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Abstract
This commentary provides a brief introduction to the various uses that functional neuroimaging
biomarkers can play in detecting, diagnosing, assessing treatment response and investigating
neurodegenerative disorders. It then goes on to explain why the emphasis of much recent work has
shifted to network-based biomarkers, as opposed to those that examine individual brain regions. A
number of examples are referenced that illustrate the points made.

Introduction
There are three fundamental steps that are necessary for the clinical management of a brain
disorder: (1) detection and diagnosis; (2) treatment; and (3) assessment of treatment
response. Neurodegenerative disorders are no exception; successful treatment requires prior
detection and correct diagnosis. Drugs, surgical intervention, and behavioral therapy remain
the major techniques used for treatment of brain disorders, and as a result, these become the
targets for much of disease related scientific research. Although the efficacy of these
interventions is important in individual patients and clinical trials, it may not always be
measured with sensitive or relevant metrics, and therefore neuroscientific investigation
addressing these topics remains very important. The fundamental argument made by all the
articles in this special issue is that biomarkers will become an increasingly important
component of the detection, diagnosis and assessment of treatment of neurodegenerative
disorders. In this commentary we will focus on the roles that neuroimaging biomarkers can
play, and discuss the advantages of the network paradigm in particular.

What can biomarkers be used for?
For a very long time, behavior was the primary source of information used for detection and
diagnosis of neurodegenerative disorders. A person showed up at a clinician’s office and
complained of some neurological difficulty (e.g., poor memory, aberrant motor functioning).
Observation plus some clinical tests were performed, and a preliminary diagnosis was
provided. As time went by, the neurodegenerative disorder became worse and the diagnosis
became firmer or perhaps changed. There are several problems with this traditional model.
Patients often present relatively late when the underlying neuropathology is far advanced;
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e.g., striatal dopamine neuronal loss may exceed 90% before symptoms or diagnosis. Also,
the same clinical phenotype may result from very different neuropathological processes;
e.g., both tau and ubiquitin pathologies can cause the same clinical picture in frontotemporal
dementia. Finally, common clinical measures such as the Mini Mental State Examination
may be relatively insensitive to the beneficial effects of disease modifying therapies.

Now, as the articles in this issue make clear, attempts are underway to develop biomarkers
for many of the neurodegenerative disorders that have become major societal problems due
to the increase in the number of aged individuals. Biomarkers come in four major flavors:
blood, cerebrospinal fluid (CSF), genetic analysis and neuroimaging. As discussed by
Hampel et al. for Alzheimer’s disease (AD) (Hampel et al., 2010), there isn’t just one
purpose for which a biomarker will be employed; rather, there are numerous and varied uses
for which the development of biomarkers is crucial. The four major uses are (1) detection or
prediction of a disorder, (2) the differential diagnosis of a disorder, (3) understanding the
neural basis of the disorder, and (4) staging a disorder and investigating the efficacy of
treatment. The last of these, treatment efficacy, itself has the potential to require a number of
separate uses of biomarkers to help address the following: has the treatment reversed the
disease process; has it stopped the disease process; has it slowed the spread of the disease;
does it facilitate compensatory brain mechanisms? Also, from the point of view of testing
treatments, biomarkers have the potential to clean up clinical trials by separating treatment
responders from non-responders prior to admission to a clinical trial; to group patients by
neuropathology rather than symptoms; and to subtype and/or stratify treatment effects (see
the article by Hampel et al. (2011) in this issue for a thorough discussion of the use of
biomarkers, including neuroimaging, for Alzheimer disease therapeutic trials). Importantly,
a biomarker refers to the underlying disease state, not to the severity of symptoms per se.

