a composition of small B-splines transforms without a comprehensive variational
formulation. In [1], diffeomorphisms were characterized via a finite set of initial momenta
located at the vertices of a “texture mesh”, but no attempt was made to estimate an optimal
mesh describing a whole population of images. The inherent difficulty is to find an efficient
way to transport information back and forth from source to target. Indeed, control points
flow from source to target (via the deformation ¢), whereas the variability in the population
is in the target image domain and hence needs to be pulled back to the source to build the
template (/. °¢~1). We solve this issue via a new formulation of the dynamical system
which drives the LDDMM registration, borrowed from optimal control theory. It enables us
to easily transport points and vectors via simple integration of ODE. One of the striking
results of this formulation is that the optimal positions of the control points in the template
space can be found at no additional computational cost. We demonstrate that the control
points are naturally attracted by the contours of the template image, and a regularity term
optimizes their spatial distribution to avoid redundancy in the parameterization. The number
of control points determines the number of degrees of freedom of the deformations and
therefore the accuracy of the template-to-subject deformations and the sharpness of the atlas.
To optimize the number of control points for a given atlas sharpness, we use a log £1-
penalty term on the set of initial momenta, in the spirit of the in vogue sparse statistical
methods. Our results show that this prior enables to prune the set of control points without
sacrificing the description of the anatomical variability. This sparse and adapted
parameterization of the variability seems therefore adapted to the statistical analysis of a
collection of images.

We follow the now well established paradigm for atlas estimation by first defining pairwise
image matching and then using it for population analysis.

2 Image Matching with Discrete Parameterization of Deformations

Image matching term

Let /e and Ay two images to be matched and ¢ a diffeomorphism of the image domain. The
source image is deformed into /4 via A = ¢~1. Lety = ()4, ..., ¥as) be the concatenation of
the location of the voxels in the target image. The deformed image / linearly interpolates
the gray levels of the neighboring voxels around positions ¢~1(y,). We denote y(0) = ¢~ 1(y).

The deformation estimation is driven by the £2 norm between the images:
N M
[sre 0 ™' ~Teae [ "= Uere G1(O)~Lrar 0 =AGO)), ()
k=1

which depends only on the positions y(0), since the target voxel positions y are fixed on a
regular lattice.

Non-linear diffeomorphic deformations

A standard way to construct nonlinear diffeomorphisms is to integrate infinitesimal
transformation parametrized via a time-varying vector field v{x) over the time interval [0,
1]: pAX) = v pAX)), with initial condition go(x) = x. Under the conditions detailed in [4] and
satisfied here, the resulting (¢, <[o,1 is a flow of diffeomorphisms (for each time € [0, 1],
¢¢1s a diffeomorphic deformation).

Inf Process Med Imaging. Author manuscript; available in PMC 2013 August 30.
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Let cg = {cy, ..., cp} be a finite set of control points. These points move in space according
to the deformation: c{2) = ¢{c)). By analogy with landmark matching [10], we parametrize
the instantaneous velocity field v{x) by a set of time-varying vectors a() = {as(9, ...,

ap(d} as:
N
v,()c):ZK(x, ci(Hai®), ()
i=1

where K'is an interpolating kernel, assumed hence forth without loss of generality, to be
Gaussian: K(x, ¥) = exp(=/x - yP)/o?).

The positions of the control points ¢{f) depend on the velocities and therefore on the vectors

. . N
a(#. They satisfy a set of NV coupled ODEs: Ci(’)zsat(ci):"t(ci)zzjzlK(Ci(f)’ i) j(®) with
initial condition at #= 0: ¢{0) = ¢;. In a matrix form, this can be written as: ¢(9) = fc(9), a())
with ¢(0) = ¢.

Once these positions have been estimated, the motion of any point xg is computed by
solving the ODE: x(#) = v{x), x(0) = xp. It follows that the flow of diffeomorphisms is
entirely determined by the time-varying vectors a(#) and the initial control points cg.

