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Untuned Suppression Makes a Major Contribution to the
Enhancement of Orientation Selectivity in Macaque V1
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One of the functions of the cerebral cortex is to increase the selectivity for stimulus features. Finding more about the mechanisms of
increased cortical selectivity is important for understanding how the cortex works. Up to now, studies in multiple cortical areas have
reported that suppressive mechanisms are involved in feature selectivity. However, the magnitude of the contribution of suppression to
tuning selectivity is not yet determined. We use orientation selectivity in macaque primary visual cortex, V1, as an archetypal example of
cortical feature selectivity and develop a method to estimate the magnitude of the contribution of suppression to orientation selectivity.
The results show that untuned suppression, one form of cortical suppression, decreases the orthogonal-to-preferred response ratio (O/P
ratio) of V1 cells from an average of 0.38 to 0.26. Untuned suppression has an especially large effect on orientation selectivity for highly
selective cells (O/P � 0.2). Therefore, untuned suppression is crucial for the generation of highly orientation-selective cells in V1 cortex.

Introduction
Cells in the sensory areas of cerebral cortex are more selective for
stimuli than are their thalamic inputs. Understanding the mech-
anisms of enhanced cortical selectivity is necessary for under-
standing the function of the cortex in controlling behavior. Many
investigators have concluded that inhibitory or suppressive
mechanisms are involved. One important observation (con-
firmed repeatedly) that reveals the presence of untuned suppres-
sion in visual orientation tuning is that orthogonal-to-preferred
orientations actually reduce the firing rate below the spontaneous
level in those cells in macaque V1 that have moderately high
spontaneous firing rate (De Valois et al., 1982; Celebrini et al.,
1993; Ringach et al., 2002b). Cortical inhibition seems to play an
important role in cortical feature selectivity also in the primary
auditory (A1) cortex (Wu et al., 2008; Sadagopan and Wang,
2010). It has also been suggested that shunting inhibition is nec-
essary for the observed response timing in somatosensory barrel
cortex (rat S1) (Curtis and Kleinfeld, 2009). Furthermore, corti-
cal inhibition has been shown to sharpen the directional selectiv-
ity of neurons in macaque M1 motor cortex (Merchant et al.,
2008). One important question that remains unanswered is, how
much of an increase in selectivity do inhibitory/suppressive
mechanisms cause? This paper answers the question for the visual
cortex.

Our studies on the dynamics of orientation tuning in macaque
primary visual cortex (V1) have suggested that there are at least two
different suppressive components, one untuned, and the other
tuned, for orientation. Untuned suppression was primarily gener-
ated within the classical receptive field (CRF), whereas tuned sup-
pression originated mainly from the region of visual space outside
the CRF, in the extraclassical receptive field or eCRF (Xing et al.,
2005). With the goal of estimating the influence of untuned suppres-
sion on orientation selectivity, in the experiments reported here we
used stimuli that matched the CRF of each cell in diameter.

In this study, we estimated the contribution of untuned sup-
pression to the orientation selectivity of a cell for drifting gratings
by calculating how much the orientation selectivity of the cell
would decrease if untuned suppression were removed. Such a
calculation would be easy if all visual cortical neurons had a high
spontaneous spike-firing rate because then untuned suppression
could be observed as a reduction in firing rate below the sponta-
neous at nonpreferred orientations (De Valois et al., 1982; Ce-
lebrini et al., 1993; Ringach et al., 2002b). To overcome the fact
that many V1 cells have a low or zero spontaneous rate (cf.
Ringach et al., 2002b), we used a rapid sequence of flashed stimuli
to elevate the average spike rate and used reverse correlation to
measure responses. This approach made it possible to measure
untuned suppression in every V1 cell studied.

There have been many previous studies of the mechanisms of
cortical orientation selectivity. We compare our approach with
earlier work in Discussion. One previously unresolved issue is the
neuronal mechanism of untuned suppression. We hypothesize
that untuned suppression is the result of local circuit inhibition
within the cortex.

Materials and Methods
Preparation
Acute experiments of several days duration were performed on 21 male
adult Old World monkeys (Macaca fascicularis) in compliance with Na-
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tional Institutes of Health and New York University guidelines. Animal
preparation and recording were done as described previously (Hawken et
al., 1996; Ringach et al., 2002b). Animals were initially tranquilized with
acepromazine (50 �g/kg). After the tranquilizer, the animal was anesthe-
tized by ketamine (30 mg/kg, i.m.). After cannulation and tracheotomy,
the animal was placed in a stereotaxic frame for craniotomy and subse-
quent visual experiments. A craniotomy (5 mm or smaller in diameter)
was made in one hemisphere posterior to the lunate sulcus (�15 mm
anterior to the occipital ridge) and between 5 and 20 mm lateral from the
midline. A small opening in the dura was made (�1 mm in radius)
to provide access for the electrode. During the whole duration of the
acute experiment, anesthesia was continued with sufentanyl (6 –18
�g � kg �1 � h �1, i.v.) and the animal was paralyzed with vecuronium
bromide (0.1 mg � kg �1 � h �1, i.v.). Anesthetic level was monitored by
measuring the EEG, heart rate, and blood pressure. Expired CO2 was
maintained close to 5%. Temperature was kept at a constant 37°C. A
broad-spectrum antibiotic (Bicillin; 50,000 IU/kg, i.m.) and antiinflam-
matory steroid (dexamethasone; 0.5 mg/kg, i.m.) were given on the first
day of the experiment and every other day during the recording period.
Experiments were terminated with a lethal dose of pentobarbital (60
mg/kg, i.v.). The treatment of the animal’s eyes during the experiment
was as described in (Hawken et al., 1996; Ringach et al., 2002b). We
recorded single units with a glass-coated tungsten microelectrode as de-
scribed in the studies by Hawken et al. (1996) and Ringach et al. (2002b).