Developing and applying biomarkers for the above purposes for any disease can be difficult
and complicated. Biological systems are intrinsically nonlinear, which makes understanding
their behavior particularly challenging. For the brain, adding to this complexity is the
extreme plasticity of neural systems; the brain is a dynamic system that responds to
environmental inputs by changing its structure and function (some key words used to
describe this are learning and memory). But as well, changes in neural structure and function
can occur in response to events occurring within the brain itself, including brain pathology.
This represents both good and bad news. For the patient, this plasticity can facilitate
functional maintenance or recovery through repair or compensation, or sometimes lead to
maladaptive early changes that hinder long term recovery. For the clinician/scientist, the co-
evolution of degeneration and compensation introduces ambiguities in the interpretation of
biomarkers. This is especially a problem for a neurodegenerative disorder, which can be
thought of as a ‘slow lesioning’ process (i.e., essentially one neuron at a time dies). The
slow accumulation of pathology permits compensatory processes to maintain relatively
normal brain function for years before behavioral manifestations become clinically
noticeable. Thus, this dynamic, adaptive capability of the brain makes every one of the items
on the above list of biomarker uses difficult to determine. Nevertheless, because
neuroimaging biomarkers are close to the neural substrate, they do allow for a clear and
repeatable evaluation of the patient throughout the course of a disease.

Why use network analysis of neuroimaging data?
If one had to summarize neuroscience research in the last fifty years or so, the most general
conclusion would be that at every level of research, neural systems have turned out to be
more complicated than first thought. To someone entering the field a half century ago, the
standard paradigms seemed pretty straight-forward. For example, there was Dale’s principle:
one neuron, one neurotransmitter. At the macroscopic level, ideas such as functional
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segregation prevailed (one brain region, one function). However, research since those
halcyon days of yesteryear has shattered most of these notions. The brain is complicated at
every level at which it is studied. Thus, it is necessary for brain researchers and clinicians to
face up to this and confront the complexity by using more sophisticated research methods
and flexible clinical approaches.

Not all the changes will be welcomed. The imposition of traditional cognitive frameworks
onto brain imaging data may become redundant, for example in the applications of resting
state networks. Or, entrenched cognitive theories may be transcended by new generic
principles of brain function, for example predictive coding and the minimization of free
energy (Friston and Kiebel, 2009). However, one change that cannot be avoided is the
recognition of the importance of neural networks, both to mediate normal brain function and
also in terms of network vulnerability to disease. Neuroimaging biomarkers will need to be
analyzed more in terms of underlying brain networks, and less in terms of individual
regions.

Although the rise of complexity in human neuroscience has many sources, neuroimaging has
been of particular importance, especially with regard to understanding brain function. Until
the advent of structural and functional brain imaging, most of what we knew about the
neural basis of human cognition was primarily derived from neuropsychological
investigations of brain damaged subjects, along with studies using electrical stimulation and
recording of individuals undergoing neurosurgery. The conclusions drawn were often
supplemented and elaborated by investigations in non-human primates and other mammals
of their neuroanatomical connections, performance changes produced by focal brain lesions,
and electrophysiological microelectrode recordings during specific behavioral tasks
(Horwitz et al., 1999). Notice that except for the neuroanatomical connectivity
investigations, all these approaches essentially focused on isolated neural objects (e.g., one
neuron, one brain region).

Functional neuroimaging, since the 1980s with the expansion of positron emission
tomography (PET) and the 1990s with the development of functional magnetic resonance
imaging (fMRI), now has become the dominant tool for examining the neural basis of
human sensory/motor/cognitive processing. Unlike the other methods denoted above,
functional neuroimaging allowed researchers to acquire physiological data from much of the
brain simultaneously (although not with particularly high spatial or temporal resolution).
These data were often interrogated in terms of functional specialization by evaluating
whether a particular brain area showed a significant difference between experimental
conditions or between different patient groups. However, they could also be examined in
terms of differences in the functional connectivity between two or more brain regions. Some
of the early neuroimaging studies used this method to investigate differences in interregional
relationships between patients with neurodegenerative disorders and healthy subjects [e.g.,
(Horwitz et al., 1987; Metter et al., 1984)]. Nevertheless, the standard approach to analyzing
neuroimaging data became the examination of individual brain regions via univariate
statistical analysis.

