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Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the con-
centration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions
or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic
screening would have implications both for the understanding of macromolecular dynamics as well
as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells.
Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N par-
ticles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and
near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to
compute Brownian forces at each time step, although asymptotically faster but more complex SD
methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of
the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to
assuming that long range hydrodynamic interactions are completely screened. This approximation al-
lows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N).
Previously there were several simulation studies using this approximation for monodisperse suspen-
sions. Here, we employ newly designed preconditioned iterative methods for both the computation of
Brownian forces and the solution of linear systems, and consider the validity of this approximation in
polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an
intracellular-like suspension. The diffusivities of particles obtained with this approximation are close
to those with the original method. However, this approximation underestimates intermolecular cor-
related motions, which is a trade-off between accuracy and computing efficiency. The new method
makes it possible to perform large-scale and long-time simulation with an approximate accounting
of hydrodynamic interactions. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817660]

I. INTRODUCTION

How can we describe the dynamical motions of
molecules in a fluid? This simple question has been one of
the fundamental topics in various fields including fluid me-
chanics, chemical engineering, and biology. In biology, since
intracellular transport and diffusive mechanisms underlie al-
most all cellular processes, answering this question is essen-
tial to understanding the mechanisms of cellular dynamics.
In this regard, molecular dynamics (MD) is an important tool
for simulating molecular motions in a fluid.1 MD provides
detailed information on the dynamical behavior of solute as
well as solvent molecules at an atomic level of description.
However, even though we are interested in the long-time dy-
namical behavior of solute molecules, to account for the effect
of the solvent molecules on the solute requires a large num-
ber of solvent molecules and short time steps to handle their
fast motions. This makes the simulations very expensive. In
such a case, an approximate approach may be adopted. Pio-
neering work on coarse-grained simulations as applied to bi-
ological macromolecules was carried out by Ermak and Mc-
Cammon in 1978, who developed a Brownian dynamics (BD)
algorithm that can incorporate hydrodynamics.2 In BD, so-

lute molecules are treated as Brownian particles and solvent
molecules are not treated explicitly; rather, their dynamical
effects on the solute are incorporated in a stochastic manner
consistent with hydrodynamics.2 Their BD algorithm can in-
clude the simplest hydrodynamic interactions (HI) through a
position-dependent inter-particle diffusion tensor such as the
Oseen3 and Rotne-Prager-Yamakawa4, 5 (RPY) tensors. How-
ever, these tensors only represent the far-field part of HI,
and thus, they are only valid for dilute solutions. To over-
come this limitation, Stokesian dynamics (SD) was developed
by Brady’s group in 1987.6 In SD, both many-body far-field
HI and the near-field HI (so-called “lubrication forces”) are
modeled. SD can reproduce the properties of monodisperse
suspensions at high volume fractions.7 SD has been success-
fully applied to the rheology of the Brownian particles un-
der flow.8, 9 Recently, we applied the SD method to explore
the nature of macromolecular dynamics in crowded intracel-
lular environments comprised of a polydisperse collection of
macromolecules.10 Our simulations with coarse-grained mod-
els of macromolecules showed that excluded volume effects
and HI are both required to account for the large reduction
in diffusion coefficient from that at infinite dilution that is
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observed in experiments.10 We also observed collective in-
termolecular motions in such dense systems, which were not
seen in simulations without HI.

While SD is accurate, it is computationally demanding,
which limits the size of systems that can be simulated in prac-
tice to about one thousand particles. Overcoming this limi-
tation is especially important for biological applications; the
complexity of these systems is much higher than simple col-
loidal suspensions and long-time simulations are typically re-
quired for analyzing relevant biological motions. In SD, each
time step involves solves with a hydrodynamic matrix which
is a dense matrix due to the long-range nature of HI, decaying
with particle distance r as 1/r.6, 11 To take account of Brown-
ian motions, the square root of the matrix is required to cal-
culate the random forces. Both calculations typically require
O(N3) operations for an N particle system. To tackle the com-
putational complexity, several ideas have been proposed. To
update each time step, iterative solution methods have been
suggested to solve the linear systems of equations.12–14 To
calculate the random forces, a Chebyshev polynomial approx-
imation was introduced by Fixman.15 We recently proposed
using Krylov subspace methods to compute the Brownian
displacement for BD, which scales very nearly as O(N2).16

These methods are related to the Chebyshev method, but do
not require eigenvalue estimates. These iterative and polyno-
mial methods involve O(N2) matrix-vector multiplications for
dense matrix cases. For efficient multiplication with the dense
hydrodynamic matrix, particle-mesh Ewald (PME)12, 13 and
smooth PME17 methods can be employed for periodic bound-
ary conditions, which scale as Nlog(N). Brady’s group im-
plemented a version of PME into SD for non-Brownian sus-
pensions called accelerated SD (ASD)13 and for Brownian
suspensions called ASDB12 that scales N1.25logN. Fast-
multipole methods might compute the multiplication with
O(N) computational cost for free-boundary conditions. Re-
cently developed methods, such as general geometry Ewald-
like method (GGEM)18 and immersed boundary GGEM,19

are able to calculate long-range hydrodynamic effects with
O(NlogN) or O(N) computational cost for complex geome-
tries in a confined space.