Visual stimuli
For the earlier experiments, visual stimuli were generated on a Silicon
Graphics O2 R5000 computer. Stimuli were displayed on a Sony Multi-
scan 17se II color monitor (31.4 cm wide and 23.5 cm high) with a
resolution of 800 � 600 pixels. The mean luminance of the monitor was
53 cd/m 2. The viewing distance was 90 –120 cm. The CRT refresh rate
was 60 Hz for some of the earlier experiments and 100 Hz for experi-
ments thereafter. For the later two-thirds of the data we collected, the
visual stimuli were generated by custom software in a PC computer with
a Linux operating system. Stimuli were displayed on a Sony GDM-F520
Trinitron Color Graphic Display (40.38 cm wide and 30.22 cm high) with
1024 � 768 pixels, running at 100 Hz frame refresh. The mean luminance
of the screen was 72.3 cd/m 2 and the viewing distance was 115 cm.

Each cell was stimulated monocularly through the dominant eye and
characterized by measuring its steady-state response to conventional
drifting gratings (the nondominant eye was occluded). Drifting gratings
were presented for 2– 4 s, and steady-state responses calculated as the
mean firing rate during this period. Using this method, we recorded basic
attributes of the cell in response to drifting sinusoidal gratings. These
include spatial and temporal frequency tuning, orientation tuning, con-
trast and color sensitivity, as well as area summation curves. Receptive
fields were located at eccentricities between 1 and 6° from the fovea. We
measured the receptive field size tuning of a cell by varying the radius of
the stimulus patch from 0.1 to 5° for a sinusoidal grating of optimal
spatiotemporal parameters. The center of the receptive field of a cell was
carefully located by a small circular patch (usually 0.2° radius or smaller)
of drifting grating. The center of the stimulus was put at the center of the
receptive field of a cell. The optimal size for a cell was defined as the peak
or saturation point in the size-tuning curve (Sceniak et al., 1999).

Reverse correlation in the orientation domain
Figure 1 A illustrates the reverse correlation method in the orientation
domain (Ringach et al., 1997; Xing et al., 2005). Sinusoidal gratings of 18
different orientations equally spaced from 0 to 180°, plus “blanks” (de-
fined as uniform frames having the same luminance as the mean lumi-
nance of the grating images) were used. For each orientation, spatial
phase was also varied: each orientation in the set was presented at eight
different spatial phases, equally spaced from 0 to 360°. Other parameters
(spatial frequency optimal for the cell, 80 –99% contrast) of the gratings
were fixed based on previous measurements on each cell. A total of 152
possible stimuli (18 orientations � 8 spatial phases � 8 blanks) com-
posed each sequence.

Each stimulus in a sequence was randomly chosen from the 152 types
of stimuli with replacement and flashed to a cell for two refresh frames

(20 ms). The length of a random sequence of the stimuli was 30 s for each
trial. Thirty trials were run for each experiment; this took 15 min alto-
gether. The sequences of the stimuli were saved in the computer, and the
spike times of the cell were recorded with 1 ms resolution.

Orientation tuning curves measured with drifting gratings
In the present experiments, we measured conventional orientation-
tuning curves with drifting gratings as stimuli (Ringach et al., 2002b;
Xing et al., 2004). Orientation was varied over a range of 360° in steps of
20° or less for grating stimuli of the optimal spatial and temporal fre-
quency. The contrast was 0.8.

Orientation bandwidth. Given the orientation tuning curve of a cell, we
smoothed the curve with a Hanning window filter whose width is 18°
(Ringach et al., 2002b; Xing et al., 2004). Then we found the peak re-
sponse (Rpref) in the smoothed curve; its orientation was defined as the
preferred orientation. Then we found the points on both sides of the peak
at which the responses of the cell were just one-half of the peak response.
One-half of the distance between the two points is the orientation
bandwidth.

Ratio (O/P) of Rorth and Rpref. On the smoothed orientation tuning
curve, we found out the responses of a cell to the orientation 90° on either
side of its preferred orientation. Rorth was defined as the mean of these
two responses. As one measure of orientation selectivity, we computed
the ratio Rorth/Rpref, which is referred to throughout this paper as the O/P
ratio.

Results
We ran experiments on 140 extracellularly recorded macaque V1
cells with two different sets of stimuli: (1) briefly flashed gratings
(for reverse correlation in the orientation domain; Fig. 1) and (2)
drifting gratings. Orientation tuning curves were measured with
both types of stimuli at high (0.8) contrast. For each neuron, the
stimuli were all of optimal size for producing the largest response.
For each cell, the optimum spatial frequency was determined
using drifting gratings, and then that spatial frequency was used
for both drifting and flashed stimuli.

