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Abstract

Since its first publication in 2003, the Gene Set Enrichment Analysis (GSEA) method, based on 

the Kolmogorov-Smirnov statistic, has been heavily used, modified, and also questioned. Recently 

a simplified approach, using a one-sample t-test score to assess enrichment and ignoring gene-

gene correlations was proposed by Irizarry et al. 2009 as a serious contender. The argument 

criticizes GSEA’s nonparametric nature and its use of an empirical null distribution as 

unnecessary and hard to compute. We refute these claims by careful consideration of the 

assumptions of the simplified method and its results, including a comparison with GSEA’s on a 

large benchmark set of 50 datasets. Our results provide strong empirical evidence that gene-gene 

correlations cannot be ignored due to the significant variance inflation they produced on the 

enrichment scores and should be taken into account when estimating gene set enrichment 

significance. In addition, we discuss the challenges that the complex correlation structure and 

multi-modality of gene sets pose more generally for gene set enrichment methods.

Introduction

The availability of global transcription profiling with microarrays in the mid 1990s made 

possible the analysis and interpretation of the activity of the entire transcriptome to provide 

insights into biological function and the mechanisms of disease. Early on, it became clear 

that focusing on long lists of differentially expressed genes gave limited understanding of 

underlying pathways and processes. Several approaches to consider testing for the over-

representation of gene categories rather than genes were introduced by [1,2,3,4,5,6]. In [7] 

we introduced a knowledge-based approach analysis method, Gene Set Enrichment Analysis 

(GSEA) to address this problem. Briefly, this initial approach ranked genes by their 

differential expression between two phenotypes, used the Kolmogorov-Smirnov statistic to 

score the enrichment of an a priori defined sets of genes that share common biological 

function, chromosomal location or regulation, and evaluated the significance of the score 

using an empirical permutation test correcting for multiple hypothesis testing. Thus, GSEA 

provided a prioritized list of sets of genes for hypothesis generation and further study. In this 

first application we identified a set of genes involved in oxidative phosphorylation with 

reduced expression in diabetic patients. None of these genes were down-regulated by more 

than 20%, but as a group their coordinate down-regulation was significant and, together with 

subsequent work, lead to a better understanding of the regulation of the oxidative 
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phosphorylation pathway [8,9] as many its components turned out to be controlled by the 

PCG1A transcription factor, which was itself down-regulated in diabetic patients.

As soon as this original version of GSEA appeared, objections were raised to the approach 

[10], some of which were immediately refuted in [11], and the rest were met by our 

subsequent improvement of the GSEA methodology. In Subramanian and Tamayo et al. 

[12] we introduced a version of GSEA that used a correlation-weighted Kolmogorov-

Smirnov statistic, an improved enrichment normalization procedure, and an FDR-based 

estimate of significance that collectively made GSEA appreciably more sensitive, more 

general, and more robust. As a result of these improvements, and the public availability of 

the software and companion Molecular Signatures Database (MSigDB) 

[www.broadinstitute.org/gsea], GSEA became a widely used method and was applied to 

numerous problems across many application domains. Notably, since the original release of 

the software and database in 2005, the number of GSEA user registrations has grown to over 

33,000, and the method used and cited in more than 3,100 scientific publications. GSEA and 

other gene set analysis methods have also motivated the development of general statistical 

methodologies for large-scale inference for “sets” of variables [13,14].

The specific knowledge-based approach pioneered by GSEA is now standard practice in the 

analysis of gene expression data and inspired the development of a large and growing family 

of conceptually similar methods. For example, Huang et al. [15] identified at least 68 

different gene set enrichment methods in their survey. A family of popular methods estimate 

the over-representation of Gene Ontology (GO) annotations using a hyper-geometric 

statistic or Fisher’s exact test (e.g., GoMiner [16], FatiGO [17], GoSurfer [18], EasyGo [19], 

