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Abstract

The dynamics of adaptation determines which mutations fix in a population, and hence how 

reproducible evolution will be. This is central to understanding the spectra of mutations recovered 

in evolution of antibiotic resistance1, the response of pathogens to immune selection2,3, and the 

dynamics of cancer progression4,5. In laboratory evolution experiments, demonstrably beneficial 

mutations are found repeatedly6–8, but are often accompanied by other mutations with no obvious 

benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of 

genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae 

populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: 

multiple mutations arise and move synchronously through the population as mutational “cohorts.” 

Multiple clonal cohorts are often present simultaneously, competing with each other in the same 

population. Our results show that patterns of sequence evolution are driven by a balance between 

these chance effects of hitchhiking and interference, which increase stochastic variation in 

evolutionary outcomes, and the deterministic action of selection on individual mutations, which 

favors parallel evolutionary solutions in replicate populations.
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Evolutionary adaptation is driven by the accumulation of beneficial mutations. The 

traditional view is that these dynamics are dominated by rare beneficial “driver” mutations 

that occasionally survive drift and increase in frequency until they fix (a “selective 

sweep”)9,10. This implicitly assumes that at most a single beneficial mutation is present in 

the population at once. Recent experiments, however, have shown that even for modestly 

sized populations of microbes and viruses, beneficial mutation rates are large enough11,12 

that multiple driver mutations spread simultaneously, an effect known as “clonal 

interference.” This means that the fate of each mutation depends not only on its own effect 

on fitness, but also on the rest of the variation in the population: neutral or deleterious 

mutations can fix if they occur in very fit genetic backgrounds, and beneficial mutations 

occurring in unfit lineages cannot succeed13–17.

Recent work has uncovered important consequences of these clonal interference effects. For 

example, interference alters the rate of adaptation18,19, the fate of marked lineages20,21, and 

the distribution of fitness effects of fixed mutations12,16,17. The underlying basis of these 

effects at the genomic sequence level, however, has not been directly observed. What is the 

fate of those mutations that occur? How does the frequency of each mutation change over 

time? How do these sequence-level dynamics determine the rate and repeatability of 

adaptation? Recent studies have sequenced clones or whole-population samples from 

microbial evolution experiments6,22–25, but apart from studies in viral systems26–28, this 

work has been limited to individual clones or populations or to widely separated timepoints 

that lack the temporal resolution to address these questions.

Here we describe the first direct and detailed view of the dynamics of genomic sequence 

evolution across many replicate microbial populations. In previous work21, we adapted ~600 

replicate haploid yeast populations to growth in rich medium for 1,000 generations, half at 

“large” (106) and half at “small” (105) population sizes. Here we report the sequencing of 

whole-population samples from 40 of these populations (14 large and 26 small), chosen 

because we previously followed a single marker above a frequency of 0.121. Each 

population was sequenced to 100-fold depth at 12 timepoints (approximately every 80 

generations) for a total of 480 sequenced timepoints. Distinguishing mutations from 

sequencing errors in this whole-population sequence data is challenging. The high temporal 

resolution of our data, however, permits the identification of mutations even at relatively 

low frequency by leveraging multiple timepoints. We developed two independent pipelines 

for this purpose, which rely on the fact that real mutations (but not sequencing/alignment 

errors) have frequencies that are correlated through time (Methods). This strategy allowed us 

to identify mutations that rose to a frequency of at least ~0.1 and to track these mutations 

through the rest of the timecourse. Across the 40 populations, we identified a total of 1,020 

mutations, 253 of which fix; we annotated each to a gene or intergenic region and classified 

coding mutations as synonymous or nonsynonymous (Supplementary Table 1). Fig. 1 shows 

six representative populations; the remaining populations exhibit similar patterns 

(Supplementary Fig. 1).

Averaged across all 40 populations, the rate at which mutations appeared and subsequently 

went extinct or fixed was constant through 1,000 generations (Fig. 2a). The average within-

population polymorphism increased steadily through the first 600 generations, before 
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saturating thereafter (Fig. 2a). In individual populations, however, the appearance of 

mutations is highly punctuated. This leads to the most striking feature of our results: 

selective sweeps are rarely single mutation/single phase events. Instead, mutations often 

move through the populations as temporal clusters (“cohorts”) of functionally unrelated 

mutations, synchronously escaping drift and tracking tightly with one another through time. 