The overall goal of the study was to estimate how much un-
tuned suppression contributes to orientation tuning measured
with drifting grating stimuli (Fig. 2). For many neurons that have
no spontaneous firing rate, it is not possible to measure how
much gratings at nonpreferred orientation suppress the extracel-
lularly recorded spiking response. Using reverse correlation with
dynamically presented gratings (Fig. 1), we measured untuned
suppression even in cells with low spontaneous firing rates [be-
cause the rapid stimulus stream used to measure reverse correla-
tion (Fig. 1A) causes an elevation of mean spike rate above the
spontaneous firing rate in all V1 neurons we studied]. We char-
acterized a threshold-power law model for each cell by a proce-
dure similar to that introduced by Ringach and Malone (2007);
we compared the measured firing rate with the predicted firing
rate from the first-order response (spike-triggered average).
Nonlinear deviations from the first-order prediction defined the
threshold-power law model. The next step was to sum the dy-
namic responses over time and feed the time-integrated response
to the threshold-power law model (Fig. 2). The predictions of the
model matched the orientation selectivity of drifting grating re-
sponses well, as documented below, establishing a link between
reverse correlation and drifting grating orientation tuning. Fi-
nally, the untuned suppression estimate for each single neuron
was subtracted from the dynamics and then the drifting grating
response recalculated with the threshold-power law model (Fig.
2). Comparison of orientation selectivity with and without un-
tuned suppression on a neuron-by-neuron basis provided a
quantitative estimate of how much untuned suppression contrib-
uted to selectivity across the entire population of V1 cells (Fig. 2).
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Orientation dynamics and reverse correlation
The dynamics of orientation selectivity were measured by reverse
correlation as diagrammed in Figure 1A (for details, see Materials
and Methods). Figure 1B shows the dynamics of orientation se-
lectivity of a typical cell. The reverse correlation procedure calcu-
lates the probability p(�,�) that a spike was caused by a grating of
orientation angle � at the time � ms preceding the spike. To make
a comparison of dynamic data and drifting-grating data, in this
study, we used as a measure of neural response the firing rate that
is proportional to p(�,�), instead of the log form used in previous
papers. We defined the response of a cell to orientation � at time
delay � ms as Rrvc(�,�) � (p(�,�) � p(blank, �))*1000, where the
subscript “rvc” indicates this is the response derived from the
reverse correlation experiment. The blank response probability
p(blank, �) had its own time course that defined the response of
the neuron to a blank coming in the input stream of other visual
images. The response of a cell to a blank stimulus served as a
baseline; Rrvc(blank,�) was mapped to zero (Fig. 1B, dashed
lines). Rrvc(�,�) being negative is a sign of suppression because it
means that the grating of orientation � evoked fewer spikes than
a blank screen did.

Population averages of the time course of reverse correlation
responses at preferred and orthogonal orientations (Fig. 3A) il-
lustrate why the existence of untuned suppression is needed to
explain orientation selectivity (Ringach et al., 2003; Xing et al.,

2005). The reverse correlation response at the orthogonal-to-
preferred orientation, Rrvc(�pref � 90, �) was called Rorth(�).
Rorth(�) was usually biphasic while the response at the preferred
orientation, Rrvc(�pref,�), called Rpref(�), was usually monophasic,
as graphed in Figure 3A. The population averages graphed in
Figure 3A indicate that the differences in response time course
between Rpref(�) and Rorth(�) were robust. The difference in re-
sponse dynamics can be explained by untuned suppression as
shown below.

Another way of seeing the effect of untuned suppression is to
compare the shapes of the orientation tuning curves of early with
late responses. This comparison is illustrated in Figure 3, B and C.
The O/P ratio � Rorth/Rpref was calculated at the two times at
which Rpref (�) � 1/2 Rpref (�peak); the two times were �dev on the
rising (or developing) phase of the response and �dec later, on the
falling (or declining) phase (Fig. 3A) and �peak represents the time
when Rpref reaches its peak value. If the only visually driven input
to the cortical cell were excitation, the orthogonal response time
course would simply be a rescaled version of the response time
course at the preferred orientation, graphed in Figure 3A as the
dashed curve. Then the O/P ratio at �dev would be the same as at
�dec. But the O/P ratio was usually smaller (indicating greater
selectivity) at �dec than at �dev (Fig. 3B,C). One can explain both
the biphasic time course of Rorth(�) (Fig. 3A) and the lower
O/P ratio at �dec (Fig. 3 B, C) as consequences of the time
course of untuned suppression being slightly slower than that
of excitation, causing later responses to be more suppressed
than earlier responses.

Modeling dynamic orientation tuning and estimating
untuned suppression
To estimate the strength and time course of suppression, we used
a simplified version of the three-component (tuned enhance-
ment, untuned suppression, and tuned suppression) model de-
vised previously to account for V1 orientation dynamics (below,
Eq. 2) (Ringach et al., 2003; Xing et al., 2005). The orientation
dynamics of a V1 cell had strong tuned enhancement [E(�,�) in
Eq. 2] and untuned suppression [U(�) in Eq. 2] but usually neg-
ligibly small tuned suppression [T(�,�) in the study by Xing et al.
(2005), but ignored here] when the stimulus was of optimal size
(Xing et al., 2005), as in the experiments done here. Therefore, in
this paper, we used a simpler two-component model.

We assumed that the dynamics of orientation tuning were
controlled only by an excitatory process we called tuned enhance-
ment E(�,�) that was a function of orientation and time, and by
untuned suppression U(�) defined to be independent of orienta-
tion. As in the study by Xing et al. (2005), we made the approxi-
mation that tuned enhancement E(�,�) was separable in
orientation and time (i.e., the product of an orientation tuning
curve and a time dependence) as follows:

E��,�� � E��� � ET��� (1)

In other words, the orientation-tuning curve of excitation was
assumed to be independent of time. This is an approximation
that is based on results in the studies by Sharon and Grinvald
(2002) and Anderson et al. (2000). As in the study by Xing et al.
(2005), this approximation was validated by the good fit of the
descriptive model to the dynamics data. The mean fractional er-
ror of this approximation of orientation-time separability on av-
erage across the V1 population was 0.04 for the fitting at optimal
stimulus size (Xing et al., 2005). We defined the ratio of the
excitatory responses at the orthogonal to preferred orientations

Figure 1. Dynamic orientation tuning measured by reverse correlation. A, The reverse cor-
relation method. Stimuli with different orientations plus a blank were flashed for 20 ms in a
random sequence. The spike time of each cell was recorded with 1 ms resolution. B, Dynamics of
orientation tuning of an example cell. Tuning curves are plotted every 20 ms, starting at 30 ms
after stimulus onset and ending at 130 ms after stimulus onset. The red points represent the
responses of cells to orientation at 90° (preferred orientation) and blue points are the responses
of cells to orientation at 180° (orthogonal to preferred). For convenience, the tuning curves of
each cell were shifted by a fixed value, so that its preferred orientation is �90°. The dash-dot
lines in B represent the responses of cells to blank stimulus.
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as � � E� (�orth)/E� (�pref); � could be calculated from the mea-
sured orthogonal/preferred response ratio at short times �40 ms
(Xing et al., 2005).

