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Behavioral State Modulates the Activity of Brainstem

Sensorimotor Neurons

Kimberly L. McArthur and J. David Dickman

Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110

Sensorimotor processing must be modulated according to the animal’s behavioral state. A previous study demonstrated that motion
responses were strongly state dependent in birds. Vestibular eye and head responses were significantly larger and more compensatory
during simulated flight, and a flight-specific vestibular tail response was also characterized. In the current study, we investigated the
neural substrates for these state-dependent vestibular behaviors by recording extracellularly from neurons in the vestibular nuclear
complex and comparing their spontaneous activity and sensory responses during default and simulated flight states. We show that
motion-sensitive neurons in the lateral vestibular nucleus are state dependent. Some neurons increased their spontaneous firing rates
during flight, though their increased excitability was not reflected in higher sensory gains. However, other neurons exhibited state-
dependent gating of sensory inputs, responding to rotational stimuli only during flight. These results demonstrate that vestibular
processing in the brainstem is state dependent and lay the foundation for future studies to investigate the synaptic mechanisms respon-

sible for these modifications.

Introduction
Sensorimotor processing can be strongly modified by the ani-
mal’s behavioral state. Even reflex circuits may be optimized for
different environmental, physiological, or motivational condi-
tions. Sensory cues repeatedly associated with these conditions
then evoke retrieval of the optimal sensorimotor mappings for a
particular state. For example, gliding flight is a distinct behavioral
state in pigeons that can be simulated in the laboratory with
frontal airflow (Bilo and Bilo, 1978, 1983; Bilo, 1992, 1994; Gio-
anni and Sansonetti, 1999, 2000; Maurice and Gioanni, 2004a,b).
During flight, active gaze and posture stabilization are critical, as
turbulence threatens perception and performance (Brown, 1963;
Erichsen et al., 1989; Warrick et al., 2002). This is reflected in
state-dependent vestibular gaze-and posture-stabilizing re-
sponses (McArthur and Dickman, 2011). Eye [vestibulo-ocular
(VOR)] and head [vestibulocollic (VCR)] responses to rotation
had significantly higher gains during simulated flight. Also, state-
specific vestibular tail reflexes were observed that would contrib-
ute to postural stability during flight.

What is the neural substrate of these state-dependent behav-
iors? Two questions must be addressed: which neurons in the
underlying sensorimotor pathways are state dependent, and
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which features of the neural response are likely to drive the ob-
served changes in behavior? Vestibular reflexes are generated in
part by a three-neuron arc, wherein vestibular afferents project to
brainstem neurons in the vestibular nuclear complex (VNC),
which in turn project to motor nuclei (Precht, 1979; Wilson and
Peterson, 1981). Modulations of vestibular behaviors may be re-
flected in the responses of VNC neurons, as observed for floccular
target neurons following VOR adaptation (Lisberger et al., 1994)
and position-vestibular-pause neurons during VOR suppression
(Cullen et al., 1993; Roy and Cullen, 2002). VNC neurons may
also incorporate the context of stimulation into their responses,
as when neurons suppress responses to active head movements
(McCrea et al., 1999; Roy and Cullen, 2004). Further, Rabin
(1973, 1974, 1975a,b) demonstrated in pigeons that vestibular
projections to the spinal cord—but not labyrinthine inputs to the
brainstem—were active in the absence of airflow, suggesting
state-specific gating or facilitation of vestibular afferent signals to
central vestibular neurons. Here, we examined the neural sub-
strate of state-dependent vestibular reflexes by recording from
lateral vestibular nucleus (LVN) cells, known to be a strong
source of vestibulospinal projections involved in head and tail
responses (Wilson and Peterson, 1981). We anticipated that state
dependence would be reflected in the gain of firing rate modula-
tions to sinusoidal motion. Since both eye and head reflexes were
active across states but had higher gains during flight, we pre-
dicted that a subset of VNC neurons would likewise be motion
sensitive across states but would increase their gains during flight.
To drive flight-specific tail reflexes, we predicted that another
subset of VNC neurons would exhibit flight-specific motion sen-
sitivity, with gains equal to zero during the default state. We
present data suggesting that behavioral state does modulate VNC
neuronal excitability, reflected in the sensory gains of some neu-
rons and in the overall spiking activity of others.
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Materials and Methods

Four adult pigeons (Columba livia) of both sexes, ranging in weight from
400 to 700 g, were used in accordance with the guidelines set forth by the
National Institutes of Health Guide for the Care and Use of Animals in
Research, as well as those approved by the Institutional Animal Care and
Use Committee. The animals were housed and cared for in the Labora-
tory Animal Facilities under veterinary supervision.