In particular, the points gol_l(yk) in the data term are computed by flowing the positions yy
from ¢= 1 (target space) back to time = 0 (source space): one integrates backward the

. N
ODE: yk(t)=\’z(Yk)=Zi=1K(Yk(l), ci(t)ai(r) with the final condition y4(1) = y4 This equation
in matrix form becomes y = g(y(9, c(9, a(9), y(1) =y. The solution at time =0 is

yO)=¢7' ).
One defines the regularity of the deformation as its total kinetic energy:
1 2 1 N N
fo“"’”vdt:foZi:lijlai(’)tK(ci(’)’ cjO)aj(t)dt ysing the Sobolev norm of the velocity

field associated with the kernel K. We write it as [ L(c(1), a(D)d.

Criterion minimization

Now, the matching criterion can be written as:
E(cq, a()=A(y(0)+y [ L(c(), a)di  (3)

subject that:

é (D=1 (e(0), a(1)) c(0)=co .
¥ (0=gy(0), c(t), a0 y(h=y

where y is the scalar trade-off between the regularity of the deformation and the fidelity to
data. The minimization of this criterion with respect to the time-varying vectors a(? leads to
the source-to-target deformation parameterized by the control points cy. The minimization
with respect to the cg leads to the optimal positions of the control points which parameterize
the best matching possible. Both optimizations will be done via a single gradient descent.

It has been shown that the regularity term for » >0 ensures that the flow of
diffeomorphisms builds a geodesic path in a certain group of diffeomorphisms [4]. This
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means that at the minimum the flow of diffeomorphisms is entirely determined by the initial
momenta at time £= 0: (cp, a(0)).

We optimize the criterion via a gradient descent. The initial conditions are a(#) = 0 for all ¢
(which gives ¢{x) = x, i.e. no deformation) and the control points cy are given on a regular
lattice. A variation of the momenta a(#) and of the control points initial position &cg
induces a variation of the whole path of the control points &c(#) from source (¢= 0) to target
(¢=1). Then, this changes the path of the target voxels flowing back to the source: it leads to
a variation of the positions 8y(0) and hence a variation of the criterion. We show in
Appendix A, that the gradient of the criterion with respect to these two variables is:

Vo E(@)=2ya()+n"()+iP (1)
Ve, E=1°(0)

where 7f and 7 are 3V dimensional vectors, which satisfy one forward and one backward
integral equations:

; N
m0==V,,0A+/, ZI%K (7p(9), ¢4(5)) g() M)V p(5)—cq(5))ds
P
N
0=, % ZK (Cit9), ¢(9)) (@) ni(s)+ai(s)m(s)+2yai(s) aj(5)) (cils)=c ()
J=

M
>, 2K (Ci(s), yi(5)) ai(s)m,(5)(ci(s)—yi(s))ds

=17

ViryA=2 (Lo(yx(0)—11 i) Yy, 00 lo

and 7 is the solution of the set of Alinear equations for all

N

M
D K (0, ¢;0)T0=) K O nO)m® )
k=1

J=1

The auxiliary variable 7 is computed forward in time: it transports the usual image force
Vy0)A from the source (£= 0) to the target space (= 1). Once at time = 1, this variable is
used as a source term in the ODE satisfied by the variable 7% which is integrated backward
in time. At time ¢= 0, this variable is used to update the position of the control points in the
source image domain, at no additional cost. The overall gradient descent is summarized in
Algorithm 1.

Algorithm 1

Image Matching with finite-dimensional parameterization

aff) < Oforall /=1,..., Nand all ¢
Co < initial positions of control points (input)
repeat {Gradient descent}

{Compute path of control points (forward integration)}

a KA w N R

0=+ [, Y K(els). (o) j(s)ds

6: {Compute deformed source image (backward integration)}

Inf Process Med Imaging. Author manuscript; available in PMC 2013 August 30.
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7
f N
=y~ [ > KOu(s). cj(s)aj(s)ds
8: {Compute gradient of source image}
9 V0 E=2 (b)) - 1) Voo
10: {Compute auxiliary variable 7*(forward integration)}
11:

nf,(t):—Vyp(o)E—f:)z;vzl(l;(s)rﬁ,(s)vl K(p(s), cq(s))ds

12: {Compute auxiliary variable 7¢ (backward integration)}

13:

77§'(t):fl1 Ziv:l (a/j(s)’nf(s)+a,~(s)t7];(s)+27a/1~(s)ta/j(s)) ViK(ci(s), cj(s))+zl}z1ai(s)tnyk(s)VzK(yk(s), ci(s))ds
14: {Solve the linear system}
15:

D K, e N 0=y K (@0, )

16: {Compute gradient}
17:

(77'is of dimension 3/)

ViJ (0)=2yai()+n;()+i7; (1)
18: {Update time-varying momenta}

19: afl) — afh) - eV LD
20: {Update initial positions of control points}

21:
¢i(0) « ¢i(0)—en (0)

22:  until Convergence

Remark 1 (Interpretation in the small deformation setting)—To better understand
these equations, we linearize this model in time. Then, the flow of diffeomorphisms is
reduced to the transform: ¢(x) = x+ U x) parameterized by the fixed momenta (cy, a(0)).
For small deformations, the inverse is approximated by ¢ 2()4) = ¥« - U¥). The matching
criterion becomes:

E(co, a’):HIsrc ° ‘;D_l_ltar”2+y||v”§s )]

whose gradient can be computed straightforwardly as:

M N
5V E :_I\ZIK (€is i) Usee v~ Tear i) Vy =iy Isre +¥ ZIK (ci, cj)aj
= j=

M N
%Vc,-E=kZI O%K(Ci, Vi) Usre k=3 = Lrar 06)) (Vy—vy Lsre) @i(ci—yi)—y '21 %K(Ci, cpataj(ci—c;))
= Jj=

This is exactly the linearization of the gradient (5), at order 0 for the first equation and at
order 1 for the second one (the zeroth order vanishing).

The first equation consists of two terms: the first one is the convolution of the usual image
force at the control points, the second one is a regularizer of the estimated momenta, which
can be seen as a low-pass filter on the momenta. The second equation is the update rule for
the control points positions. The first term shows that they are attracted by the voxels where

Inf Process Med Imaging. Author manuscript; available in PMC 2013 August 30.
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the gradient of the image is large (i.e. the contours), provided that the momenta a;pushes in
the ‘right” direction, that of the image force (making the dot product positive). The second
term is a repulsion term which moves away two control points which carry momenta
pointing in the same direction, thus limiting the redundancy of the parameterization at the
scale of the kernel o

3 Atlas Estimation with Common Sparse Parameterization of Deformations

3.1 Joint Optimization of the Template Image and the Deformations

Given a set of Ngimages, one wants to find a template image /, the optimal set of control
points ¢y in the image domain and the optimal set of A/;time-varying vectors a4#), which
drive the registration of the template to every image. As a consequence, the criterion to be
minimized is given by:

Ny
Ello, 0,10y, (0)= ) {430+ [yLes(0. ax0)ds} @)
s=1

subject that:

NOSIICNONNG) ¢;(0)=cg
Ys(0)=8(ys (1), cs(t),as(t))2 ys(D=y (9)
As(y:(0)=|To(ys(0)-I

where we notice that the initial and final condition of the ODEs are shared among the
population. This criterion has the same form as in (3). Denoting £geach term of the sum, the
gradient with respect to ¢y and the a2 is given as:

N,
Vo, E=Va,0Es  Ve,E=) Ve, By (10)

s=1

This means that the weighting vectors are computed for N parallel registrations by
integrating the ODEs of (5). After the back and forth integrations, the auxiliary variables
75(0) are averaged over the subjects to update the common parameterization of the
deformations c.

The gradient with respect to the template image /y is the sum of the gradient V , A (Y«0)).
The value h(y(0)) is computed as Zpe & (y40)) LHVKO)) lo(7p(Vk (0))), where + () denotes
the set of 8 neighboring voxels rz,()) of the position yand p,()) the weights corresponding
to the trilinear interpolation. Let R, be the residual image /y(y(0)) - /s Then a variation &/
of the template image leads to:

3OAY(0)=TR () A/Zé _(0))/0;;(%'(0))510(7rp(yi(0)))

pEN (¥,

P\l 3k (i (0))=y;) Y

=2 ( 2 pk(yi(O))Rs(Vi)] 0lo(y))=2V, As(y)SIo(y;)
J

where one multiplies the gray levels for each voxel in the source domain instead of the
target domain. This shows that the gradient of A is the partial volume projection [6] of the
residual image. This is computed by flowing the voxel yj back in the source domain and
distributing its gray level at the 8 neighboring voxels with the same weight as for a trilinear

Inf Process Med Imaging. Author manuscript; available in PMC 2013 August 30.
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interpolation. The accumulation of such values for every voxel and every subject gives the
gradient.