David [20]). These methods restrict consideration to the “top” of the list, and may miss more 

subtle signals. They also assume gene independence and thus produce overly optimistic 

results [15,21,22,23,24,25]. In addition, several improvements to gene set enrichment 

analysis itself have been proposed. These include those used in [26], GSA [27], SAFE [28], 

Catmap [29], ErmineJ [30], and SAM-GS [31], and PROPA [32]. They employ alternative 

ranking metrics, enrichment statistics, and several variations on significance estimation 

schemes. Notably, [33] demonstrates the difficulty of finding a single, optimal statistic due 

to the complexity, heterogeneity and multi-modal distribution of the expression levels of 

genes within gene sets. Other somewhat more sophisticated methods (e.g., FunNet [34], 

PARADIGM [35], COFECO [36]), take a network-based approach, but restrict the analysis 

to processes where a deeper understanding of gene-gene interactions is already available. 

The primary advantages of GSEA are that it only requires gene set membership information 

to compute enrichment scores, considers the entire ranked list of genes, and maintains the 

gene-gene dependency that reflects real biology. This yields a good compromise between 

sensitivity, performance and applicability.

Recently, Irizarry et al. [37] in their “Gene Set Enrichment Made Simple” article proposed a 

“simpler” approach to gene set expression analysis assuming gene independence and using a 

one-sample t-test to estimate enrichment. Here we will refer to their method as SEA 

(Simpler Enrichment Analysis). The rationale for SEA is based on their perception that that 

gene independence is a reasonable simplifying assumption and thus simpler parametric 

approaches to gene set analysis have been ignored. Both of these assumptions disregard a 
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large body of literature where many authors have already introduced “simple” parametric 

methods for gene set analysis [38,39,40,41,42]. Many researchers have demonstrated the 

unrealistic nature and limitations of the gene independence assumption [21,22,23,24,25,43]. 

In addition, they criticized GSEA for its use of an empirical null distribution, which they 

argue is unnecessary and hard to compute; and for using a non-parametric weighted statistic 

that they believe inherits the lack of sensitivity of the original Kolmogorov-Smirnov 

statistic. The paper concludes by proposing SEA as a serious contender and argues against 

the use of GSEA in any of its forms.

The aim of this paper is twofold. First, we present the SEA approach and contrast it with 

GSEA using the statistical framework of [43]. We then carefully consider Irizarry et al.’s 

[37] criticism of GSEA and refute their claims by systematically comparing SEA and GSEA 

on a large benchmark set of 50 datasets. We show, in agreement with earlier observations, 

that the gene independence assumption is not realistic because gene correlations are non-

trivial and produce a substantial amount of variance inflation in the global statistic that in 

turn produces a large number of false positives results. Second, we discuss the challenges 

that the complex correlation structure and multi-modality of gene sets pose for gene set 

enrichment methods in general and propose that future progress in gene set analysis will 

result from improving the resolution of the gene sets and better ways to model the complex 

gene set correlation structure.

Review of SEA and GSEA

Here we review first the SEA approach proposed in [37] and then the GSEA approach 

proposed in [12] using the statistical framework of Barry et al. 2008 [43]. Several other 

valuable and complementary statistical frameworks for gene set analysis have been 

introduced in recent years [13,25,44,45,46].

First we will define the quantities relevant for the analysis: the input gene expression dataset 

X corresponds to N genes and M samples and contains gene expression profiles xij, where i 

indicates a specific gene (row) and j a specific column (sample). The relevant phenotype of 

interest is defined as a vector Y of M binary values categorizing the sample in two groups 

(Y0, Y1). The gene sets are represented as gk.,where k runs from 1 to K, the maximum 

number of gene sets. We define a gene set enrichment method as a two-stage procedure 

incorporating i) a local test statistic si (xi, y)that measures the association between a gene 

expression profile (xi•) and the phenotype (Y); ii) a global test statistic Si to assess the degree 

of the gene set’s enrichment, and iii) a specific null hypothesis and error rate controlling 

procedure to assess statistical significance and provide a final sorted gene set enrichment 

result list. The global statistic can be either a parametric or non-parametric function of the 

local test statistics corresponding to the gene set in question (“self-contained” statistic) and 

potentially all other genes (the complement or “competitive” statistic);