We quantify this temporal clustering of mutations in Fig. 2b, showing that it leads to a 

significant overrepresentation of timepoints at which either many or no mutations appeared, 

compared to the null expectation of mutations reaching detectable frequency at a constant 

rate (p<10−6).

As is apparent in Fig. 1, multiple mutations or cohorts of mutations are often present 

simultaneously, and selective sweeps are often “nested” – that is, one sweep initiates before 

the preceding sweep has completed. Cohorts and nesting of mutations are forms of genetic 

hitchhiking, where individual mutations are helped (or hindered) by the genetic background 

in which they happen to arise. This includes both hitchhiking of likely neutral synonymous 

mutations, as well as “quasi-hitchhiking” of multiple beneficial mutations that act together 

as co-drivers. In addition, frequent interference between competing cohorts often leads to 

the extinction of beneficial mutations even after they reach substantial frequency. Drawing 

from the full aggregate data set as well as individual “case study” populations, we now show 

how this pervasive hitchhiking and interference strikes a balance between chance and 

determinism in governing evolutionary outcomes.

To investigate the repeatability of adaptation and identify those mutations that are driving 

adaptation, we looked for genes in which we observed mutations more often than expected 

by chance. Of the 995 nuclear mutations we identified, 723 fall within coding regions. If 

these mutations were distributed randomly over the 5,799 yeast genes, we expect only two 

genes with three or more mutations. Instead, we find 24 genes hit three or more times (Table 

1, Supplementary Table 2, Supplementary Fig. 2). This parallelism is at the gene level; 

mutations in different populations are different at the nucleotide level, with four exceptions 

(Methods). These 24 putative drivers represent ~0.6% of the yeast genome by size but 

account for 14% of the observed mutations, and are more likely to fix in the population 

(52/140, 37%) compared to all other nonsynonymous mutations (110/476, 23%, p < 0.005). 

Only 1 of the 141 mutations in these putative drivers is synonymous (<1%), compared to 

19% for the 472 mutations that fall in genes that are hit only once (Supplementary Table 3). 

Putative drivers are similarly depleted for missense mutations, and are enriched for nonsense 

and frameshift mutations (Supplementary Table 3). This mutational spectrum differs 

between functional categories of putative driver mutations. For genes in the mating pathway 

and negative regulators of Ras, we observe 14 missense, 8 nonsense, and 10 frameshift 

mutations, suggesting that selection at these loci is for loss of function (Supplementary Fig. 

2). In contrast, all 13 mutations observed in cell wall assembly genes are missense, 

suggesting that at these loci selection is for alteration or attenuation, not loss, of function 

(Supplementary Fig. 2).

This evidence argues that mutations in multi-hit genes provided strong fitness advantages 

that made them parallel adaptive solutions in multiple replicate populations (related 

arguments have been made in bacterial6,7 and viral29 systems). The fate of each mutation, 
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however, also depends on random hitchhiking and interference effects, which increase 

variation in evolutionary outcomes. Even beneficial driver mutations must often quasi-

hitchhike as co-drivers with others in a larger cohort if they are to succeed. For example, in 

population BYB1-G07, a mutation in SPC3 began to sweep within the first 300 generations 

(Fig. 3), before a competing cohort appeared containing mutations in the multi-hit genes 

WHI2 and ROT2. The WHI2/ROT2 cohort rose in frequency at the expense of SPC3, until 

the SPC3 genotype was partially rescued by a mutation in the multi-hit gene YUR1. Finally, 

a second and distinct mutation in WHI2 appeared in the SCP3/YUR1 background. This 

genotype fixed, forcing the WHI2/ROT2 cohort to extinction. These dynamics illustrate how 

a balance between the fitness advantages of individual driver mutations and random 

hitchhiking and interference effects determines evolutionary outcomes.