3.2 Sparsity Enforced by log —L1 Penalty Term

The number of control points determines the number of degrees of freedom of the
deformations. The more control points, the more accurate the registrations, the sharper the
template image. Consequently, the optimization of the previous criterion tends to use as
many control points as possible. However, as we will see in our experiments, from a certain
point, adding more momenta only marginally increase the atlas sharpness at the cost of
adding much more noise in the description of the variability. To find the optimal number of
degrees of freedom for an accurate description of the variability, we use a numerically
stabilized log — L penalty motivated by [5]:

Ns N
E=Z {As(ys(o))"'y f (])L(Cs(t)’ as(t))dSWSleOg”( af(0)||)} (11)

s=1 i=1
where NV denotes the total number of control points, «; the i#initial momentum vector of
the sth subject. For numerical stability we truncate the log function near 0 via: log“(x) =
max(log(x), log(c))-og(c) a positive penalty. This penalty function has almost no effect on
large momenta, whereas it enforces the small momenta to converge to zero. The constant ¢
is a threshold to avoid numerical instability, set typically at the voxel size. Every 5 iterations
of the gradient descent, control points with an initial momenta smaller than care pruned.

2.
IS

This penalty induces only a small change in the algorithm. The quantity yspa;/||a;

added to each V £ as soon as ||| >c.

4 Experiments

Our method is independent of the dimension of the images. In this section, we focus on 2D
images for a better visualization and understanding of the results.

In Fig. 1, we show the matching of two synthetic 2D images of size 256 x256. It shows that a
discrete parameterization (with the maximum number of degrees of freedom: one control
point every o) enables a perfect matching, as would do a parameterization by a continuous
momenta map as in [4]. Using much fewer momenta, the matching is less accurate. But,
moving the control points at their optimal position near the contours drastically increases the
matching accuracy.

In Fig. 2, we construct an atlas from 3 synthetic images. The sparsity prior enables to select
the most important momenta and to give a compact representation of the shape variability.
Fig. 3 shows that the initial number of control points can be divided by 5 without sacrificing
much of the atlas sharpness.

In Fig. 4, we show the motion of the control points to the contours of the source image
during a registration between MRI slices of size 176 x 256. In Fig. 5, we construct an atlas
from 5 of such images. The sparsity prior shows that the main variations in the population
are located at the skull, near the ventricles and the main sulci, like the frontal sulcus. These
structures are indeed the most salient and variable at the scale of analysis: o= 5 voxels.

Inf Process Med Imaging. Author manuscript; available in PMC 2013 August 30.
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5 Discussion and Conclusion

In this paper, we present a new method for parameterizing large and dense image
deformations via a discrete set of control points. Given a set of images, we estimate the
template image, the template-to-subject deformations and their parameterization via the
optimal placement of the control points and the optimal number of them according to a
sparse prior. The whole estimation is posed as a single optimization problem and is solved
by a single gradient descent. This is more controllable and more efficient than usual
alternated minimizations. The algorithm requires only a solution of ODEs and linear
systems; no heuristic rule is used to update the control points. By contrast, a death/birth
procedure of control points could have been investigated, but at the cost of more heuristic
and arbitrary priors. Our results show that the anatomical variability can be efficiently
described by small number of well-placed momenta. We expect to show in the future that
these new parameterizations substantially improve the statistical analysis of sets of 3D
anatomical images. Future work will extend this framework to include the construction of
geodesic diffeomorphisms by integration of Hamiltonian systems, as initiated in [1,11]
Future work will also focus on the automatic estimation of the best trade-offs between atlas
sharpness, sparsity and regularity of the deformations by adding priors on y and yxp.
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A Differentiation of the Criterion

A variation of the momenta Sa(? and the initial position of the control points &cg induces a
variation of the path of the control points &c(#) and then of the voxel positions &y(9). This
induces the variation of the criterion:

6E:Vy(0)A'6y(0)+7f(l](61 L(H)oe(H)+02L(H)oa(t)) dt  (12)

The variations &c¢(f) and 8y (?) satisfy the linearized ODEs:

_ § e()=01 f(e(1), aA(1))de(1)+0,. f(c(t), a())de(2)