While hydrodynamic interactions are long range and de-
cay like 1/r, these bare interactions may be screened by many-
body effects in colloidal suspensions, resulting in effective
pair interactions that are no longer long range. There are
several studies on hydrodynamic screening. The theory of
the dynamics of semidilute polymer solutions, originally due
to DeGennes, established that as polymer solutions become
more concentrated, hydrodynamic interactions are screened
beyond a polymer concentration dependent screening length,
and then the dynamics becomes Rouse like, viz., the free
draining approximation holds and long range hydrodynamic
interactions can be ignored.20 The mechanism of this screen-
ing has been studied by computer simulations.21 In a porous
medium, long-range hydrodynamic interactions are screened
and decay faster than 1/r, and appear to decay as 1/r3 as
described by the Brinkman equation,22 which is also seen
by simulation.23 Snook, van Megen, and Tough introduced a
simple volume fraction-dependent screened two-body tensor,
which provides reasonably accurate descriptions of various

properties of diffusive particles compared with experimental
results.24–28 However, theoretical analysis suggested that hy-
drodynamic screening does not occur for freely moving diffu-
sive particles.29 Here, we examine the validity of the screen-
ing of far-field hydrodynamic interactions in the context of
dense, polydisperse solutions of macromolecules. If this ap-
proximation were shown to be valid, this would not only pro-
vide insight into the forces dominating macromolecular mo-
tion, but would have significant practical consequences as it
would significantly reduce the computational burden.

For periodic boundary conditions, since the long-range
nature of HI is similar to electrostatic interactions, Ewald
summation of the Oseen or RPY tensors to obtain the far-
field hydrodynamic matrix is necessary not only for accuracy
but also to ensure that the matrix is positive definite.11 Other-
wise, the transport properties of the system are non-physical,
e.g., a negative diffusion coefficient results. If hydrodynamic
interactions are strongly screened, the far-field hydrodynamic
matrix can be approximated by a diagonal matrix, correspond-
ing to the neglect of intermolecular, long range hydrodynamic
interactions. The idea of using a diagonal approximation for
the far-field hydrodynamic matrix is not new. This approxima-
tion was already used to develop fast SD algorithms for non-
Brownian14 and Brownian particles.30–33 Hereafter, using the
name coined by Bybee,32 we call these methods Fast Lubri-
cation Dynamics (FLD). Combining the diagonal approxima-
tion with a sparse iterative solver for linear systems, such as
the conjugate gradient (CG) method, as well as the Chebyshev
method for computing Brownian forces, FLD methods can
reduce the computational cost to O(N). Banchio and Brady
used the approximation only for computing Brownian quan-
tities in the ASD framework called ASDB-nf, which scales
as O(NlogN) for non-equilibrium suspensions and as O(N)
for equilibrium suspensions.12 In the previous studies using
FLD, monodisperse suspensions were used for algorithm de-
velopment. The purpose of this work is to design an alterna-
tive O(N) computational method for FLD and to see limita-
tions of the diagonal approximation idea. We evaluate this ap-
proximation in a polydisperse suspension, which is essential
for coarse-grained simulations of biological systems. In our
FLD method, a Krylov subspace method is used for comput-
ing Brownian forces, where we use preconditioning to accel-
erate the computations, a possibility that is not well known in
this context. Our FLD algorithms are described in Sec. II. The
computational efficiency of the algorithms and simulation re-
sults for a model of the intracellular environment are shown
in Sec. III. Our conclusions are presented in Sec. IV.

II. THEORY AND METHOD

In this paper, we compared several algorithms for simu-
lating Brownian particles. For clarity, we summarize names
of the algorithms used here. SD denotes the Stokesian dy-
namics method that considers both many-body far-field HI
and near-field lubrication forces at low Reynolds number that
was introduced by Brady et al.11 The original SD algorithm
denotes a simulation algorithm involving an O(N3) matrix in-
version and Cholesky factorization of dense matrices. BD rep-
resents the simulation algorithm considering HI at the level of
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Oseen or RPY tensors developed by Ermak and McCammon.2

Free-draining simulations (FD) are BD simulations without
HI, where the diffusion matrix only has diagonal elements and
these are constant. FLD is the method where the far-field hy-
drodynamic matrix is approximated by a diagonal matrix and
the lubrication forces are explicitly considered.

We first describe the original SD algorithm and then in-
troduce our FLD approximations. Throughout the paper, we
only consider particle translation and forces, and ignore par-
ticle rotations and torques. This corresponds to the so-called
“F version” of the SD paper.7

A. Stokesian dynamics for Brownian particles

For a system of N Brownian particles suspended in an
incompressible Newtonian fluid, the translational motion of
particles is represented by the coupled N-body Langevin
equation:34, 35

m
du
dt

= f H + f P + f B, (1)

where m is the 3N × 3N mass tensor, u is the particle trans-
lational velocity vector of length 3N, and on the right-hand
side are the forces acting on the particles, which can be split
into three parts: the hydrodynamic forces fH, the determin-
istic non-hydrodynamic forces fP, and the stochastic Brown-
ian forces fB; all are vectors of length 3N. When the particle
Reynolds number is small, the hydrodynamic forces acting on
the particles in the absence of an external bulk flow are given
by

f H = −Ru. (2)

Here R is the configuration dependent hydrodynamic resis-
tance tensor, with size 3N × 3N. The deterministic non-
hydrodynamic forces are arbitrary and can include electro-
static and van der Waals forces. The Brownian forces fB arise
from thermal fluctuations in the fluid and are characterized by
the fluctuation-dissipation theorem36

〈f B〉 = 0, 〈f B(0)f B(t)〉 = 2kBT Rδ(t), (3)

where the angle brackets denote an ensemble average over
independent configurations, kB is Boltzmann’s constant, T is
the absolute temperature, t is time, and δ(t) is the Dirac delta
function.

