Skip to main content
. Author manuscript; available in PMC: 2013 Aug 30.
Published in final edited form as: Inf Process Med Imaging. 2011;22:123–134. doi: 10.1007/978-3-642-22092-0_11

Algorithm 1.

Image Matching with finite-dimensional parameterization

1: αi(t) ← 0 for all i = 1,, N and all t
2: c0 ← initial positions of control points (input)
3: repeat {Gradient descent}
4:  {Compute path of control points (forward integration)}
5: ci(t)=ci(0)+0tj=1NK(ci(s),cj(s))αj(s)ds
6:  {Compute deformed source image (backward integration)}
7: yk(t)=yk(1)-0tj=1NK(yk(s),cj(s))αj(s)ds
8:  {Compute gradient of source image}
9:  ∇yk(0)E = 2 (I0(yk(0)) - I1(yk)) ∇yk(0)I0
10:  {Compute auxiliary variable ηy(forward integration)}
11: ηpy(t)=-yp(0)E-0tq=1Nαqt(s)ηpy(s)1K(yp(s),cq(s))ds
12:  {Compute auxiliary variable ηc (backward integration)}
13: ηic(t)=t1j=1N(αj(s)tηic(s)+αi(s)tηjc(s)+2γαi(s)tαj(s))1K(ci(s),cj(s))+k=1Mαi(s)tηky(s)2K(yk(s),ci(s))ds
14:  {Solve the linear system}
15: j=1NK(ci(t),cj(t))ηjy(t)=k=1MK(ci(t),yk(t))ηky(t) (η̃y is of dimension 3N)
16:  {Compute gradient}
17: iJ(t)=2γαi(t)+ηic(t)+ηiy(t)
18:  {Update time-varying momenta}
19: αi(t) ← αI(t) − εαiJ(t)
20:  {Update initial positions of control points}
21: ci(0)ci(0)-εηic(0)
22: until Convergence