Skip to main content
. 2013 Aug 30;8(8):e73276. doi: 10.1371/journal.pone.0073276

Figure 6. Newly formed hair cell-like cells have electrophysiological properties reminiscent of hair cells rather than supporting cells.

Figure 6

A: Voltage step protocol as used in (B). From a holding potential of −70 mV, 200 ms voltage steps to values between −100 and 50 mV, in 10 mV increments were applied. B: Supporting cell recording, here from an untreated preparation after 6 DIV. Due to network coupling, supporting cells could not be voltage clamped and exhibited a typical ‘leaky’ response to a voltage step protocol. C: Supporting cells typically show resting membrane potentials that oscillate over a wide voltage range, here over ∼20 mV. D: Voltage step protocol as used in (E) and (F). From a holding potential of −70 mV, a 50 ms prestep to −130 mV was applied, followed by 200 ms voltage steps to values between −100 and 50 mV, in 10 mV increments. E: Recording from an Atoh1/nGFP positive, hair bundle bearing cell in a gentamicin +DAPT treated culture after 6 DIV shows delayed rectifier potassium currents qualitatively similar to control hair cells. F: Outer hair cell recording in an untreated preparation after 6 DIV shows delayed rectifier potassium currents.