The simplified model is written in Equation 2. The simplified
model contained the assumption that tuned suppression
T(�,�) 	 0. Therefore, the reverse correlation response was mod-
eled simply as the difference between excitation and untuned
suppression.

R��,�� � E��,�� � U��� (2)

The measurable responses Rpref(�) and Rorth(�) were expressed in
terms of excitation and untuned suppression in Equations 3 and
4, by following Equation 2, and substituting the rescaled
E(�pref,�) for E(�orth,�). Then algebraic rearrangement led to
Equation 5, which expresses U(�) in terms of Rpref(�) and Rorth(�)
as follows:

Rpref ��,�� � E��pref,�� � U��� (3)

Rorth ��,�� � �E��pref,�� � U��� (4)

U��� � ��Rpref ��� � Rorth����/�1 � �� (5)

Equation 5 was used to estimate untuned suppression for each
cell. In Figure 4, the estimation procedure is illustrated with ori-
entation dynamics data of one representative V1 cell. Time
courses of Rpref(�), Rorth(�), and �Rpref(�) are depicted in Figure
4A. The dashed curve in Figure 4A is �Rpref(�) and the blue solid
curve is Rorth(�). From Equation 5, U(�), graphed in Figure 4B,
was proportional to the difference �Rpref(�) � Rorth(�). The pop-
ulation distribution of the estimated peak values of U(�) for all
the cells in the population is graphed in Figure 4C.

Prediction of drifting grating responses from orientation
dynamics: operating point analysis
Next, we linked the dynamic orientation-tuning of each cell and
its orientation tuning for drifting gratings. The link between the
drifting-grating response Rdg and reverse correlation response is
described by time averaging (Eq. 6) and a threshold-power law
model (Eq. 7) as follows:

� Rrvc��� � � �
��1

140

Rrvc��,��/MRrvc (6)

Rdg��� � K 
 � Rrvc��� � � Th�n (7)

We developed a procedure for estimating the threshold and
power law parameters inspired by the results about cell operating

Figure 3. Dynamic responses in V1. A, Population averaged dynamic responses to their
preferred orientations (Rpref, red curve) compared with dynamic responses to their orthogonal
orientations (Rorth, blue curve) for V1 cells. The dashed curve is a rescaled version of Rpref by �
(�0.27) to match the early part of Rorth. The intersections of vertical lines and horizontal line
represent Tdev and Tdec. B, Scatter plot of O/P ratio (ratio of Rorth to Rpref) for individual V1 cells,
at Tdev and Tdec. C, The distribution of the difference of O/P ratio between Tdev and Tdec. In C, the
red vertical line represents the mean difference of O/P.

Figure 2. Plan of experiments. Using reverse correlation with dynamically presented gratings (Fig. 1), we estimated tuned enhancement and untuned suppression (Fig. 4). Next, we summed the
dynamic responses over time and fed the integrated response in to a threshold-rate model. Finally, the untuned suppression estimate for each single neuron was subtracted from the dynamics and
then the drifting grating response recalculated. Comparison of orientation selectivity with and without untuned suppression provided quantitative estimates of how much untuned suppression
contributed to selectivity on a neuron-by-neuron basis.
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points in the study by Ringach and Malone (2007). The reverse-
correlation response Rrvc(�,t) was averaged over 140 ms in Equa-
tion 6. The time over which the response was averaged was
chosen as 140 ms because empirically all V1 response dynamics
relaxed back to zero by then. Averaging over a longer time, say up
to the period of the drifting grating stimulus, would yield no
more stimulus-dependent response. The mean firing rate of each
experiment (MRrvc) then was used to normalize the responses in
Equation 6 to make the averaged response dimensionless. Then
the drifting grating response was predicted by Equation 7, which
describes a nonlinear threshold-power law model of a cortical
cell. It is worth noting that the threshold parameter Th is the
estimated distance between cell membrane potential and spike-
firing threshold during the RVC experiment.

The parameters of the threshold-power law function in Equa-
tion 7 of each cell were estimated based on the idea that the
responses to drifting gratings would be affected by the same
spike-threshold and power law nonlinearity as affected the re-
sponses in the reverse correlation experiment. Support for this
idea comes from the experimental fact that the mean firing rate in
the reverse correlation experiments was roughly the same as that
in the drifting grating experiments (averaged across all orienta-
tions). The estimation procedure compared measured firing
rates in the reverse correlation experiment with what one would
predict from a linear model—the functional relation between
measured rate and predicted rate would define the nonlinear
response function of the cell (Ringach and Malone, 2007; Benucci
et al., 2009). Therefore, for each cell studied we did the following:
(1) We first made a linear prediction of the instantaneous firing
rates of a neuron over 140 ms time windows as a function of time
during a reverse correlation experiment, by filtering the stimulus
time series with the first-order kernels of the neuron, Rrvc(�,�);
(2) the measured instantaneous firing rates of the cell were aver-
aged over 140 ms time windows throughout the response to the
same reverse correlation stimulus; (3) the predicted firing rates
then were ranked by their values from lowest to highest, and every
30 values in the ascending sequence were averaged, and the mea-
sured responses for the corresponding times were similarly aver-
aged (just to get a better signal-to-noise estimate of the
responses); and then (4) a scatter plot (Fig. 5A) was drawn where
the coordinates of each point in the scatter plot were the linear
prediction from step 1 above, averaged as in step 3, versus mea-
sured response from step 2 also averaged as in step 3; finally, (5)
best fit values of scale factor (K), exponent (n), and threshold
(Th) were calculated to give the best fit of Equation 7 to the scatter
plot. For example, for the V1 neuron in Figure 5, K � 248
spikes/s, Th � �0.19, and n � 1.6.