The time evolution equation of the particles is obtained
by following Ermark and McCammon and integrating Eq. (1)
over a time step �t that is larger than the inertial relaxation
time, (τB = m/6πηa, for a particle of radius a and mass m,
and solvent viscosity η), but smaller than the time over which
the forces change significantly.2 This leads to

r = r0 + kBT (∇ · (R0)−1)�t + (R0)−1fP,0�t + x0(�t) (4)

with

〈x0(�t)〉 = 0, 〈x0(�t)x0(�t)〉 = 2kBT (R0)−1�t. (5)

Here, r is the particle position vector of 3N length, x(�t) is
a random displacement due to Brownian noise, and the su-
perscript “0” indicates that each quantity is computed at the
beginning of the time interval. The inverse of the resistance

matrix is the N-particle mobility matrix M, which, when mul-
tiplied by kBT, is the N-particle diffusion tensor

kBT R−1 = kBT M = D. (6)

Using this relation, Eq. (4) is identical to the Ermak and
McCammon algorithm for Brownian dynamics with HI.2

These matrices are symmetric and should be positive defi-
nite. The simplest way to compute x(�t) is through the use
of a Cholesky factorization, CCT = R−1, which is an O(N3)
operation.

1. Hydrodynamic interactions

Hydrodynamic interactions between particles are de-
scribed by the matrix R (or M or D). The RPY diffusion or
mobility tensor is commonly used to model the HI in dynamic
simulations because this tensor retains positive definiteness
even when particles overlap.2, 37, 38 The RPY tensor contains
the two-body and long-range or far-field contributions to the
particle mobility up to order 1/r3. For dilute systems, two-
body interactions may be sufficient, but in concentrated sys-
tems, e.g., the inside of cells, far-field many-body HI as well
as near-field lubrication forces play important roles in deter-
mining mobility. Durlofsky, Brady, and Bossis developed a
method to include not only the far-field HI but also the many-
body and near-field HI in simulations, which is the key idea
of SD.6, 11, 35 The resistance tensor R could be described by
the sum of far-field HI and near-field lubrication interactions
as

R = (M∞)−1 + Rlub (7)

with

Rlub = R2B − R∞
2B. (8)

Here, (M∞)−1 represents the contribution of many-body, far-
field interactions, which is the inverse of the RPY mobility
matrix. Rlub contains the near-field lubrication forces, which
is formed in a pair wise additive fashion of two-body HI. R2B,
which represents the exact two-body HI, includes both near-
field and far-field interactions.R∞

2B is the resistance tensor that
represents two-body, far-field interactions. The far-field part
has already been included in (M∞)−1. Thus, in order not to
count these interactions twice, we must subtract these two-
body interactions. This is the standard method to correct for
the lubrication effects in the resistance tensor.

M∞ can be estimated by the Ewald summation of
the Oseen or RPY tensor developed by Hasimoto39 and
Beenakker,40 respectively, for the case of periodic boundary
conditions. Due to the long-range nature of HI, use of the
Ewald summation technique is necessary not only for accu-
racy but also for obtaining positive definite matrices in the
calculation of the mobility tensor under periodic boundary
conditions. In addition, inverting M∞ corresponds to includ-
ing many-body interactions.6 R2B is calculated by the exact
two-body solution of Jeffrey and Onishi.41 R∞

2B is obtained
by simply inverting a two-body mobility matrix containing
terms to the same order as 1/r in M∞. The far-field M∞ is a
dense matrix, and its explicit construction and inversion re-
quire O(N2) and O(N3) computations, respectively. Due to the
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near-field interactions of lubrication interactions, on the other
hand, Rlub is sparse and its construction is an O(N) computa-
tional task using a cut-off method.

2. Mid-point algorithm

The positions of Brownian particles can be computed
through the evolution equations (4) and (5). For BD simula-
tions with the RPY and Oseen tensors, since the matrices have
the property of ∇ · M = ∇ · R−1 = 0, we can neglect the
second term on the right-hand side of Eq. (4).2 In contrast, for
SD simulations, the divergence term must be taken into ac-
count, whose explicit computation is O(N3). To avoid this ex-
pensive calculation, one can use instead the “mid-point algo-
rithm” introduced by Banchio and Brady,12 following an idea
of Fixman.42 In this method, Eqs. (4) and (5) are re-written as

r = r0 + kBT (∇ · (R0)−1)�t + (R0)−1(f P,0 + f B,0)�t (9)

with

〈f B〉 = 0, 〈f B(0)f B(t)〉 = 2kBT Rδ(t). (10)

The procedure for this mid-point algorithm is the follow-
ing steps:

(i) Compute the resistance matrix R0 using an initial con-
figuration r0

R0 = (M∞,0)−1 + R0
lub. (11)

(ii) Compute the deterministic forces fP,0 and Brownian
forces fB,0. The latter is given by

fB,0 =
√

2kBT

�t
Bz, (12)

where z is a standard normal vector and B is

R0 = BBT . (13)

The most conventional way to compute B is use of the
Cholesky factorization.

(iii) Compute the velocity u0 of 3N length at r0 by solving
the linear equation

R0u0 = fP,0 + fB,0. (14)

(iv) Move the particles to intermediate positions r′ by a
small fraction of a time step, �t/n

r′ = r0 + �t

n
u0, (15)

where n is typically on the order of 100.
(v) Calculate a resistance matrix, R′, at the intermediate

positions r′.
(vi) Calculate a new velocity u′ at the intermediate posi-

tions using the forces evaluated at r0

R′u′ = f P,0 + f B,0. (16)

(vii) Calculate the drift velocity, udrift,

udrift = n

2
(u′ − u0). (17)

(viii) Finally, update the positions of the particles for time
step �t,

r = r0 + (u0 + udrift)�t. (18)

3. Computational cost in original SD

In the mid-point algorithm just presented, the computa-
tions that scale as O(N2) or worse are the following:

(i) Construction of M∞ at steps (I) and (V): O(N2);
(ii) Inversion of matrix M∞ at step (I) and (V): O(N3);
(iii) Cholesky factorization of R0 at step (II): O(N3);
(iv) Solving linear equations at steps (III) and (VI): O(N3).