The SEA method uses as local test statistic a two-sample t-test statistic ti that quantifies the 

magnitude of differential gene expression for each gene,
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(1)

where the expected values and standard deviations (σ) are computed in each phenotypic 

class (Y0 / Y1). The SEA method can also be used with modified versions of this score [47] 

or with a signal to noise ratio as is used in GSEA. SEA’s global test statistic is a one-sample 

t-test (z-score) that is used to estimate the “enrichment” of the entire gene set,

(2)

The SEA method assumes that these global statistics are independent and identically 

distributed (gene-independence), proposes a theoretical normal-theory null hypothesis,

(3)

and estimates FDR q-values following the methodology of Storey 2002 [48]. Realizing that 

this global statistic only detects changes in location and fails to detect other more complex 

types of differential gene set behavior, the SEA method adds a second χ2 global statistic,

(4)

and, as in the case of the z-score, an associated normal-theory null hypothesis,

(5)

with the FDR computed in the same way as for the z-score. The SEA method is therefore 

based on the assumption that gene-gene correlations and gene set overlaps have negligible 

effects and therefore both global statistics (z-score and χ2) are independent and identically 

distributed under normal-theory null hypotheses  and . The SEA null 

hypotheses are instances of the gene-sampling “Class 1” null hypothesis of [43]. We will say 

more about the applicability of this assumption to real datasets in the next section below.

Before concluding our review of the SEA method, we point out that the second global 

statistic ironically renders SEA as less “simple,” since the potential user now has to consider 

two sets of results and their corresponding FDRs. Moreover, no formal procedure is 

specified by SEA in order to produce a final single list of results. Instead, the authors 

suggest choosing high scoring gene sets according to either one of the two global statistics.

The GSEA method uses a signal to noise ratio as its local test statistic,
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(6)

Where σ′ are the intra-class standard deviations thresholded from below at 20% of the class 

means,

(7)

GSEA uses a weighted Kolmogorov-Smirnov global statistic to assess gene set enrichment,

(8)

An important fact, not often appreciated, is that this global statistic is weighted using a 

power of the local statistic |sh|α (typically with α =1) and it is therefore much more sensitive 

to differences at the top and bottom of the gene list than the standard Kolmogorov-Smirnov 

statistic. Because this statistic cannot be expressed as a simple function of the local statistic, 

it posses challenges to formal analysis based on parametric modeling.

The global statistics  depend on size of gene set and therefore are not identically 

distributed. GSEA addresses this issue by normalizing  values to factor out the 

intrinsic gene set size dependence. The relevant normalization is a change or scale using the 

expected value of the positive (negative) null distribution statistic induced by sample 

permutation,

(9)

This rescaling is motivated by the asymptotic behavior of the Kolmogorov-Smirnov statistic 

(for details see supplementary information in [12]). This normalization effectively puts the 

gene set enrichment scores on the same scale analogous to how the factor  does it for 

the SEA z-score. This makes it possible to define a null distribution for the GSEA global 

statistics assuming a null distribution  induced by sample permutation,

(10)

The null distribution  corresponds to the Class 2 type subject-sampling null hypothesis 

of [43].
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Our review of both methods clearly shows that SEA and GSEA differ in two important 

aspects: the choice of global statistics (z-score combined with χ2 vs. weighted Kolmogorov-

Smirnov) and the specific type of null hypothesis being assumed: gene-sampling/Class 1 vs. 

subject-sampling/Class 2.

The authors of SEA apply the method to the handful of examples used to introduce GSEA in 

[12] and make the following claims in favor of the gene independence hypothesis and 

against GSEA:

i. Differential gene expression scores can be assumed to be both independent and 

normally distributed.

ii. As a consequence of (i), the simpler gene set enrichment method (SEA) based on a 

one-sample t-test can effectively assess gene set enrichment in generic datasets. 