Animal preparation. The neural recording assembly (Kubie, 1984;
Taube et al., 1990) consisted of a custom chronic microdrive with an
array of 10 electrodes. The electrode array was constructed of 25 um
insulated nichrome wires (60% Ni/16% Cr/24% Fe, California Fine
Wire) encased in a stainless steel cannula. The wires were connected to a
modified circular connector (10-pin circular transistor socket, Mill-
Max) encased in dental acrylic with three drive screws, each of which was
partially threaded into a tapped nylon cuff. Each animal was surgically
implanted with one of these recording assemblies under isofluorane an-
esthesia (3-5% in O, via endotracheal intubation). Both heart rate (80—
150 beats/min) and core temperature (40°C) were monitored and
maintained throughout surgery. The animal’s head was secured in a
stereotaxic device. An incision was made along the midline of the skull,
and the underlying periosteum was removed from the bone. A small
craniotomy was made in the bone over the brainstem, and the dural
tissue was carefully cleared to expose the brain. The cannula of the re-
cording assembly was then lowered into the brain, until the tip of the
cannula reached a position just dorsal of the vestibular nuclear complex.
The assembly was attached to the skull using three inverted stainless steel
T-bolts and dental acrylic surrounding the nylon cuffs at the end of each
drive screw. Each animal was also implanted with a Delrin head stud,
used to fix the head during experiments. This stud was positioned with
the beak tilted ~12° downward, such that upright orientation corre-
sponded on average to alignment of the horizontal semicircular ca-
nals with an earth-horizontal plane (Dickman, 1996). After surgery,
the wound margin was sutured closed, and the craniotomy was kept
clear of debris by a removable head cap.

Behavioral and neural recording. Behavioral procedures used in these
experiments have been described previously (McArthur and Dickman,
2011). In brief, the animal was secured to a restraint arm mounted to a six
degrees-of-freedom hydraulic motion platform (Rexroth-Bosch) using a
minimal restraint that left the animal’s wings, tail, and legs free to move
(see Fig. 1A,B). The animal’s head could be fixed to the restraint arm
(using the head stud) or left free to move. Rotational head movements
were monitored using a three-field AC magnetic coil system (Riverbend
Instruments) mounted to the motion platform and a 3D coil assembly
attached to the head stud. The head was centered within the field coils
and relative to the axes of rotational motion (see below). Further, the
position of the body holder was adjusted for each animal such that its
at-rest, head-free head position (on average) was approximately the same
as its position during head-fixed recordings. Tail movements were mon-
itored using an infrared optical tracking system (Optotrak Certus,
Northern Digital), and a 3D rigid body (~8 g) temporarily secured to the
animal’s tail.

Extracellular neural recordings were obtained using the chronically
implanted microdrive assembly. The neural signal of each electrode was
differentially amplified (using the cannula as reference) by a custom-
made head stage connected to the microdrive with a flexible wire tether.
Neural signals were filtered (300-5000 Hz) and amplified (1000X) by
the head stage, then filtered (100 Hz-10 kHz) and amplified (10X) fur-
ther and stored as digital waveforms (20 kHz sampling rate) using a
programmable interface (Power1401, Cambridge Electronic Design) and
commercial software (Spike2, Cambridge Electronic Design). Neural
waveforms, behavioral data (head and tail movements), and accelerom-
eter and rate sensor signals were monitored on-line and time-synced
off-line for further analyses.

Motion stimuli. The motion platform was driven by computer and a
programmable interface (Power1401, Cambridge Electronic Design), us-
ing custom scripts written for the interface environment (Spike2, Cam-
bridge Electronic Design). Stimulus deliveries were monitored using a
rate sensor and three-axis linear accelerometer mounted to the motion
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platform. Under head-fixed conditions, the x-, y-, and z-axes corre-
sponded to the animal’s naso-occipital, interaural, and dorsoventral axes,
respectively. Positive rotations were right ear down, nose down, and left-
ward. Positive translations were forward, leftward, and upward. Sinusoidal
rotations were delivered about the x- (roll), y- (pitch), and z- (yaw) axes at
0.25, 0.5 and 1 Hz and amplitudes of 5, 10, 15, and 20°/s peak angular
velocity. Sinusoidal translations were delivered along the x- (fore—aft) and y-
(left-right) axes at 0.5 Hz with a peak amplitude of 0.1G (1G = 9.8 m/s).