However, there are several ways to avoid these compu-
tations without any advanced techniques. First, since M∞ is
less sensitive to small changes of particle positions compared
to Rlub, the inverse of the matrix calculated at step (I) can
be reused at step (V) without significant accuracy loss. Fur-
thermore, infrequent construction of the mobility tensor and
its inversion are possible.35 Second, the linear equation at step
(III) can be solved by O(N2) operations by using the Cholesky
factor B obtained in the previous step. Third, the second lin-
ear equation at step (VI) could be simply solved by iterative
methods, such as the CG method.43, 44 For this case, since
R′ is not significantly changed from R0, the Cholesky fac-
tor B obtained at step (II), would work as a preconditioner for
solving the equation by the iterative method.43, 44 These three
ideas significantly reduce computational cost of the original
SD method. However, an O(N3) Cholesky factorization is still
required at each time step, which prohibits large scale SD
simulations. Construction of M∞ and its inversion are also
a problem for large systems.

B. Approximations

We introduce three approximations into the original SD
algorithm: (1) the diagonal approximation of far-field HI,
(2) a preconditioned Krylov subspace approximation for com-
puting Brownian forces, and (3) a preconditioned conjugate
gradient method for solving linear equations. We explain each
approximation in the following sections.

1. The diagonal approximation of far-field HI

In dense systems, such as inside of cells, lubrication
interactions between particles are more important than the
precise details of the far-field HI. For such cases, mean-
field-like approximations for the far-field interactions have
been proposed, in which M∞ is replaced by a diagonal
matrix12, 14, 30–33

M∞ ≈ 1

6πηF a
I. (19)

Here, ηF is a parameter representing the “effective far-field
viscosity” and I is the identity matrix. This is equivalent to
ignoring long range HI, except in a mean field sense. We
now avoid the computationally intensive matrix inversions
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and M∞ construction in the original SD algorithm. The re-
sistance matrix R is now sparse. This is particularly advanta-
geous since the iterative methods introduced in the next sec-
tions involve matrix-vector multiplies with the matrix R.

For monodisperse suspensions, ηF may be chosen by the
Einstein viscosity ηF = η(1 + 5φ/2) with volume fraction φ.14

In our case, since the RPY tensor in M∞ contains terms up to
O(1/r3) and Rlub contains the rest of the higher order terms,
reduction of the effective viscosity is completely included in
the lubrication correction term. Therefore, we simply use

M∞
ii ≈ 1

6πηai

I, (20)

where M∞
ii is the 3 × 3 diagonal block for the ith particle in

M∞ and ai is the radius of particle i.

2. Preconditioned Krylov subspace method
for computing Brownian forces

The Brownian force in SD is computed as the square root
of the resistance matrix times an uncorrelated random vector
with mean zero. Hence, we may use Krylov subspace meth-
ods proposed for computing the function of a matrix times a
vector, see for example Refs 45 and 46, and the references
therein. We recently introduced and studied the use of Krylov
subspace methods for computing Brownian displacements in
the BD algorithm at the level of the RPY diffusion tensor.16

Here, the method approximates the product of the principal
square root of a given symmetric positive definite matrix and
a random vector via a Lanczos process, that is,

y = M1/2z ≈ ‖z‖2 VmH1/2
m e1, (21)

where M is the 3N × 3N mobility matrix, z is a Gaussian ran-
dom noise vector, and ‖z‖2 is the 2-norm of vector z. Vm is a
3N × m orthonormal basis for the Krylov subspace, Hm is the
m × m symmetric tridiagonal matrix equaling VT

mMVm com-
puted after m Lanczos steps, and e1 is the first column of the m
× m identity matrix. The approximation is based on comput-
ing the matrix square root on a much smaller subspace, of di-
mension m 	 3N, where it is inexpensive to compute exactly,
and then mapping the result to the original space. A more ac-
curate approximation is attained for larger dimensions m of
the Krylov subspace. See our previous paper16 for details.

The convergence of the above approximation with m can
be improved through preconditioning. This possibility has
been suggested in the past,47–49 but has not been applied to
Brownian simulations. The approach is analogous to precon-
ditioning for accelerating the convergence of iterative meth-
ods for solving systems of linear equations. To explain this
method for SD, we first note that Brownian forces can be ex-
pressed as

FB,0 =
√

2kBT

�t
R1/2z =

√
2kBT

�t
y. (22)

In this case, M in Eq. (21) is the resistance tensor R. To em-
phasize the generality of the method, the notation A is used
in this section. Now, consider the approximation LLT ≈ A. It
is required that one can readily solve with L, for example, L

may be a sparse triangular matrix. Let us denote

L−1AL−T = X. (23)

Since X is a symmetric positive definite matrix, X has a
unique principal square root. Then A can be decomposed by

A = LXLT

= LX1/2X1/2LT

= (LX1/2)(LX1/2)T

= SST . (24)

The matrix S is not symmetric or triangular matrix in gen-
eral, but can be used like B for calculating Brownian forces
described in Eq. (13). Then, y is given by

y = Sz

= LX1/2z. (25)

To compute the approximation ỹ = Sz, we first compute
ỹ′ = X1/2z via Eq. (21). This involves the matrix L−1AL−T,
which is designed to be well-conditioned, and thus the Krylov
subspace approximation converges quickly. Finally, ỹ = Lỹ′

is computed. Note that matrices S and X are never formed in
the method. The factorization LLT ≈ A may be considered a
“preconditioner.”

The overall algorithm for the approximate correlated vec-
tor y is shown in the Appendix. The most expensive opera-
tions are the matrix-vector multiplication and solving linear
equations with the triangular matrix L, which are both O(N2)
operations for the dense matrix case. If the matrix A contains
O(N) nonzero elements, which is the case in our FLD algo-
rithm, then the time for one iteration scales linearly with N.