When SEA fails to find relevant gene sets it can be “fixed” by applying a second 

simple statistic (χ2).

iii. GSEA is computationally unnecessarily complicated. The complexity of using 

empirical null distributions in GSEA can be avoided by using theoretical (normal) 

null distributions. Moreover, the gene-gene independence assumption allows the 

adjustment for multiple hypotheses by using independent hypotheses FDR q-values 

[49];

iv. SEA is faster and simpler but equivalent to GSEA and therefore GSEA should not 

be used. SEA should be the basis of new methodologies for gene enrichment 

analysis;

v. GSEA is based on a Kolmogorov-Smirnov statistic, which is known to lack 

sensitivity and thus is rarely used.

We will refute the authors’ claims below by studying the gene independence assumption 

behind the SEA method and by performing an empirical study of 50 datasets where we focus 

on the consequences of assuming gene independence.

Empirical Analysis of SEA and GSEA

In their SEA approach Irizarry et al. [37] justify the gene-independence assumption based 

on the seemingly “straight” behavior of the gene expression scores in a handful of Q-Q plots 

(Figure 3, Irizarry et al. [37]) and conclude that “Barring a few outliers, which are likely 

associated to differentially expressed genes, the assumption appears appropriate in all 

datasets.” We believe this is an over-simplification and that the gene independence 

assumption is not appropriate in general. Here we present the results of an empirical study to 

systematically evaluate SEA and GSEA and assess the effect of the gene independence 

assumption in a representative benchmark set of 50 expression datasets, including some 

from the GSEA paper [12], as well as many more from GEO (Gene Expression Omnibus), 

the InSilico DB database of datasets [http://insilico.ulb.ac.be] and others from the literature. 

The complete list of these publicly available datasets is included in Supplementary Table 

ST1.
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This benchmark set is much more comprehensive and representative of the universe of 

datasets that may be used in gene set enrichment analysis. Most of the datasets derive from 

more recently generated data than the original GSEA examples, contain expression levels 

for greater numbers of genes, and display a much larger variety of phenotypic distinctions.

In order to perform our comparative analysis we ran implementations of GSEA and SEA on 

all 50 benchmark sets and computed the corresponding results tables, including enrichment 

scores, p- and q-values for each gene set. In order to make a fair comparison of both 

methods we computed the GSEA q-values using exactly the same procedure as in SEA (i.e., 

computing q-values using the nominal p-values as inputs to the q-value R function/package 

[49]). For SEA, in order to produce a single score per gene set, we generated both proposed 

scores (z-score and χ2) and chose the one with smaller p-value as was suggested in [37].

First we note that SEA uniformly produces many more significant gene sets than GSEA. For 

example in the Pancreas dataset [50], featured in Fig. 1B, GSEA produces 121 significant 

gene sets, out of a total of 1,368, at the suggested threshold (q-value < 0.25). In contrast, 

SEA produces 570 significant gene sets at the most stringent threshold of q-value < 0.05. 

This number is almost 5 times more than GSEA and accounts for 42% of the total number of 

gene sets. Similar remarkably large results sets are produced by SEA in other datasets. This 

overproduction of significant results is further exacerbated in newer more comprehensive 

datasets with larger numbers of genes and stronger gene-phenotype correlations. SEA 

produces are large number of significant sets many of which we suspect are false positives 

due to the assumption of gene-gene independence. It is, therefore not surprising, that among 

the SEA sets we find many of the significant results produced by GSEA [12].

It is difficult to assess in more direct terms the specificity/sensitivity of each method and 

specifically the exact percentage of false positives in SEA results because in general we do 

not have validated “ground truth” results for any given dataset. However, in our study we 

will use the methodology of Gatti et al. 2010 [21] where for each benchmark dataset, 

besides the observed global statistics corresponding to the relevant phenotype, we produced 

results for 1,000 randomly permuted phenotypes. Because the phenotypes have been 

randomized there is no significant correlation structure between the class labels and the gene 

profiles but the gene-gene correlations are preserved. We will use the observed and random-

permutation global statistics to perform two groups of analyses: i) a study of the amount of 

variance inflation and the ii) inflation of p-values.