In recent years, more and more centers have successfully begun employing formal network
analyses as biomarkers of neurodegenerative disease. Network integrity and connectivity
can be assessed in many ways [for reviews see Horwitz et al. (2005) and Rowe (2010)]. To
understand the choice and interpretation of a given method, some key principles and terms
need to be highlighted. The first is the difference between structural and functional
connectivity, both of which may be assessed by MRI. Diffusion weighted MRI allows for
quantitative or probabilistic tractography, revealing the strength of anatomically defined
white matter tracts between cortical and/or subcortical regions [see for example,

Horwitz and Rowe Page 3

Prog Neurobiol. Author manuscript; available in PMC 2013 August 31.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Damoiseaux et al. (2009) and Teipel et al. (2010)]. This is distinct from functional
connectivity within a brain network, inferred from time-series modeling of fMRI or M/EEG
data. Functional connectivity refers to the spatiotemporal covariance of regional neuronal
activities, arising from a shared contribution of many distributed brain regions to a common
cognitive function. Functional connectivity can apply to many aspects of the neural code,
from low frequency fluctuations in regional metabolic demands (fMRI) to transient evoked
neurophysiological responses or frequency specific induced oscillations (M/EEG). From
neuroimaging, one can even estimate multiple state representations for each part of a
network, incorporating excitatory and inhibitory neuronal populations (Marreiros et al.,
2008).

A special case of functional connectivity is the causal influence of one region’s activity on
another, known as effective connectivity, implying directional and causal interactions within
a network. Global rather than local network properties may also be characterized, using
graph theory to describe the properties of a network’s architecture in terms of efficiency or
connectedness (Bullmore and Sporns, 2009).

Functional connectivity is often examined using data-driven ‘model-independent’
multivariate methods such as independent components analysis (ICA) [e.g., (Beckmann et
al., 2005)]. Effective connectivity, embodying explicit directional causal connection, is
assessed with hypothesis driven methods such as Dynamic Causal Modeling (DCM) (Friston
et al., 2003) or structural equation modeling (SEM) (McIntosh and Gonzalez-Lima, 1994;
McIntosh et al., 1994). Other methods such psychophysiological interactions (PPI) (Friston
et al., 1997) can be used to estimate functional or effective connectivity, depending on a
priori assumptions and hypothesis based model specification. Each of these approaches has
the potential for use in biomarkers of neurodegenerative disease (Rowe, 2010).

An important distinction in fMRI concerns whether the subjects being scanned are at rest or
are performing a task. As the review articles by Bokde et al. (2009) and by Prvulovic et al.
(submitted), the latter in this issue, make clear, there has been a surge of interest in
performing resting state fMRI studies on brain disorder patients, including those with
neurodegenerative disorders, and many of these studies have evaluated functional
connectivity. The popularity of resting state fMRI for examining brain disorders is based on
the fact that such studies are relatively easy to do and do not require patients to comply with
task instructions. Resting state fMRI investigations in healthy subjects have found the
presence of a number of distinct networks whose nodes are highly intercorrelated with one
another (Beckmann et al., 2005), the most prominent one being the so-called default mode
network (DMN) (Greicius et al., 2003; Raichle et al., 2001) whose major nodes consist of
posterior cingulate, medial prefrontal cortex, inferior parietal lobule, lateral temporal cortex
and hippocampus.

With respect to neurodegenerative disorders, an early resting state study performed with
PET showed reduced anterior-posterior functional connectivity in AD patients compared to
healthy age-matched controls (Horwitz et al., 1987). More recently, numerous resting state
studies using fMRI have been performed in patients with neurodegenerative disorders.
Findings include that the DMN changes with aging and AD (Lustig et al., 2003) and is
abnormal in mild AD, and in subjects with mild cognitive impairment (Rombouts et al.,
2005).