The Krylov subspace method iteratively improves the ac-
curacy of the approximate correlated vector. We use the fol-
lowing quantity based on two consecutive iterates for moni-
toring the convergence of the method:16

Ek = ‖ỹk − ỹk−1‖2

‖ỹk−1‖2
, (26)

where k is the iteration number. We also checked the relative
norm of the exact error of the kth approximation as

Eexact
k =

∥∥ỹk − LX1/2z
∥∥

2∥∥LX1/2z
∥∥

2

, (27)

where z is the same standard normal vector used to compute
ỹ. This of course cannot be computed in practice.

3. Solving linear equations with a preconditioned
iterative method

For solving linear systems Ru = f at steps (III) and (VI)
of the mid-point algorithm, the preconditioned CG method
can be used as mentioned above. The preconditioner L used
for the Krylov subspace method at step (II) can be reused for
solving these linear systems. For the second linear equation at
step (VI), the solution u0 obtained at step (III) could be used
as an initial guess. On the other hand, calculating an initial
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guess for the first linear equation is nontrivial, since the Brow-
nian forces on the right-hand side do not have correlations at
different time steps. However, by using the fact that the re-
sistance matrix on the left-hand side is slightly perturbed be-
tween consecutive time steps, initial guesses for the first linear
system can be efficiently constructed.50 When a basis for the
Krylov subspace for the Brownian forces is available, an al-
ternative way of constructing initial guesses for u0 is possible
with almost no additional computational cost. To explain this
method, first note that in the absence of non-hydrodynamic
forces, that is fP = 0, the first linear equation is written
as

R0u0 = f B. (28)

Given the preconditioner L, the above equation is equivalent
to

(L−1R0L−T )(LT u0) = L−1f B. (29)

Using X = L−1R0L−T and fB = αLX1/2z with
α = √

2kBT/�t , then the solution u0 is written as

X(LT u0) = L−1(αLX1/2z)

X(LT u0) = αX1/2z
(30)

LT u0 = αX−1/2z

u0 = αL−T X−1/2z.

Then, the approximate u0 is calculated by

u0 ≈ ũ0 = α ‖z‖2 L−T VmH−1/2
m e1. (31)

The additional computational cost to compute ũ0 is negligi-
ble, since Vm and Hm are already calculated in the Lanczos
process for computing the Brownian forces. This initial guess
may reduce the number of iterations required for solving the
first linear equation of each time step. We will see the results
of this in Sec. III.

C. Simulation models

To validate our approximations, we used two mod-
els: (1) an intracellular-like polydisperse suspension and
(2) monodisperse particle suspensions. The former is the same
model that we used in our previous study of a model of a cell
cytosol.10 The latter was used to evaluate the scaling of our
algorithm. The intracellular-like suspension model has a to-
tal of 1152 particles, comprised of 15 different particle radii
ranging from 21 Å to 115 Å, placed in a (100 nm)3 box giv-
ing a volume fraction φ of 0.51. Each particle radius corre-
sponds to Stokes radius of a representative protein or tRNA
molecule estimated by a rigid-particle theory. See our previ-
ous paper10 for details. The time step was set to 20 ps, which
is obtained from ∼0.0005 (amin)2/D0

min, where amin and D0
min

are the smallest radius in the system and its self-diffusion
coefficient at infinite dilution (D0 = kBT/6πηa), respec-
tively. For the monodisperse suspension model, the number
of particles N ranges from 200 to 4000 at a volume fraction
φ = 0.5. For this model, a time step of 0.0005 a2/D0 was used.
All simulations were done at 298 K under periodic boundary
conditions. In the mid-point algorithm, n was set to 100. In

calculating the lubrication forces, a cut-off distance in units
of s = 2rij/(ai + aj) = 4 was used. For each condition, 10 in-
dependent simulations were done with different initial config-
urations. For the intracellular-like suspension model, simula-
tions were done for 108 steps and the first 2.5 × 105 steps were
discarded from the analysis. Deterministic non-hydrodynamic
forces were not included; that is, fP = 0. It is worth mention-
ing that particles do not overlap in the presence of lubrication
forces. Simulations using the original SD algorithm were also
performed for comparison. For these cases, the far-field HI
M∞ was estimated by Ewald summation of the RPY tensor.40

M∞ was updated every 200 steps. All timing tests were per-
formed on an AMD Opteron processor Model 2387. The In-
tel Math Kernel Library was used for computing matrix fac-
torizations, matrix-matrix multiplications, and matrix-vector
multiplications.

The short-time and long-time self-diffusion coefficients
for translational motion of a particle (DS and DL, respec-
tively) were estimated as in Ref. 35. It is known that the trans-
lational diffusion coefficients estimated by the Ewald sum-
mation technique under periodic boundary conditions show
a N−1/3 dependence.7 To correct for this finite-size effect, the
formula proposed by Ladd is used for homogeneous monodis-
perse suspensions.51 In principle, it may be possible to cor-
rect these values even for the heterogeneous systems in this
study using the same formula. To check this dependency, we
calculated DS for systems having varying numbers of parti-
cles, with N > 9000. However, a clear N−1/3 dependence was
not observed. Additionally, since the number of particles in
the systems considered here is more than 1000, finite-size ef-
fects might be small. Therefore, we will show uncorrected
data.

Finally, to analyze the correlations between particles in
time and space, we calculated the normalized pair correla-
tion function, Cij, described in Ref. 10. Cij ranges from −1.0
to 1.0. When two particles are positively correlated, Cij as-
sumes a positive value and when negatively correlated, Cij is
negative.

III. RESULTS AND DISCUSSION

In this section, we first show the convergence of the two
iterative approximation methods, the preconditioned Krylov
subspace method for computing Brownian noise vectors, and
preconditioned CG methods for solving linear systems involv-
ing sparse resistance matrices. Then, we present simulation
results obtained by the new SD method and discuss the limi-
tations of the approximations.