Variance Inflation

One of the effects of gene-gene correlations and dependency structure in microarray datasets 

is the increase of variance in the global statistics. For example the SEA null hypothesis 

assumes the global statistics are i.i.d. and normally distributed,

(11)

Barry et al 2008 [43] studied the effects of gene dependency and found that for a difference 

of means statistic, quite similar to the SEA z-score, and gene set sizes that are small 
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compared with the length of the gene list, the true variance of the statistic will differ from 

that under the i.i.d. class 1 gene-sampling null by a “variance inflation” factor Γ that can be 

approximated by,

(12)

where  is the average correlation between the global statistic (z-score) inside a gene set. 

For global statistics that are linear functions of the local statistic,  can be approximated 

with , the average correlation between gene expression profiles of genes in a dataset. 

From eq. 12 it is evident that the variance inflation increases with the product of the average 

intra-gene set correlation with the size of the gene set. Therefore, a small number of positive 

correlations within a gene set can result in substantial variance inflation if the gene set is 

large enough. For SEA the assumption of gene independence implies  and therefore a 

variance inflation of one. Gatti et al. 2010 [21] studied about 200 real datasets and found 

strong variance inflation effects, roughly in the range from 1 to 6, as a result of rather 

modest positive gene correlations. Their results demonstrated the importance of this effect 

and the unrealistic nature of the gene sampling (class 1 and SAE) null hypothesis.

In order to further investigate this issue, we analyzed the variance of the distribution of SEA 

z-scores under 3 null distributions: sample/phenotype-sampling (class 2), gene-sampling 

(class 1) and SEA (theoretical normal null). In order to produce histograms we computed z-

scores generated by 1,000 permutations of the samples and 1,000 permutations of the gene 

identifiers. Figure 1 shows the histograms of z-scores for P53 [12] and Pancreas [50] 

datasets from the benchmark set.

The histograms of z-scores for 1,000 permutations of the samples (shown in grey in Fig. 1) 

show clearly how the gene correlations noticeably increase the width of the distribution and 

consequently produce significant variance inflation. For example, in the P53 and Pancreas 

datasets the variance of the z-score distribution for the sample permutations are 2.9 and 4.12, 

respectively. In contrast the variances for the gene-sampling distributions are 0.96 and 1.02, 

which are very close to the SEA null value of 1.

Additional insight can be obtained from the histograms of individual average gene set 

internal correlations and variance inflation as shown in Figure 2. The gene correlations are 

on average mostly positive and relatively small, e.g., in the range [0, 0.30] (Figs 2A and 2C), 

but their effect on variance inflation can be significant and equivalent to a few times the 

variance of the SEA null distribution as estimated by eq. 12 (Figs 2B and 2D).

Because of the strong effects of the gene correlations on the global statistic distribution the 

sample/phenotype-sampling class 2 (GSEA) null hypothesis is a much more realistic 

representative of the situation found in real datasets where there is always a nonnegligible 

amount of gene correlations.
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p-value inflation

The variance inflation in the global SEA statistic presented in the previous section is not 

only of academic interest. It has deleterious consequences in the form of high rates of false 

positives and inflated p-values. In Figure 3 we show histograms of p- and q-values for SEA 

and GSEA applied to the P53 (Fig 3A) and Pancreas datasets (Fig 3B) for 1000 random 

permutations of their phenotype labels. Recall that these permutations are performed to 

eliminate, to the extent possible, the biological differences between the two resulting groups. 

SEA produces a spurious over-population of low p-values that can be seen as a spike on the 

left side of the histogram in panel I of both Fig. 3A and Fig. 3B. These spikes include at 

least about 15% of all gene sets against the P53 dataset and about 20% of all gene sets 

against the Pancreas dataset.