While the dynamics of any individual population are highly stochastic, a statistical analysis 

across replicate populations sheds light on the factors that determine the fate of each 

mutation. To this end, we measured the initial rate of increase in frequency of each mutation 

(Methods). We have previously21 referred to this “initial relative fitness” as sup. It measures 

the combined fitness effect of a mutation together with the genetic background in which it 

arose, relative to the average of all other genetic backgrounds currently in the population. 

The probability that a mutation fixes increases with sup (Fig. 2c). Nonsynonymous mutations 

tended to have higher sup than synonymous mutations (p<.05) and nonsynonymous 

mutations in multi-hit genes tended to have higher sup than those in single-hit genes (p<.02), 

as we would expect if the former classes tend to confer a larger fitness advantage. However, 

given a particular value of sup, all types of mutations were equally likely to succeed. In other 

words, a weak or neutral mutation on a good background is just as likely to fix as a strongly 

beneficial mutation on a poor background; all that matters is the initial relative fitness of the 

mutation combined with the background in which it occurred.

In theory, population size could be predicted to either increase or decrease the patterns of 

reproducibility between replicate populations. Larger populations will sample more possible 

mutations, and thus favor the best genotypes in replicate populations13,16. But larger 

populations also maintain more genetic variation, making each mutation more likely to be 

influenced by chance associations16. Our data make it possible to determine experimentally 

the influence of population size on the reproducibility of evolutionary outcomes. Of the 40 

sequenced populations, 14 were evolved at a large (106) and 26 at a small (105) population 

size. We find that putative driver mutations are more commonly observed in large 

populations (Table 2, p<0.025). However, given a particular value of sup, a mutation is less 

likely to fix in a large population—that is, subsequent chance associations are more likely to 

interfere (Fig. 2d, p<10−5). Together, these results show that beneficial mutations occur 

more consistently in larger populations, but that each mutation has a more random fate once 

it has occurred.

To demonstrate how our system can be used to dissect the fitness effects of the individual 

mutations that underlie these dynamics, we chose for genetic dissection a population that 

displayed simple sequence-level dynamics. In BYS1-A08, two mutations (ELO1 and GAS1) 

have fixed and a third (STE12) is on its way to fixation by generation 545 (Fig. 4a). Clones 

from this time point had gained, on average, a 4.3% fitness advantage relative to the 
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ancestor. To determine how these three mutations contribute to fitness, we crossed three 

clones from generation 545 to the ancestor and isolated 80 haploid progeny. Each haploid 

was genotyped at these three loci and assayed for fitness, allowing us to quantify the fitness 

effect of each mutation individually and in combination. We find that mutations in both 

GAS1 and STE12 provide a selective advantage, while the mutation in ELO1 is a neutral 

hitchhiker (Fig. 4b). Consistent with this, mutations in GAS1 and STE12 are observed in 

three and nine replicate populations, respectively (Table 1), but ELO1 only once.

Our analysis has shown that the combination of experimental evolution and whole-genome 

whole-population sequencing over a dense timecourse is a powerful tool. Our data 

demonstrates the importance of pervasive hitchhiking and clonal interference among cohorts 

of mutations in determining the molecular dynamics of adaptation. Further work is needed 

to determine the mechanism underlying the formation of these cohorts. Interestingly, cohorts 

and genetic hitchhiking have been described in other systems, such as influenza evolution2 

and the somatic evolution of cancers30, suggesting that these dynamics represent a general 

mode of adaptation. Our data also highlight the relatively small subset of genes that 

repeatedly provide driver mutations, suggesting a limited number of open pathways to 

substantially increased fitness. This work is a first step towards a complete understanding of 

the dynamics of adaptation under conditions where multiple beneficial mutations spread 

simultaneously, and illustrates the importance of both chance and selection in determining 

evolutionary outcomes.