A. Convergence in the iterative methods

1. Convergence rate and error estimates
for computing Brownian noise

In Fig. 1, the effect of preconditioning on the conver-
gence of the preconditioned Krylov subspace method mea-
sured by Ek

exact is shown for the intracellular-like suspen-
sion. Here, we first employ the simplest preconditioner that
just consists of the diagonal of the matrix, which works if
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FIG. 1. Effect of preconditioning on the convergence rate in the Krylov sub-
space method for computing Brownian forces. For this test, an intracellular
suspension of 1152 particles with a volume fraction of 0.51 is used.

the matrix is diagonal dominant. This reduces the number of
iterations only slightly. The next preconditioner we employ
is an incomplete Cholesky factorization, which was also used
in previous studies.12–14 The incomplete Cholesky factor of
a positive definite matrix A, which we will denote by L0, is
given by a sparse lower triangular matrix that approximates
the complete Cholesky factor, but is as sparse as A.44 As sug-
gested by Torres and Gilbert,14 the reverse Cuthill-McKee
ordering52 was applied to the sparse matrix not only to im-
prove convergence but also to minimize breakdown in cal-
culating the preconditioner. Use of the incomplete Cholesky
preconditioner dramatically accelerates the convergence rate
in the preconditioned Krylov subspace method. For a stop-
ping tolerance of Ek

exact = 10−4, this preconditioning reduces
the number of iterations by a factor of 20.

The Ek
exact and Ek estimates during the preconditioned

Krylov subspace iterations with the incomplete Cholesky fac-
tor for the intracellular-like suspension are shown in Fig. 2.
Although Ek underestimates the exact errors by one order
of magnitude throughout the iterations, it monotonically de-
creases and follows Ek

exact as was previously seen in the BD
case.16 This result suggests that Ek is useful for estimating the
accuracy of the preconditioned Krylov subspace approxima-
tion. The iterations can be stopped when the estimate Ek falls
below a user-supplied threshold.
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FIG. 2. Comparison of Ek
exact and Ek in the preconditioned Krylov subspace

method for computing Brownian noise. An incomplete Cholesky precondi-
tioner was used. The simulated system is an intracellular-like suspension. Ek

with k = 1 was set to 1.

2. Convergence rate for solving linear systems

Once the correlated Brownian force vector is obtained,
the next computationally demanding task in the mid-point al-
gorithm is solving the two linear systems at steps (III) and
(VI). To solve these systems, we use the preconditioned CG
method, in which we can reuse the preconditioner constructed
for the Krylov Brownian noise approximation at step (II).
Also, as explained in Sec. II, we may calculate initial guesses
ũ0 for the first linear system without additional computational
cost; this may reduce the number of necessary iterations in the
CG process.

Timings and iteration counts for our simulation method,
FLD, are summarized in Table I. Different preconditioners
are tested, as well as the use of initial guesses. The simu-
lated system is the intracellular-like suspension model. The
results show that the incomplete Cholesky preconditioner sig-
nificantly reduces the number of iterations (by a factor of
about 25) required to achieve convergence of the linear so-
lutions. The initial guesses for the first linear system of each
time step also reduces the number of iterations required to
achieve the desired accuracy, from 10 to an average of 5.7 it-
erations. The initial guesses for the second linear system of
each time step are the solutions from the first linear system.
The results show that this second linear system can generally

TABLE I. Breakdown of computational time for FLD with different preconditioning methods, and with and without initial guesses for the first linear system.
Timings are shown in seconds. Iteration counts are shown in brackets. For iterative convergence criteria, Ek < 10−3 for the Brownian noise approximation and
the relative residual norm < 10−6 for CG are used. The simulated system is an intracellular suspension of 1152 particles with volume fraction 0.51. Occupancy
of non-zero elements in the resistance tensor is 2%. All values are averaged over ten independent calculations using different particle configurations.

No preconditioner Diagonal preconditioner Incomplete Cholesky

No initial guess With initial guess No initial guess With initial guess No initial guess With initial guess

Preconditioner construction . . . Negligible 0.08
Krylov Brownian noise approximation 0.05 (21) 0.06 (22) 0.04 (4.1)
CG for the first linear system 0.15 (238) 0.13 (210) 0.12 (192) 0.10 (164) 0.02 (10) 0.01 (5.7)
CG for the second linear system 0.06 (101) 0.05 (75) 0.01 (5.0)
Total 0.26 0.24 0.23 0.21 0.15 0.14
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TABLE II. Number of iterations (and time in units of seconds) in the Krylov Brownian noise approximation for various convergence criteria Ek and the
subsequent preconditioned CG method using the initial guesses constructed from the available Krylov subspace. Convergence criterion of preconditioned CG
is relative residual norm < 10−6. For this test, an intracellular suspension of 1152 particles with a volume fraction of 0.51 is used. All values are averaged over
ten independent calculations using different particle configurations.

Ek = 0.1 Ek = 0.01 Ek = 0.001 Ek = 0.0001

Krylov Brownian noise approximation 2.0 (0.022) 3.0 (0.027) 4.1 (0.037) 5.2 (0.042)
Preconditioned CG for the first linear system 7.8 (0.029) 6.9 (0.018) 5.7 (0.013) 4.7 (0.010)
Total 9.8 (0.051) 9.9 (0.045) 9.8 (0.050) 9.9 (0.052)

be solved with fewer than half the number of iterations when
this initial guess is used. From the viewpoint of total compu-
tational time, the use of incomplete Cholesky preconditioning
and the use of initial guesses give the best results among all
the options tested. We note in particular that these results in-
dicate that the incomplete Cholesky factors work very well in
our model.