The distributions of the obtained values of n and Th across the
V1 population are graphed in Figure 5, B and C. Across the pop-
ulation, the average values of the best-fitting parameter values
were K � 126 spikes/s, n � 1.68 (Fig. 5B), and Th � �0.18 (Fig.
5C). The implication of these parameter values is that, during the
reverse correlation experiments, V1 cells were acting in an ap-
proximately linear manner and their firing rates were above zero
(this is the meaning of the negative threshold).

Having obtained the needed values of K, Th, and n, and using
Equations 6 and 7, we then predicted for each cell its orientation
tuning curve for drifting gratings. For each orientation �, we first
summed the first-order dynamic response to that orientation
over the first 140 ms after stimulus onset (Eq. 6). Then we trans-
formed this value by the threshold-power law function (Eq. 7)
with the best-fit parameters for each cell. For example, for the
representative cell in Figure 5A, such tuning curves are shown in

Figure 7A. One might expect that, if the membrane potential of a
cell were far below spike firing threshold in the drifting grating
experiment, the measured orientation selectivity would be
greater than that of the predicted tuning curve because of the
iceberg effect (Priebe and Ferster, 2006; Finn et al., 2007). Good
agreement between predicted and measured orientation selectiv-
ity would suggest the opposite, that the membrane potential of
the cell was not far below spike-firing threshold during the drift-
ing grating experiments.

Comparing tuning curves to drifting versus rapidly
flashed gratings
One test of the agreement between the predictions of the
threshold-power law model and drifting grating measurements is
a comparison of the measured peak spike rate in the drifting
grating experiment with the predicted peak spike rate from the
threshold-power law model. This comparison is shown in Figure
6A. The predicted and measured firing rate peaks span the same
range and are highly correlated (r � 0.68). This is a highly non-
trivial result that depends on an accurate measurement of the
reverse correlation response, on temporal integration of the dy-
namic response (Eq. 6) and on the accurate estimation of param-
eters of the threshold-power law model (Eq. 7). Empirical
justification that temporal integration is required is shown in
Figure 6B where the peak response to the drifting grating stimu-
lus is plotted in a scatter plot versus the peak response of the
reverse correlation. The points are much further from the iden-
tity line in Figure 6B than in Figure 6A, because temporal inte-
gration was not taken into account in Figure 6B. Empirical
evidence that the threshold-power law is needed is shown in Fig-
ure 6C, which is a scatter plot: {Peak response (dynamic)/Peak
response (drifting)} plotted on a logarithmic axis versus the
power law exponent n. There is little correlation between log ratio
and exponent (correlation coefficient r � �0.23). This means
that the exponent is independent information about the operat-
ing point nonlinearity of the cortical cell.

To support more fully the idea that the power law model
allowed us to link the dynamics experiments with the drifting
grating experiments, we briefly present a comparison of pre-
dicted orientation selectivity (Fig. 7A for an example neuron) and
orientation selectivity measured by drifting gratings (Fig. 7B for
the same example neuron) across the V1 population. Both orien-
tation bandwidths [Fig. 7C, where we only include the 109 cells
with orthogonal/preferred (O/P) ratio �0.5] and O/P ratio (Fig.
7D) were highly correlated between predicted and measured ori-
entation tuning from responses to drifting gratings. The correla-
tion coefficient for bandwidth was 0.73, while the correlation
coefficient for O/P ratio was 0.91. Nishimoto et al. (2005) did a
similar analysis for orientation bandwidth in cat area 17 cells,
with a similar good agreement between dynamic and drifting-
grating bandwidths. If instead of fitting the threshold-power law
model, we simply made a linear prediction based on the time-
integrated Rrvc, we also obtained good agreement between pre-
dicted and measured orientation bandwidth (r � 0.60; N � 109)
and O/P ratio (r � 0.67; N � 140), although the correlation
coefficients were smaller than those obtained with the threshold-
power law model.

How untuned suppression affects steady-state
orientation tuning
Finally, we used the dynamic measurements to assess the contribu-
tion of untuned suppression to orientation selectivity. Across the
population of V1 neurons we performed an analysis on a cell-by-cell
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basis as follows: (1) first, we estimated un-
tuned suppression from the orientation dy-
namics of an individual cell (Fig. 4); (2) we
then computed the orientation tuning of the
cell for drifting gratings based on the
threshold-power law model described in the
previous section of Results (Eqs. 6, 7; Figs. 5,
7); (3) finally, we computed from the
threshold-power law model what the orien-
tation tuning of the cell for drifting gratings
should be when its untuned suppression
was removed, by using a modified Rrvc(�)
with untuned suppression set equal to zero.