METHODS

DNA Sequencing

Cells were grown by inoculating 8 μl of each frozen population from our earlier 

experiment21 into 20 ml YPD (yeast extract, peptone, dextrose) + ampicillin (100 μg/ml) 

and tetracycline (25 μg/ml) and grown overnight to saturation. Cells were pelleted and 

washed once with water. Genomic DNA was prepared using a modified glass bead lysis 

method. Cells were resuspended in 400 μl of DNA Extraction Buffer (2% Triton X-100, 1% 

SDS, 100 mM NaCl, 10 mM Tris pH 8.0, and 1 mM EDTA). To the resuspended cells, 600 

μL of acid washed glass beads (425–600 μm, acid-washed; Sigma) and 400 μL of 

phenol:chloroform:isoamyl alcohol (25:24:1, Tris saturated) was added and the cells were 

mechanically lysed for 2.5 minutes using a bead beater. After centrifugation, the supernatant 

was removed and incubated at 37°C with RNaseA for 1 hour, followed by a second 

phenol:chloroform:isoamyl alcohol extraction. The aqueous supernatant was removed and 

genomic DNA was precipitated with ethanol and resuspended in water. Paired-end Illumina 

sequencing libraries of 500 bp fragments were prepared at The Genome Institute, 

Washington University School of Medicine, St. Louis, and the libraries were run on the 

Illumina HiSeq with average of 100-fold coverage.

Identifying mutations from raw sequencing data

We developed two independent methods for identifying mutations from the raw sequencing 

data and for distinguishing bona fide mutations from spurious calls that resulted from either 

sequencing or alignment errors by leveraging time course information. Both pipelines 
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identified base-pair substitutions (BPS), small insertion/deletion mutations (InDel) and 

complex mutations involving both BPS and InDels. We note, however, that neither pipeline 

is well suited to identify certain types of mutations, such as copy number variation, 

inversions, or large insertions or deletions. Both pipelines produced similar results. The data 

presented in the paper were produced using Pipeline 1. Supplementary Table 1 reports the 

results of both pipelines.

In Pipeline 1, we used the software package Breseq (barricklab.org/breseq) to align Illumina 

reads and make initial polymorphism calls. We ran Breseq on each timepoint of each 

population independently and constructed a list of all mutations called in any timepoint. For 

each mutation, we used SAMTOOLS31 to calculate the frequency of reads supporting the 

mutation in all timepoints of the population where the mutation was called. We then applied 

a series of filters based on the frequency trajectories to eliminate false positives. Mutations 

that did not change frequency over the course of the entire experiment are likely to be 

sequencing or alignment errors. Therefore, we required the maximum frequency to be at 

least 0.1 greater than the minimum frequency. We also required the absolute difference 

between the maximum or minimum frequency and the frequency at generation zero to be at 

least 0.1. The frequency trajectories of real mutations are expected to be autocorrelated, 

whereas those of false positives should be uncorrelated from timepoint to timepoint. We 

rejected any mutation with an autocorrelation coefficient less than 0.2. Generation zero was 

not expected to contain any mutations. Therefore, we rejected any mutation detected by 

Breseq in generation zero of more than five populations. Also, for any mutation detected by 

Breseq in generation zero of more than two populations, we required the autocorrelation 

coefficient to be at least 0.5. Finally, for any mutation with a frequency greater than 0.01 in 

generation zero, we required the autocorrelation coefficient to be at least 0.35.

In Pipeline 2, for each population and for each time point, we aligned the raw reads to a 

SNP/Indel corrected W303 reference genome (reference available upon request) using BWA 

for Illumina version 1.2.232 using default parameters (except “Disallow insertion/deletion 

within [value] bp towards the end” set to 0 and “Gap open penalty” set to 5). Mutations were 

called relative to the SNP/Indel corrected W303 reference genome using Freebayes version 

0.8.9.a, (Marth Laboratory, Boston College) using default parameters (except “Pooled” set 

to “True,” and “Base alignment quality (BAQ) adjustment” set to “True”). For each 

population we merged the 12 resulting .vcf files (one for each time point) using the “vcf-

merge” included in the VCFtools package (http://vcftools.sourceforge.net/

perl_module.html). We wrote two perl scripts to analyze the resulting merged .vcf file 

(programs available upon request). The script “allele_counts.pl” calculated the frequencies 

of mutant alleles for each time point in the series and “composite_scores.pl” scored the 

trajectories of each mutation across the twelve time points based on six attributes: 

autocorrelation, area under the curve relative to time zero, minimum frequency, maximum 

frequency, max step (the largest difference in frequency in adjacent time points), and the 

number of called alternate alleles. We developed a heuristic composite score with which to 

rank the trajectories by their likelihood of being a bona fide mutation.