Since the quality of the initial guess for the first linear
system of each time step depends on the size of the Krylov
subspace used for computing the Brownian noise vector, we
investigate the effect of different values of the threshold Ek

(which affects the size of the Krylov subspace) on the number
of iterations required to solve the first linear system. These re-
sults are shown in Table II. As expected, the number of itera-
tions required for computing Brownian vectors increases with
smaller values of Ek. For solving the first linear system, the
number of iterations is reduced. Interestingly, the total num-
ber of iterations as well as the total computational time of
the two iterative methods remains almost constant. The two
methods compensate each other in computational cost via the
initial guess ũ0. To obtain more accurate solutions in an itera-
tive method, more iterations are required in general, resulting
in an increase of total computational cost. However, our result
indicates that in the mid-point algorithm with the above iter-
ative approximation methods employed, we generally do not
incur additional computational time for computing Brownian
forces with higher accuracy.

B. Timing and scaling

We now turn to the scaling of the computational time of
FLD as the number of simulated particles increases. For the
following timing tests, the monodisperse suspension model
was used. Figure 3 shows the computational time required for
10 time steps for simulated systems from 200 to 4000 parti-
cles. Timings for the original SD algorithm are also shown
for comparison, where the far-field HI and its inverse were
calculated only in the first time step and the second linear
system was solved by the CG preconditioned by the complete
Cholesky factor obtained for computing Brownian forces. The
results show that FLD scales very nearly as O(N) over the
range of N tested. Although the number of iterations generally
grows with N for many types of linear systems arising from
physical problems, this was not observed in our tests, proba-
bly because only a small number of iterations were required.
The original SD method scales as O(N3) for large N, which
is expected due to using the Cholesky factorization at each
time step and the inversion of the far-field HI matrix M∞. For

small N, the Ewald summation of far-field HI, which is an
O(N2) operation, dominates the computational time in orig-
inal SD. Thus, the observed scaling for small N is less than
cubic.

C. SD simulations using the approximation methods

In this section, we evaluate FLD with respect to diffu-
sion coefficients and the pair correlation function using the
intracellular-like suspension model. In this examination, the
stopping threshold Ek is fixed to 0.001. For this value of Ek,
the long-time self-diffusion coefficient DL and inter-particle
correlated motions obtained from the simulations were almost
indistinguishable from the results when very stringent values
of Ek are used. It is worth noting that the simulation with
Ek = 0.1 was numerically unstable due to the inaccuracy of
Brownian forces. In the following, we show simulation results
using the original SD, FLD, and BD without HI (FD).

We first evaluate the short-time and long-time self-
diffusion coefficients of particles. Figure 4 shows normal-
ized short-time diffusion coefficients (DS/D0) and long-time
diffusion coefficients (DL/D0) obtained from the SD simu-
lations, where D0 is the value at infinite dilution. Here, DS

was calculated using 100 different configurations randomly
picked from the trajectories. The diagonal approximation
to M∞ overestimates the short-time diffusivity compared to
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FIG. 3. Scaling of computational time for 10 time steps of FLD and SD
simulations of a monodisperse suspension model at a volume fraction of 0.5
with periodic boundary conditions. In the SD simulation, the far-field hydro-
dynamic interaction term and its inverse were calculated only in the first time
step. Dashed lines are a guide to the eye to show the approximate scaling with
the number of particles.
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efficients of various particle radii in the intracellular-like suspension model
obtained from SD, FLD, and FD simulations.

results with the original M∞ estimated by the Ewald method,
with the deviation being most obvious for the smaller particles
(∼12% for the smallest particle). The same trend is observed
in the long-time diffusivity. FLD provides slightly higher DL

for small particles (∼15% for the smallest particle). However,
these values are much more accurate than those from FD sim-
ulations. Although FLD gives slightly larger diffusion coeffi-
cients for small particles, the method still well represents the
effects of HI on particle diffusivity. Thus, with regards to the
both the short time and long time diffusion constants, long
range hydrodynamic interactions are effectively screened.

Next, the normalized pair correlation function, Cij, for
particles are evaluated. Inter-particle correlated motions in
time and space are also an important property caused by HI.
In Fig. 5, Cij for 24 Å–24 Å and 66 Å–66 Å particle pairs,
which correspond to green fluorescent protein pairs and RNA-
polymerase pairs, respectively, are shown as examples. In this
figure, time and surface distance are normalized by a2/D0 and
a, respectively. In SD simulations, correlated motions are ob-
vious for both pairs. For small particle pairs, the correlated
motions (Cij > 0.2) range up to 2 in time and 0.75 in sur-
face distance, which correspond to 110 ns and 18 Å, respec-
tively. For large particle pairs, the correlation spans 12 in time
and 0.4 in surface distance, which correspond to 14 μs and
26 Å, respectively. On the other hand, Cij from FLD simu-
lations are much smaller than in the original SD and are in-
termediate between the original SD and FD simulations. This
underestimation is obvious for the small particle pair. Since
small particles readily diffuse away from each other as com-
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FIG. 5. Normalized pair correlation function, Cij, for the 24 Å–24 Å and
66 Å–66 Å pairs in the intracellular-like suspension model obtained from
SD, FLD, and FD simulations. Time and surface distance are normalized by
a2/D0 and a, respectively.

pared to large particles and their time to stay near to each other
is relatively short, they are sensitive to the absence of cross
coupling terms of the far-field HI. This underestimation is a
clear limitation of using a diagonal approximation for M∞.