The results of the analysis are displayed
in Figure 8. In the left-hand column, the
results are shown as frequency histograms
of O/P ratio. The distribution of O/P ratio,
measured by drifting gratings, is positively
skewed with a long tail (Fig. 8A). This is
very similar to the distribution of O/P ra-
tios predicted from dynamic orientation
tuning (Kolmogorov–Smirnov test, p �
0.37; Fig. 8B). However, when untuned
suppression was removed, the number of
cells predicted to have an O/P ratio �0.2
dropped from 75 of 140 to 38 of 140, and
the distribution of O/P ratio became sig-
nificantly less skewed and flatter (Kolm-
ogorov–Smirnov test, p � 0.001; Fig. 8C).
The cell-by-cell change in O/P ratio is il-
lustrated in the scatter plot in Figure 8D.
Nearly all cells (average change of O/P ra-
tio is 0.12; p � 0.001, t test for pair sample)
showed a positive change of O/P ratio
with removal of untuned suppression
(Fig. 8D, points above the diagonal line),
indicating that the effect of untuned sup-
pression on the responses of V1 cells to
nonoptimal orientations is general across
the population.

Untuned suppression increases orien-
tation selectivity by reducing the vertical
offset of the orientation tuning curves.
This is illustrated for a single representa-
tive V1 neuron and for the V1 population
in Figure 9. Figure 9, A and B, shows the
change of the orientation tuning of one
cell due to its untuned suppression. When
we removed the effect of untuned suppres-
sion, the whole orientation tuning curve
(Fig. 9B) shifted upward by the amount of
untuned suppression, decreasing the rela-
tive difference between responses at pre-
ferred and orthogonal orientations. This
effect can also be seen in the population av-
erage in Figure 9C.

It is especially noticeable that many
sharply tuned cells (O/P � 0.2) are
strongly affected by the removal of un-
tuned suppression (Fig. 8D). The largest
increase of O/P ratio as a result of the re-
moval of untuned suppression happens to
cells with an original O/P ratio �0.2 (Fig.

Figure 4. UntunedsuppressionisneededtomodelthedynamicorientationtuningforindividualV1cells.AshowsthetimecoursesofRpref (red
curves) and Rorth (blue curves) from a V1 cell. Both Rorth and Rpref have positive responses at early time. At early time (before 45 ms after stimulus
onset),RorthhasatimecoursesimilartoRprefbutisrescaledby�,0.48(dashedcurve).Atlatertimes,theblueanddashedcurvesaredifferentbecause
ofuntunedsuppression.Bshowsestimateduntunedsuppressionforthiscell.C,PopulationdistributionoftheestimatedpeakvaluesofU(t)forallthe
cells inthepopulation.Theinsetshowsthedistributionofthepeakuntunedsuppressionrelativetothepeakresponsetothepreferredorientation.

Figure 5. Estimation of the operating point of a representative V1 cell and a comparison of measured and predicted orientation tuning.
A, The operating point of the V1 cell. The red curve is fitted by a power law K�Rrvc(�)�Th�n (K�248 spikes/s, Th��0.19, and n�1.6).
B, The distribution of the exponent n of the power law for all V1 cells. C, The distribution of threshold Th for all V1 cells.
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9). On average, untuned suppression reduces the O/P ratio for
these cells from 0.25 to 0.08. This suggests that the most highly
selective cells are greatly affected by untuned suppression
(changes of O/P ratio are 0.17 for neurons with O/P ratio �0.2
and 0.12 for the whole population). Overall, the results suggest
that the receptive fields of neurons with high orientation selectiv-
ity are not just formed by their excitatory input but that untuned
suppression plays an important role in increasing the orientation
selectivities of these cells.

Weakly tuned “untuned suppression”
Suppose cortical inhibition does not produce untuned suppres-
sion but weakly tuned suppression as predicted by models
(McLaughlin et al., 2000; Mariño et al., 2005). Here, we show how
the estimation of the suppression controlling Rorth, and the esti-
mation of contribution of this process to orientation selectivity
are affected, if suppression is not completely untuned. If the sup-
pressive process controlling Rorth has similar orientation prefer-
ence and bandwidth (without offset) as excitatory processes, we
can divide this suppressive process into two parts, U(�) and
u(�,�) so that u(�,�) is always proportional (with a constant of
proportionality k, 0 � k � 1) to E(�,�) at each time delay �, as
shown in Equations 2�, 3�, and 4� as follows:

R��,�� � E��,�� � U��� � u��,�� (2�)

Rpref��� � E��pref,�� � U��� � k � E��pref,�� (3�)

Rorth��� � � � E��pref,�� � U��� � � � k � E��pref,�� (4�)

U��� �
� � Rpref��� � Rorth���

1 � �
(5�)

Then we can only estimate U(�) (shown in Eq. 5�) and will miss
the u(�,�) part, which is hidden in E(�,�).

Discussion
Our experimental results and analysis provide the first quantita-
tive estimates of the contribution of untuned suppression to ori-
entation selectivity. Untuned suppression made a significant
quantitative contribution to the orientation selectivity of V1 cells
by attenuating responses to nonpreferred stimuli.

Neuronal processes involved in orientation selectivity
One of the main problems the visual cortex needs to solve, to
generate orientation selectivity, is the reduction of responses to
nonpreferred orientations particularly when stimuli are high
contrast (Ben-Yishai et al., 1995; Sompolinsky and Shapley, 1997;
Troyer et al., 1998). Information theory analysis by Kang et al.
(2004) showed that a pedestal of response to nonpreferred orien-
tations degrades orientation discrimination by the V1 popula-
tion. The original feedforward model provided by Hubel and
Wiesel (1962) provides the bias for the preferred orientation in
most cortical models. However, feedforward excitation alone
cannot provide the suppression of responses to nonpreferred ori-
entations that has been observed (De Valois et al., 1982; Celebrini
et al., 1993; Ringach et al., 2002b).