The over-population of low p-values translates into a significant number of gene sets with 

low q-values (panel II of Figs. 3A and 3B). Using a q-value threshold of 0.05 this spurious 

population includes 11.5% of all gene sets against the P53 dataset and 20.1% of all gene sets 

against the Pancreas dataset. In contrast GSEA produces a practically flat histogram of p-

values and no significant numbers of gene sets with low q-values as expected (Figs. 3A and 

3B, panels III–IV). In this case, for example, the number of gene sets with q-values less than 

0.05 is only 0.0248% for the P53 dataset and practically zero for the Pancreas dataset. Thus 

we see that SEA produces many significant gene sets in the absence of a biological signal as 

a consequence of ignoring gene-gene correlations. This is a major drawback of the method.

In Figure 4 and Table ST3 we summarize the randomized phenotype results for the entire 

benchmark set by showing the percentage of gene sets with q-values less than 0.05 and 0.25 

by SEA and GSEA. SEA uniformly produces a large number of false positives regardless of 

the choice of FDR threshold. To further demonstrate that this inflationary effect is indeed 

produced by the gene-gene correlations we used the same 1,000 randomly permuted 

phenotypes as before, but we also randomly permuted the gene identifiers effectively 

destroying the gene-gene correlations. In this case, SEA shows similar behavior to GSEA 

and neither shows inflation of p-values (Fig. 5 A–B).

The above analysis convincingly demonstrates that ignoring gene-gene correlations and 

using the class 1(gene sampling) theoretical null distribution [13] have very negative 

consequences on the final results of SEA, and in fact on any enrichment method that 

assumes gene-gene independence. These results are very similar to those obtained by Gatti 

et al. 2010 [21] using different data sets and a similar, but different, statistic.

All these results cast doubt on the validity of Irizarry et al.’s claims (i)–(iv) above.

The complexity of gene score distributions in gene sets

The heterogeneous distribution of the expression of genes in gene sets poses a technical 

challenge to properly define enrichment scores. This derives from the fact that most gene 

sets are noisy and imperfect, or too context-dependent to be modeled with a simple 

assumption or statistic. Sometimes the genes sets are derived from generic “textbook” 

descriptions of a biological process, e.g., Biocarta pathways or GO ontologies, and thus have 
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little relevance to coordinately expressed components of these pathways. In other cases, they 

are defined in a specific cellular context different from the one in which an investigator 

wishes to assess enrichment or they are a mixture of multiple biological processes that may 

not occur coherently in any single biological sample. For all these reasons, the distribution 

of gene scores displays rather complex multi-modal behavior and this it turn makes it 

difficult to define a single enrichment score that will work well across gene sets and 

datasets.

Examples of this complex behavior are illustrated in Figure 6, where the behavior of three 

selected gene sets is shown across three of the benchmark datasets. The different panels 

illustrate the complex multi-modal behavior of gene sets that may occur. We note that in 

panels I, III, V and IX, a relatively high enrichment score of the gene set is produced by a 

subset of the genes, rather than the entire gene set. The genes responsible for the enrichment 

appear at either the top or bottom of the ranked gene list and are representatives of relevant 

biological processes that are indeed enriched in the studied phenotype. These examples are 

typical and show the complexities in modeling that gene set enrichment analyses encounter 

in practice. They also explain why it is difficult to describe the behavior of gene sets 

analytically and why overly simplistic assumptions such as those used in [37] are not likely 

to work. By taking these complexities into account, one can better appreciate the motivation 

for the weighted Kolmogorov-Smirnov statistic as a good compromise between expecting all 

or most genes to be coherent on one side, and overweighting one or a few genes and 

allowing them to dominate the score on the other. It provides a reasonable distribution-free, 

but empirically adaptable, way to deal with the limitations and idiosyncrasies of real life 

gene sets. It may not be the most powerful statistic for any given simplistic circumstance, 

but the modification we made in [12] of weighting by phenotype correlation is sensitive 

where it has to be and deals well with the behavior of real gene sets.