In the FD simulation, the correlations for both pairs are
very weak and almost zero. For the large pairs in the FD sim-
ulation, weak but obvious correlated motions spanning 2 in
time and 0.25 in surface distance are seen even in the ab-
sence of HI, which may be caused by a depletion attraction as
described by Asakura-Oosawa theory on entropic forces be-
tween particles suspended in a solution of macromolecules.53

IV. CONCLUSIONS

In this paper, we have described an efficient algorithm
for performing large scale Stokesian dynamics simulations
of Brownian particles that scales as O(N). This new method
reproduces the diffusive properties of the particles obtained
with original SD. The key advance in our method is the use
of preconditioning in various ways to reduce overall computa-
tion time. The preconditioner, an incomplete Cholesky factor-
ization in our case, is computed once and used three times per
time step, to accelerate the Brownian noise calculation and
the solves of two linear systems. (Although not demonstrated
in this paper, the preconditioner may also be reused for sev-
eral time steps, which amortizes the cost of the constructing
the preconditioner.) Additionally, the Krylov subspace gener-
ated for computing Brownian noise can be used to construct
a good initial guess for the first linear system of each time
step. We computed initial guesses under the assumption that
fP = 0, but the technique may work even in the presence of
non-hydrodynamic forces. We note that since our resistance
matrix approximation is sparse, sparse direct methods, i.e.,
complete sparse Cholesky factorization, may also be used for
computing Brownian noise and solving linear systems. These
methods may be expected to be faster than our preconditioned
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iterative approach for small numbers of particles, but we ex-
pect the iterative approach to be faster for large scale simula-
tions, particularly when exploiting reuse of the preconditioner
as described in this paper.

Banchio and Brady also proposed an O(N) SD algorithm,
where M∞ is replaced by a diagonal matrix and the incom-
plete Cholesky preconditioned CG method is used to solve
linear equations.12 The main difference between their algo-
rithm and our algorithm is how to compute Brownian forces.
In their algorithm, the Brownian forces are calculated as a
pairwise sum over all near neighbors. An advantage of us-
ing a Krylov subspace method here is that this subspace can
be reused to generate a good initial guess for the first linear
equation of each time step without additional computational
cost as described in Sec. II B 3. The use of the initial guess
reduced the number of iterations in the preconditioned CG for
the equation by 50% as shown in Sec. III A 2.

The generality of the Krylov subspace approximation for
computing Brownian noise is also an important point. The
approximation is not only valid for the SD algorithm, but
one can use this idea in the BD algorithm as well. Here,
the diffusion matrix is dense; thus, each iteration involves
an O(N2) matrix-vector multiplication. We observed that the
simple diagonal preconditioner slightly accelerates the con-
vergence rate for polydisperse suspensions (data not shown).
We are looking for proper preconditioners for large-scale and
long-time BD simulations.

Fixman’s Chebyshev method has been used in the past
for computing Brownian noise in large scale simulations.15

In principle, we can apply the preconditioning idea to this
method in the same manner we did for the Krylov subspace
approximation. In addition, the Chebyshev method can also
be used to construct initial guesses for the first linear sys-
tem by computing these guesses at the same time as when
Brownian noise is calculated. However, the major advantage
of the Krylov subspace approximation over the Chebyshev
approximation is that the former method does not require es-
timates of the extreme eigenvalues of a given matrix. This is
a very important point when the Krylov subspace method is
applied to approximate the square root of the resistance ma-
trix R, since the lubrication interactions are sensitive to small
changes in particle distances so that the eigenvalue spectra
of R frequently change. If the Chebyshev approximation is
applied to the problem, we must update these estimates fre-
quently or suffer degraded convergence rates when conserva-
tive eigenvalue bounds are estimated a priori and then used
throughout the simulation.

Although the diagonal approximation of the far-field HI
may give particle diffusion constants within a reasonable er-
ror range, thereby implying neglect of long range HI is a rea-
sonable approximation to describe diffusion, intermolecular
correlated motions, especially for small particles, are signif-
icantly underestimated in the intracellular-like suspension. A
similar deficiency was observed in monodisperse suspensions
at low volume fractions (data not shown). If we optimize the
diagonal elements of M∞, the method may provide a diffusiv-
ity of particles that more closely match the SD results. How-
ever, this does not recover correlated motions in FLD. One
way to fix this problem while keeping the overall scaling of

the algorithm as low as possible is the use of PME method
to treat the far-field HI, which scale as Nlog(N).12, 13, 17 In this
case, computation of the Brownian forces with covariance R
can be done by separately computing two Brownian forces
with covariance (M∞)−1 and Rlub.12 The Krylov subspace
method can be adapted for (M∞)−1 by seeking an approxi-
mation to the inverse square root of M∞.

In conclusion, SD is an important simulation technique
for understanding the dynamical motions of particles in fluids
comprised not only of colloidal particles but also biological
molecules. We proposed an SD algorithm based on iterative
methods and the diagonal approximation of the hydrodynamic
matrix for large-scale and long-time SD simulations. The
method scales as O(N). With regards to diffusion, long-range
HI are significantly screened. However, the neglect of long
range HI significantly underestimates intermolecular dynam-
ical correlations. The complete hydrodynamic screening for
freely moving particles is not theoretically validated. There-
fore, the use of the diagonal approximation in our model has
its limitations. We need further improvements to address this
issue in an approach that retains the computational complex-
ity of FLD and yet includes the appropriate level of HI so as to
retain the temporal and spatial dependence of the intermolec-
ular correlations.
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APPENDIX: PRECONDITIONED KRYLOV SUBSPACE
ALGORITHM FOR COMPUTING BROWNIAN FORCES

The preconditioned Krylov subspace algorithm for com-
puting approximate vector ỹ ≈ Sz with SST = A is described
in the following.

Algorithm: Preconditioned Krylov subspace algorithm for computing
ỹ ∼ N (0, A)

1 Generate random z ∼ N(0,I)
2 v1 = z/‖z‖2

3 for j = 1 to m do
4 w = L−1AL−Tvj

5 if j > 1 then
6 w = w – hj-1, j vj-1

7 end
8 hj , j = wT vj

9 if j < m then
10 w = w – hj , j vj

11 hj+1, j = hj, j+1 = ‖w‖2

12 vj+1 = w/hj+1, j

13 end
14 end

15 return ỹ = ‖z‖2 LVmH1/2
m e1
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