To account for orientation selectivity, theorists have proposed
corticocortical amplification (Ben-Yishai et al., 1995; Somers et
al., 1995; Mariño et al., 2005), corticocortical inhibition (Sato et
al., 1996; Troyer et al., 1998; McLaughlin et al., 2000; Monier
et al., 2003), and presynaptic depression (Carandini et al., 2002;
Freeman et al., 2002). Many experimental studies (Nelson and
Frost, 1978; Sillito et al., 1980; Bonds, 1989; Volgushev et al.,
1993; Sato et al., 1996; Ringach et al., 2002a,b; Shapley et al., 2003)
concluded that suppressive or inhibitory cortical mechanisms
were involved. However, more recent studies (Carandini et al.,
2002; Freeman et al., 2002; Priebe and Ferster, 2006; Finn et al.,
2007; Koelling et al., 2008) suggested that the suppressive effects
studied earlier in experiments that used plaids and drifting grat-
ings as stimuli might be due to nonlinearities in the retina and/or
LGN. These reexaminations of the neuronal mechanism of ori-
entation selectivity motivated us to make a quantitative assess-
ment of the contribution of untuned suppression.

Figure 6. Peak firing rates predicted by dynamic responses versus those measured by drift-
ing gratings. A, Scatter plot of the predicted peak firing rates of V1 cells (x-axis) versus those
measured by drifting gratings ( y-axis). The predicted and measured rates are highly correlated
(r � 0.68). B, Scatter plot of the measured peak firing rates of V1 cells measured by drifting
gratings (x-axis) versus peak responses measured by reverse correlation experiments ( y-axis).
C, Scatter plot of the estimated power n of V1 cells (x-axis) versus ratio of peak responses
measured by reverse correlation experiments and drifting grating experiments. The dashed
lines in A and B represent identity lines.
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The role of untuned suppression
The existence of untuned suppression is consistent with theoret-
ical studies that suggest that local cortical inhibition generates
broadly tuned (or untuned) suppression (Troyer et al., 1998;

McLaughlin et al., 2000). Intracellular
measurements in cat V1 prove the exis-
tence of broadly tuned cortical inhibition
(Volgushev et al., 1993; Anderson et al.,
2000; Gillespie et al., 2001; Monier et al.,
2003). Studies in cat (Nowak et al., 2008)
and mouse (Niell and Stryker, 2008) cor-
tex indicate that there is a subgroup of
fast-spiking V1 neurons, presumed inhib-
itory interneurons, that are untuned or
poorly tuned for orientation. Additional
evidence comes from the study by Sato et
al. (1996), in which cortical GABAergic
inhibition in macaque V1 was weakened
by bicuculline.

Thresholds, power laws, and
operating points
Spike-firing threshold has been consid-
ered as another possible mechanism for
high orientation selectivity in responses to
drifting grating patterns (Jones et al.,
1987; Gardner et al., 1999). The spiking
threshold acting as an iceberg effect (Rose
and Blakemore, 1974) is unlikely to ac-
count for orientation selectivity (Sompo-
linsky and Shapley, 1997; Troyer et al.,
1998), but more recent work (Priebe and
Ferster, 2006; Finn et al., 2007) proposed a
more sophisticated model regarding
spike-firing threshold. In this model, the
spike-firing threshold makes a visual cor-
tical neuron transform its membrane po-
tential into cycle-averaged firing rates like
a power law transducer (Hansel and van
Vreeswijk, 2002; Miller and Troyer, 2002). If
the power law exponent were much larger
than 1, the firing rate of the neuron would
increase much more than proportionally
to membrane potential and this would
sharpen orientation tuning. Experimental
results suggested that the exponent was
between 2 and 3 (Anzai et al., 1999; Gard-
ner et al., 1999; Finn et al., 2007). How-
ever, the good agreement we found
between reverse correlation predictions
and drifting grating data suggests rather
that V1 neurons are not far below thresh-
old and are not acting like power law
transducers in our drifting grating ex-
periments. The threshold-power law
model we considered in Results was
not about the nonlinearity of spike-
threshold but rather characterized the
amount of response in the RVC experi-
ment that cannot be accounted for fully
by the first-order kernel. The average
exponent n of that model was low, �1.6.
While Nishimoto et al. (2005) have

pointed out that nonlinearities might be subsumed within the
kernel estimation, there was no dependence of our estimation
of the contribution of untuned suppression on exponent n
(Fig. 10 B).

Figure 7. Orientation tuning predicted by dynamic responses versus those measured by drifting gratings. A, An example of a single
neuron (the same neuron as in Fig. 5A). The orientation tuning curve of the cell predicted from the power law function derived from Figure
5A. B, For the same V1 cell, the orientation tuning curve was also measured by drifting gratings. The dashed line in B represents the
spontaneous firing rate. C, Scatter plot of the predicted orientation bandwidths of V1 cells (x-axis) versus those measured by drifting
gratings( y-axis). D,Comparisonofpredictedversusmeasured O/P ratioshownbyascatterplotof O/P ratiopredictedbyreversecorrelation
experiments (x-axis) and O/P ratio measured with drifting gratings ( y-axis). Correlation coefficients were as follows: 0.73 for bandwidth,
0.91 for O/P ratio.