Discussion

The SEA method justifies the gene independence assumption based on the apparent 

normality of the local statistics (Q-Q plots), and the assumption that because intra-gene set 

gene correlations do not impact significantly the distribution of the global statistics. These 

assumptions are not supported by our empirical results. The strong effect of gene-gene 

correlations is well known and the need to take into account this dependency structure as 

part of gene set analysis has been well documented [22,23,24,25]. Of special note is the 

study of Gatti et al. [21] who performed a large empirical study of 200 datasets in their 

suggestively titled article “Heading Down the Wrong Pathway: on the Influence of 

Correlation within Gene Sets” and also demonstrated the practical impact of strong gene-

gene correlations patterns and strongly criticized the use of the gene independence 

assumption.

One limitation of the SEA study [37] is that they evaluated their method, and obtained their 

conclusions, in only a handful of datasets, namely the examples from the GSEA paper [12]. 

Those datasets were good examples to illustrate the use of the recently revised GSEA 

method at that time, but they do not constitute a comprehensive benchmark to systematically 

study the properties of a new method or to perform a comparison between competing 
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methods. The collection of gene sets they used (MSigDB in 2005) is also relatively small 

(522 gene sets) compared with later releases of the same collection (e.g. 1,893 gene sets in 

MSigDB v2.5) where the overlap between gene sets is more significant.

The authors of SEA also criticized the use of the Kolmogorov-Smirnov statistic in GSEA 

based on their view that it lacks sensitivity and is rarely used (their claim (v) above). 

However they failed to appreciate the fact that the weighted version used in GSEA is not the 

standard Kolmogorov-Smirnov statistic and was developed specifically to be more sensitive 

to differences in the tails of the distribution. Non-parametric statistics based on empirical 

cumulative distribution functions are the basis of new and powerful “goodness of fit” tests 

[51].

Irizarry et al. [37] also listed as one of the motivations for SEA the fact that GSEA is slow 

and hard to compute (claims (iii) and (iv)). In Table 1 we show typical CPU execution times 

(Mac book Pro 8.3) for SEA and GSEA applied to two benchmark datasets (P53 and 

Pancreas). As seen in the table, SEA is indeed faster than GSEA because it avoids the 

generation of an empirical null distribution. However, a typical GSEA run takes only about 

7 minutes and for almost all users this is an acceptable running time. Moreover, SEA may be 

faster but this speed up comes at the high cost of large numbers of false positives as 

described above.

Conclusions

We have shown strong empirical evidence that gene-gene correlations cannot be ignored and 

should be taken into account by gene set enrichment methods. Our results agree with the 

extensive literature providing theoretical or empirical evidence against the gene 

independence assumption [22,23,24,25] and counter the chief assumption of SEA [37].

We benchmarked SEA against GSEA in a collection of 50 expression datasets. By 

randomizing phenotypes, we demonstrate that gene-gene correlations produce significant 

variance inflation in SEA results, which also exhibit very high false positive rates and 

significant numbers of inflated p- and q-values. Based on our empirical results we have 

refuted the claims of Irizarry et al. [37] and more broadly we recommend that methods that 

ignore gene-gene correlations, such as SEA, be avoided.

Finally, we believe that the most important improvements that can be made to gene set 

enrichment methods are i) the improvement of gene set databases, like the MSigDB, so that 

their sets are less redundant and have more coherent behavior in actual biological samples; 

and ii) the development of more sophisticated methodologies that more accurately take into 

account or model gene correlations and the dependency structure in the data (i.e., the 

opposite of the SEA approach).

By improving the resolution of gene sets we may overcome many of the limitations we have 

described above: noisiness, redundancy, multiple-process representation, poor specificity, 

etc. We are currently experimenting with the creation of a “hallmark” collection of gene sets 

in MSigDB that will contain more targeted representations of biological processes. In 
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addition, we are investigating the generation of coordinately expressed gene sets derived 

from the activation or repression of pathways in the laboratory.