Any mutation called in either Pipeline was validated manually using the Integrative Genome 

Viewer 33,34.
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Annotating mutations

For each mutation, we aligned the surrounding 2kb region to the annotated s288c genome 

using NCBI-BLAST35. We then used NCBI-BLAST’s CDS feature option to identify the 

gene or intergenic region containing the mutation and the identity of any amino-acid 

changes.

All of the observed nuclear mutations represent unique alterations to the yeast genome with 

four exceptions: two cases of recurrent mutation at the same position and two instances of 

pre-existing mutations in the seed culture that reached detectable frequency during the 

evolution experiment. In ROT2 and STE12, recurrent frameshift mutations were observed 

within homopolymeric runs of seven T’s and eight G’s, respectively. For ROT2 all four 

occurrences of mutations in this homopolymeric run were T insertions. For STE12, two 

mutations were G insertions and two were G deletions. In addition to recurrent mutations, 

we observed two pre-existing mutations. In the initial evolution experiment, two nearly 

isogenic haploid ancestral strains (B and R) were used to seed ~300 populations each. Of the 

sequenced populations reported here, 30 are derived from the B progenitor and 10 from the 

R progenitor. We observed several occurrences were the same mutation was observed in 

multiple populations. The same single base-pair deletion in IRA1 was observed in four 

populations derived from the B ancestor. In each case this allele was observed early and 

prior to the first selective sweep suggesting that this mutation was present at low frequency 

in the starting B population. In all 10 R populations, the same T to C substitution in PDR5 

was initially at 15% at Generation 0. This mutation quickly fixed in two populations, slowly 

fixed in another, rose to above 50% before going extinct in two and quickly went extinct in 

the other five (Supplementary Fig. 3).

Analysis of trajectories

In order to assess the relationship between fitness and fixation probability, we estimated sup: 

the fitness of clones containing a given mutation relative to the mean fitness of the 

population when we first detected the mutation. For each mutation, we identified t1 and t2, 

the first consecutive timepoints such that the frequency of the mutation at t1 was greater than 

zero and the frequency at t2 was greater than 0.1. We then calculated

where f(t) is the frequency of the mutation at time t. This quantity estimates the combined 

effects of the focal mutation and the background it occurred on. For instance, a mutation 

conferring a 3% fitness advantage on a neutral background will have the same value of sup 

as a neutral mutation occurring on a background that is 3% fitter than the population 

average.

Identifying mutation cohorts

The most striking feature of our results is that mutations often move through populations as 

temporal clusters of functionally unrelated mutations, tracking tightly with one another 
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through time. We have termed these “cohorts.” In order to empirically assign mutations to 

cohorts, we treated each frequency trajectory as a vector in twelve dimensions. We used the 

hierarchical clustering package in SciPy (www.scipy.org) to cluster the mutations in each 

population based on the Euclidean distance between frequency vectors. Because low-

frequency mutations contain too little information for reliable clustering, we excluded 

mutations with maximum frequencies less than 0.3. We then flattened the hierarchies using a 

cutoff distance of 0.275.

Fitness Assays and Genetic Dissection

Fitness assays were performed as described previously21. To measure the fitness of evolved 

clones from frozen stock, we struck to singles from population BYS1-A08 from generation 

545. We selected seven single colonies at random and measured their fitness relative to an 

mCherry-expressing reference strain. The experimental and reference strains were grown 

separately in 96-well plates, then mixed 50:50 and propagated by diluting 1:1,024 every 24 

hours. At generations 10, 20, and 30, and 40, we transferred 4 μl of saturated culture into 

100 μl of cold PBST and the ratio of nonfluorescent (experimental) and mCherry-positive 

(reference) cells was determined by flow cytometry using an LSRII flow cytometer (BD 