An enigmatic but common feature of neurodegeneration is the selective vulnerability of
distributed neuronal subpopulations. Neurodegenerative diseases are rarely focal but
progress within non-contiguous but interconnected, brain regions. For instance, using a PET
ligand that maps regions of amyloid deposition (PIB), Buckner et al. (2005) demonstrated
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that images of amyloid plaques taken at the earliest stages of AD show a distribution quite
similar to the DMN. Network imaging analysis therefore has face validity for studying
network degenerative disorders, and this clearly represents a major advantage for using a
network approach to investigate brain disease.

Returning to the generic roles of biomarkers, there is also evidence that (a) imaging
networks is sensitive to the presence of disease, superior to standard imaging methods; (b)
network metrics distinguish major alternate diagnoses; (c) imaging networks gives insights
into the neuropathophysiology and phenomenology of disease; and (d) imaging networks is
sensitive to disease progression and therapy.

Consider first (a) - Network metrics more sensitive than univariate methods in
neurodegeneration. A recent example of this was shown by Rowe et al. (2010) who found a
lack of significant differences between Parkinson Disease (PD) patients and healthy controls
in local activations for action selection, but using DCM, found clear differences in group
connectivity patterns. Moreover, the connectivity patterns displayed changes associated with
effective dopaminergic therapy.

For (b) - Network metrics distinguish alternate diagnoses – a good example is the paper by
Zhou et al. ( 2010) that used resting state fMRI functional connectivity analysis to contrast
two neurodegenerative disorders: behavioral-variant frontotemporal dementia (FTD) and
Alzheimer’s Disease (AD). They found that AD and FTD have reciprocal effects on two of
the major resting state networks, namely the Salience network and Default mode network.
This was sufficient to differentially classify individual patients with a very high degree of
accuracy.

As an example of (c) - Imaging networks gives insights into the neuropathophysiology and
phenomenology of disease – consider the fMRI study of Sonty et al. ( 2007), in which
patients with Primary Progressive Aphasia (PPA) had their fMRI data examined using
DCM. The authors found dysfunctional effective connectivity in a language-related network,
rather than hypoactivity within specific brain regions, and that the decrement in effective
connectivity in this network was predictive of task accuracy. This is an example of a
functionally relevant loss of connectivity that leads to performance errors in the PPA
patients. As a second example, Grafton et al. (1994), in a PET study, used SEM to perform a
network analysis of PD patients following pallidotomy. A key finding was an attenuated
thalamocortical connectivity “downstream” from the lesion site. This result illustrates an
important point about network behavior: pathology in one part of a network can have effects
remote from the affected part. And since most cortical circuits contain recurrent projections,
altered connectivity can even appear “upstream” from the lesion site (see the SEM
simulation study of Kim and Horwitz (Kim and Horwitz, 2009) for a compelling example of
this phenomenon).

Finally, we illustrate (d) - Imaging networks is sensitive to disease progression and therapy.
Both the Rowe et al. (2010) and the Grafton et al. (1994) reports, discussed earlier,
demonstrate this use of network biomarkers in PD, as does the study by Asanuma et al.
(2006). This last investigation found that comparable changes in spatial covariance patterns
obtained from PET data occurred with effective treatment by either deep brain stimulation or
dopaminergic therapy.

Another important aspect of disease progression follows from our previous comment that
neurodegenerative disorders generally take many years of pathology buildup before
behavioral manifestations become observable clinically. The question thus arises as to when
to begin any treatments (e.g., pharmaceutical intervention) that may be available. Network
biomarkers may be useful for this. For AD, suggestions have been made that fMRI resting
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state connectivity may be useful for this purpose, given that DMN abnormalities have been
found for patients with mild cognitive impairment (Rombouts et al., 2005). However, DMN
abnormalities have also been found in young subjects at-risk for AD (i.e., subjects in their
20’s), long before these subjects would begin to show behavioral symptoms of AD (Filippini
et al., 2009). Should one begin therapy at such an early stage? An alternative strategy would
be to scan an at-risk subject nearer to age-of-onset of AD performing a cognitive test that is
sensitive to an early dysfunction in the disorder (e.g., memory), and see if the network
employed by healthy subjects is being used by the at-risk subject. If it isn’t, this may suggest
that pathology has now built up to such an extent that treatment is warranted. An example of
this type of approach can be found in an SEM PET study of Horwitz et al. (1995). This use
of biomarkers is in its infancy, but will likely become the subject of much future research.