Our group, and many others, are currently engaged in efforts to improve gene set analysis 

through better modeling of the datasets’ correlation structure and by introducing additional 

information about the behavior of genes, (e.g., on a sample per sample basis and in 

supplementary datasets) as part of the gene set analysis. There are indeed many alternative 

approaches to pursue these goals and here we conclude by listing just a few: single-sample 

gene set enrichment [52,53,54], computational and theoretical methods for assessing size 

and effect of correlation in large-scale testing [22], eigenvalue-decomposition of covariance 

matrixes [55], rotation-based sampling [56], correlation-adjusted t-scores [57], modeling 

dependency among the genes within and across each gene set [58] and multiple testing 

procedures using dependency kernels [59]. Given the complexities of genomic data it is 

worthwhile to pursue new methodologies such as these; however, we should resist the 

temptation to over-simplify and remember the admonishments of Pearson and Tukey:

“…it is not enough to know that a sample could have come from a normal 

population; we must be clear that it is at the same time improbable that it has come 

from a population differing so much from the normal as to invalidate the use of the 

‘normal theory’ tests in further handling of the material.”

--E. S. Pearson

“Far better an approximate answer to the right question, than the exact answer to 

the wrong question, which can always be made precise.”

--J. Tukey

Methods

Our implementation of GSEA is as described in Subramanian and Tamayo et al. [12]. The 

implementation of SEA followed the description given in Irizarry et al. [37]. We validated 

our implementation by exactly reproducing the t-test score and χ2 statistics from the result 

set of Irizarry et al. [37] in one of the datasets.

We obtained the differential gene-expression scores using the signal to noise ratio as 

computed in GSEA and in SEA. We also normalized the differential gene expression scores 

by subtracting the median and dividing by the median absolute deviation as is done in SEA

To perform the analyses of variance inflation and over-production of false positives and 

inflated p-values we followed the approach of Barry et al. 2008 [43] and Gatti et al. 2010 

[21]. For each dataset in the benchmark we randomized the phenotype labels 1,000 times 

and ran both algorithms. We also computed enrichment scores by randomizing the gene 

labels. The p-values are computed using the areas under the empirical null histograms fro 

GSEA and areas under the normal distribution for SEA. The q-values were computed using 

the R function qvalue from package qvalue which implements the method described in 

Storey and Tibshirani [49].
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Figure 1. 
Histograms of z-scores for 1,000 permutations of the samples (grey) and gene identifiers 

(black), and the SEA null distribution N(0, 1) for the A) P53 and B) Pancreas datasets. The 

legend also shows the mean and variance of the distributions.
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Figure 2. 
Histograms of gene correlations and estimated variance inflation for the P53 (A and B) and 

Pancreas datasets (C and D).
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Figure 3. 
Histograms of p-values and q-values obtained by running SEA and GSEA on 1,000 

randomly permuted phenotypes in the P53 dataset (A) and the Pancreas dataset (B). The y-

axis shows the percentage of gene sets results.
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Figure 4. 
Percentage of gene sets with FDR less than 0.05 and 0.25 using SEA and GSEA in 1,000 

permutations of the phenotype labels for each dataset in the benchmark set.
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Figure 5. 
Histograms of p-values and q-values obtained by running SEA and GSEA on 1,000 

randomly permuted phenotypes and randomized gene identifiers for the P53 dataset (A) and 

the Pancreas dataset (B). In contrast with Fig 3 here the gene identifiers have also been 

randomized (gene-gene correlations not preserved). The y-axis shows the percentage of gene 

sets results.
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Figure 6. 
GSEA individual gene set enrichment plots: examples of top scoring gene sets that display 

complex behavior.
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Table 1

Typical CPU execution times for SEA and GSEA in the P53 and Pancreas datasets (Mac Book Pro 8,3).

Method P53 Dataset Pancreas Dataset

SEA (R implementation) 12.32 secs. 11.35 secs.

GSEA (desktop application) 420 secs. 444 secs.
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