Biosciences, San Jose, CA) counting 50,000 total cells for each sample. The fitness 

difference between the experimental and reference strain was calculated as the rate of the 

change in the ln ratio of experimental to reference versus generations36. To determine fitness 

effects of the three evolved mutations in BYS1-A08 (GAS1, ELO1, STE12), we chose three 

of the seven clones and backcrossed them to a MATα version of the ancestral strain. From 

these three diploids we sporulated and selected 80 haploid MATa segregants. Each 

segregant was genotyped by SNP-specific PCR using the following primers: GAS1_Forward 

(5′ TTTTC GTGCC GCAAA CGTGG 3′), GAS1_WT_Reverse (5′ ATTGG AAGAG 

TAGCC AACTG 3′), GAS1_Mutant_Reverse (5′ ATTGG AAGAG TAGCC AACTA 3′), 

ELO1_Forward (5′ AACAC AACAA ATCGC AAGCC 3′), ELO1_WT_Reverse (5′ 

TAACC AACCA ATTGA TTATA 3′), ELO1_Mutant_Reverse (5′ TAACC AACCA 

ATTGA TTATG 3′), STE12_Reverse (5′ TGAGC AGAAT CTTCG TCACC 3′), 

STE12_WT_Forward (5′ AATCT CACAA CTCTG GCCAG 3′), and 

STE12_Mutant_Forward (5′ AAATC TCACA ACTCT GCCAA 3′). The fitness of each of 

the haploid segregants was measured relative to the mCherry-expressing reference strain as 

described above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The fates of individual spontaneously arising mutations
We show the frequency of all identified mutations through 1,000 generations in 6 of the 40 

sequenced populations. Nonsynonymous mutations are solid lines with solid circles, while 

synonymous and intergenic mutations are dotted lines with open circles and squares 

respectively. Populations in the left and right columns were evolved at small (105) and large 

(106) population sizes, respectively. We observe qualitatively similar patterns in the other 

populations (Supplementary Fig. 1).
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Figure 2. Statistical analysis across 40 replicate populations
a, The per-population number of total mutations, fixed mutations, extinct mutations, and 

mutations that are currently polymorphic over the course of the 1,000 generations. b, The 

distribution of the number of new mutations detected at each timepoint (solid blue line; see 

Methods for details) and a Poisson distribution with the same mean (dashed red line). c–d, 

Mutation fixation probability as a function of initial relative fitness. Data are mean±s.e.m.
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Figure 3. The dynamics of sequence evolution in BYB1-G07
a, The trajectories of the 15 mutations that attain a frequency of at least 30%, hierarchically 

clustered into several distinct mutation “cohorts,” each of which is represented by a different 

color (Methods). b, Muller diagram showing the dynamics of the six main cohorts in the 

population. The number of times a mutation was observed in a given gene across all 40 

populations is indicated in parentheses. Mutations in genes observed in more than three 

replicate populations (Table 1) are indicated in bold.
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Figure 4. Genetic dissection of BYS1-A08
a, The trajectories of observed mutations. b, We crossed evolved clones from generation 

545 to the ancestor; shown here are the fitnesses and genotypes of parental clones and 80 

haploid progeny.
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Table 1

Repeatedly hit genes are putative drivers of adaptation

Gene Hits Fixed Biological process*

IRA1 21 10 Negative regulator of Ras

ROT2 11 2 Cell wall biogenesis

YUR1 11 5 Cell wall biogenesis

ACE2 9 4 Cytokinesis

STE11 9 1 Mating

STE12 9 2 Mating

PDR5 8 5 Multidrug transport

WHI2 7 2 General stress response

STE4 6 1 Mating

IRA2 5 3 Negative regulator of Ras

KRE6 4 1 Cell wall assembly

SFL1 4 1 Regulation of flocculation genes

STE5 4 3 Mating

ANP1 3 1 Protein glysosylation

CNE1 3 2 Protein folding

GAS1 3 3 Cell wall assembly

GCN1 3 1 Regulation of translation

GPB1 3 1 Negative regulator of Ras

GPB2 3 1 Negative regulator of Ras

KEG1 3 0 Cell wall assembly

KRE5 3 1 Cell wall assembly

RPO31 3 0 RNA ploymerase III transcription

SET4 3 2 unknown

YJL171C 3 0 unknown

*
Biological process was manually curated from the Saccharomyces Genome Database (www.yeastgenome.org).
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