6 y(1)=018(y(1), €(t), a(1))y (1) +028(y(1), (1), a(1))oc(t)+03g(y(1), (1), a(t))da(t)
with 6c(0) = 8¢y and 8y(1) = 0. Let Ry=exp( |’ iﬁzf(u)du) and V=exp( [ Zalg(u)du). The

solution of these linear ODEs with source terms are:

Se(t)=Roidco+ | ;Rs,az f(s)oa(s)ds and 8y(1)=— j Vi (928(s5)6¢(s)+838(s)0a(s)) ds

Plugging these equations into (12) and using Fubini’s theorem leads to:

SE= [y (y91 L()+Vy0)A'Vio2g(1)) Rty
o (y@zL(t)+ [ Y01 L()R,s 02 f (1)ds+ V0 A" (V,0(93g(t)+ [ Vi0028(5)R1s f(t)ds)) Sat)dr

Therefore the gradient of £with respect to the £2 metric is given as:
Vo E()=y0,L(t)' +03g(t)' 17’ (t)+02.f (1)'° (t) and Ve, E=1°(0)  (13)

where we have denoted:

P (O=VyVyoA and 7°(0)= [ Ry (v L(s) +d28()' P () ds  (14)

since Vio=id~ [ Vs0d1g(s)ds and Riy=id+ [ Rusd f(u)du, we have:
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7P (1)==Vy0)A- [ E)é’lg(S)’Uy(S)ds

W= [ (0L +028() 1P (51401 fa(s)) ds

Given the definitions of £gand L, the L2-gradient can be written as:
VézE (H=2yk(c(), e(M)a()+k(e(t), () ()+k(y (@), () (1)  (16)
where K(y, c) denotes the 3M -by 3/ block matrix whose (7, j)##+block is K(¥;, ¢).
The Sobolev gradient associated to the metric k(c(2), c() is therefore:
Vo E(D=2ya()+n° (0)+k(e(), (1) k@), e (1) (17)
which requires to solve a linear system. If control points gets closer than o, then the matrix
k(c(d, c(d) is badly conditioned [6]. In this case, we adjust o in this matrix to the minimal

distance between control points and use the gradient k2l (c(8), c(4) ™ V£°E, which
interpolates between the £2 gradient (oagj — 0) and the Sobolev gradient (gagj — o).
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without update of control points with update of control points

Fig. 1.

Synthetic image matching with 25 (top) and 9 (bottom) control points. On the left of each
panel: the source image with the initial momenta (red arrows). On the right the
superimposition of the deformed source and target image. First row shows that a discrete
parameterization is sufficient for a perfect matching. Second row shows that moving the
control points to their optimal positions gives a much better representation of the shape
differences for a fixed number of parameters. o= 50 voxels, y = 1072,
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LO0K

No Update, 64 CP, vsp = 0
64 CPyep =0 15 CP, yp = 3 12 CP, yep = 4 9 CP, yep =5

Fig. 2.

Atlas from 3 images (top left). Template and initial momenta shown without (top right, A =
163) and with (bottom left, A= 127) update of control points. The sparsity term drastically
reduces the number of control points, for a comparable atlas sharpness: data term A = 134
and 206 for ysp = 3 and 4. For ygp = 5, the atlas sharpness worsens (A = 393), as noticeable
at the bottom of the image. =0.1, o= 30 voxels.
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Fig. 3.

Graph of the the number of control points and the fidelity-to-data term with respect to the
sparsity parameter ysp with data of Fig. 2. There is a whole range ysp €]0, 4] for which the
number of control points can be divided by 2.4 to 5.3 (from 27 to 12 compared to the initial
64 control points) for an almost constant atlas sharpness.
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Fig. 4.

Registration of brain MRI slices: close-up on the left posterior area of the source image.
Initial control points in blue moved to the positions shown in red. They moved toward the
contours of the image. They do not move in absence of image force in homogeneous areas.
o=5voxelsand y= 1073,
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Fig. 5.

Atlas from 5 brain images. Top row: estimated atlas with update of control points but
without sparsity enforced. Bottom row: with enforced sparsity, the control points focus on
the skull, the ventricles and the major sulci. The graph shows that we can achieve an
equivalent description of the variability with 40.8% to 27.1% of the original 468 momenta,
for s €10,0.1]. o=5, y=51073.
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