Figure 8. The effect of untuned suppression on O/P ratio estimated across the V1 population. A, Distribution of the measured O/P ratio
of V1 cells from experiments with drifting gratings as stimuli. B, Distribution of the O/P ratio of V1 cells estimated from dynamics experi-
ments that include untuned suppression. C, Distribution of the O/P ratio of V1 cells without untuned suppression, estimated from dynamics
experiments.D,AscatterplotforN�140cellsrecordedinV1ofpredictedO/Pratio(x-axis)versusO/Pratiowithoutuntunedsuppression( y-axis).
Thedistanceofeachpointfromtheunit line,drawnasthediagonal, is theamountuntunedsuppressioncontributedtoorientationselectivity.
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The challenge remains to reconcile results from different lab-
oratories. One possibility is that cortices studied in different lab-
oratories were at different operating points (Ringach and
Malone, 2007). Perhaps the widely divergent estimates of the
exponents of power law models may reflect different operating
points caused by the use of different visual stimuli or different
pharmacological treatments. Supporting evidence that the op-
erating points of our experiments and those of Finn et al.
(2007) were different comes from an analysis of the popula-
tion distributions of spontaneous firing rate and O/P ratio, as
follows.

The suggestion of different operating points is consistent with
the difference in spontaneous firing rates in the populations of V1
cells reported by different laboratories. In our dataset, only 20%
of cells have spontaneous firing rate � 0 (mean, 4.6 spikes/s; N �
480); among simple cells, 33% have spontaneous firing rate � 0
(mean, 2.4 spikes/s; N � 207). The spontaneous firing rates from
our sufentanyl-anesthetized monkeys were somewhat lower than
those observed in awake monkeys (Gur et al., 2005; Chen et al.,
2009) (personal communication between Dr. Bruce Cumming
and Dr. Michael J. Hawken) but still significantly above 0
spikes/s. However, Finn et al. (2007) suggested that most simple

cells they recorded in cat V1 had zero spontaneous firing rates
(inferred from the zero firing rates to nonpreferred orientations).
Different experimental procedures in different laboratories could
lead to different views of the effect of spike-firing threshold on
orientation selectivity. When the threshold is high, it can improve
orientation selectivity by preventing responses to nonpreferred
orientations. The high threshold may hide inhibitory effects.
However, when threshold is relatively low, untuned suppression
is more obvious and is observed to have a stronger influence on
orientation selectivity.

An indication of the different operating points in different
experiments also can be seen in the distribution of O/P ratios
measured from different laboratories. In our database, the
distribution of O/P ratio peaked near zero and was positively
skewed with a long tail to 1, as in Figure 7A. However, from the
very low firing rates to nonpreferred orientations reported by
Finn et al. (2007), it is reasonable to expect that the distribu-
tion of the O/P ratio of their population would have a peak at
zero and little or no skewed tail above zero O/P. We conclude
that our dataset is from V1 when its operating point is some-
what similar to that of the awake animal, and that the data of
Finn et al. (2007) are from a visual cortex that is working at a
different operating point.

Neuronal mechanism of untuned suppression
Previously, we found that a relatively slower tuned suppression is
size dependent, but more rapid untuned suppression is the same
for stimuli of optimal size and for stimuli two to four times larger
(Xing et al., 2005). Such size invariance of untuned suppression
suggests that it is a process mainly due to local circuitry in V1. In
our descriptive model, untuned suppression is constant as a func-
tion of orientation. However, McLaughlin et al. (2000) and
Mariño et al. (2005) using computational models of V1 have
suggested that the inhibitory effect on a V1 cell due to local cir-

Figure 9. Change of orientation tuning curves with removal of untuned suppression. A and
B show the change of the orientation tuning curve of an example cell, before and after its
untuned suppression was removed. C, The population (cells with O/P � 0.2) averaged orien-
tation tuning (black curve; O/P � 0.08) compared with the population average orientation
tuning without untuned suppression (red curve; O/P � 0.25).

Figure 10. A, Untuned suppression has stronger effects on sharply tuned V1 cells. The graph
shows the predicted change of O/P ratio caused by removing untuned suppression ( y-axis)
plotted versus the measured O/P ratio of V1 cells (x-axis). The biggest effects are at low O/P
ratios (most highly selective cells). B, Untuned suppression is not significantly correlated to
estimated exponent n in the V1 population. The graph shows the predicted change of O/P ratio
caused by removing untuned suppression ( y-axis) plotted versus the estimated exponent n of
V1 cells (x-axis). The correlation is not significant (p � 0.125).
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cuitry may in some cases be tuned with a bandwidth similar to
tuned excitation but with a much larger orthogonal/preferred
(O/P) ratio than feedforward and local circuit excitation. If these
models were correct and the inhibitory tuning and excitatory
tuning were similar around the peak of the tuning curve, we
would be unable to dissect the tuned part of the local suppression
process from excitation using the curve-fitting procedure we
used with our three-component model. So even though in our
simplified model the suppressive process controlling Rorth is flat,
we do not exclude the possibility that the suppressive process
controlling Rorth is also tuned with similar orientation preference
and bandwidth as enhancement. But the inhibitory process must
have a pedestal of suppression across all orientations to be com-
patible with the dynamics data. If untuned suppression in our
model is indeed broadly tuned as described above, our model will
tend to underestimate the total amount of suppression, but the
estimation of contribution of the untuned suppression—the un-
tuned portion of the suppressive process—will be unaffected (as
shown at end of Results).

Untuned suppression appears to be a cortical process. Un-
tuned suppression is too slow to be a retinal or LGN effect, but
too rapidly decaying to be consistent with synaptic depression at
thalamocortical or corticocortical synapses. Synaptic depression
is also ruled out as an explanation from the results of Boudreau
and Ferster (2005). The neuropharmacological results of Sato et
al. (1996) support the idea that cortical GABAergic inhibition is
the source of untuned suppression since it can be blocked by
bicuculline applied in the cortex.
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