Some final comments
In this commentary we have stressed the relatively recent emphasis placed on network
analysis of functional neuroimaging data as an important approach for developing
biomarkers for various aspects of research on neurodegenerative disorders. As the
neuroimaging articles in this issue attest, substantial progress has been made in this
endeavor. However, it worth emphasizing that network analysis can be quite difficult
because it often entails the application of complex computational tools. Moreover,
interpretation of network behavior can be subtle, and even non-intuitive. Finally, this is a
field that is undergoing substantial change, with new tools and methods appearing at a rapid
pace.

In our view, here are a few of the directions where new methods and issues are likely to
develop in the next few years, and these developments could have important consequences
for the field of imaging network biomarkers. First, a network consists of a set of nodes
connected together by a set of links. In the case of the neuroimaging, the nodes are brain
regions. Much of the focus of recent research has been in determining how the brain regions
are structurally and/or functionally linked. However, the question of what constitutes a brain
region has only recently begun to receive the attention it deserves. Each brain region, even a
single voxel, contains multiple neural populations, each conceivably having different
functions and different connectivity with other brain regions (e.g., primary visual cortex
contains cortical columns with different orientation selectivity, different ocular dominance
properties, different sensitivity to color, etc.). Thus, one needs to make sure that the nodes
used in each subject’s network correspond to the same functional populations, especially
when comparing patients against a control population. Such issues are just beginning to be
addressed [e.g., (Smith et al., 2010)].

A second issue concerns the fact that fMRI represents neural data with a low temporal
resolution. Biomarkers obtained from such data will not be sensitive to important features
that occur in the temporal domain of actual neural activity (tens-to-hundreds of
milliseconds). We have not said much about EEG or MEG data as sources of useful
biomarkers, but research focusing on network analysis of the dynamic data obtained by
these methods is continuing apace (e.g., see Wendling et al. (2009) for an overview of some
of the methods used in the M/EEG literature to assess connectivity). The translation into
clinical biomarkers has been slower than for MRI, but will happen.

A third issue is that the existence of various network metrics could result in interpretational
difficulties if the different metrics lead to contradictory conclusions. Different metrics may
to sensitive to different aspects of interregional relationships, and there is no a priori reason
why these relationships should change in the same way for methods that reflect different
aspects of neurophysiological coupling (e.g. DCM versus SEM versus ICA). Moreover,
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differences between methods may not be the same in a patient compared to a healthy
subject. Thus, research that focuses on understanding the neural basis underlying each
network imaging biomarker is essential. The use of large-scale, biologically realistic neural
models will be useful in this regard. Such models will be able to simulate functional
neuroimaging data which in turn can be analyzed by the various network methods. Unlike
actual experimental data, where the underlying neural interrelationships are not known,
everything is known in the model, and as such there is a ground truth against which to
compare the various biomarker metrics. Examples of this type of research can be found in
(Horwitz et al., 2005; Kim and Horwitz, 2009).

In spite of such caveats, a large literature has already developed applying brain connectivity
to neuroimaging studies of brain disorders, including neurodegenerative disease (see the
Special Topics issue of Frontiers in Systems Neuroscience, edited by B. Horwitz and S. G.
Horovitz, on this topic). The network paradigm has arrived, and increasingly it will
dominate brain imaging research, forming the basis of biomarker research in
neurodegenerative disorders.
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