Experimental protocol. All experiments were performed in darkness.
To test the effect of behavioral state on neural responses to motion, we
delivered rotational and translational motion in the absence of airflow
and during an airflow-simulated gliding flight condition. Flight-state
simulation has been described previously in detail (McArthur and Dick-
man, 2011). In brief, airflow was delivered to the animal’s frontal surface
using a blower hose fixed to the motion platform. In the absence of
airflow (Fig. 1A, default state), pigeons were relaxed in the sling with
their tails lowered and their legs extended underneath their torsos. In the
presence of airflow (Fig. 1B, flight state), pigeons tensed their wings,
lifted their tails, and pulled their legs up underneath their tails. Trials
were blocked by stimulus axis, frequency, and behavioral state (default or
flight), and at least 60 s passed between blocks. Between blocks, the
experimental room was briefly and dimly lit, and animals were moni-
tored for alertness (by visual inspection of posture and spontaneous head
movements) and for successful transitions in behavioral state.

At the beginning of an experiment, neural signal channels were mon-
itored for single-unit action potentials, in both the presence and absence
of airflow. All well isolated single units (as judged on-line by the experi-
menter) were subjected to a battery of test stimuli, comprised of x-, y-,
and z-axis rotations (0.5 Hz, 10 or 15°/s) in which airflow was turned on
mid-motion. Any single-unit neuron with a systematic cycle-by-cycle
response to any axis of motion (in the presence or absence of airflow) was
deemed motion sensitive and recorded during additional stimuli. Based
on neural responses to test stimuli, the experimenter selected on-line the
cardinal axis of maximum sensitivity, and this axis was the basis of the
experimental protocol for that neuron. For example, a neuron with a
strong response to y-axis rotation would be recorded during 0.25-1 Hz,
5-20°/s pitch rotations and 0.5 Hz, 0.1 G x- and y-axis translations,
repeated in the presence and absence of airflow (default/flight states),
performed under head-fixed and head-free conditions, assuming contin-
uous single-unit isolation. All neurons that were classified as motion
sensitive on-line (and could be reliably spike sorted; see below) were
confirmed to be motion sensitive off-line (mean sensitivity >0.1 spikes/s
per degree/s).

Recording location. Extracellular recordings were targeted to the lateral
portion of the vestibular nuclear complex, based upon previously deter-
mined stereotaxic coordinates in pigeons (Dickman and Fang, 1996).
Because the microdrive and cannula were chronically implanted, there
was a single recording track per pigeon, through the left hemisphere. The
locations of the recording tracks were confirmed by histology (Fig. 1C).
After all experiments were completed, each animal received a lethal dose
of sodium pentobarbital and underwent cardiac perfusion (2% glutaral-
dehyde, 1% paraformaldehyde). Fixed brain tissue was frozen, then sec-
tioned (50 wm), mounted on slides, and counterstained with neutral red.
Sections were viewed for electrode location using a Nikon Eclipse E600
microscope.

Neuronal classification. Neurons were classified into three groups,
based on their spontaneous activity and responses to rotational stimuli.
One group of neurons exhibited no spontaneous activity and was only
sensitive to rotational motion during the flight state. These neurons were
classified as “air-on” neurons. The second and third groups of cells both
exhibited spontaneous activity and responded to rotation during both
default and flight states. Of these, neurons that exhibited bursts and/or
pauses in firing related to eye movements (as assessed by the experi-
menter during spontaneous saccades in the light) were classified as eye
movement (EM) neurons. All other spontaneously active neurons were
classified as non-eye movement (NEM) neurons.

Data analyses. All analyses were performed using custom scripts in
Matlab (Mathworks). Head and tail movement signals were converted to
rotation vectors in Cartesian coordinates, as described previously
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(McArthur and Dickman, 2011). Action potentials were sorted off-line
using commercial software implementation (Spike2, Cambridge Elec-
tronic Design) of semiautomated spike shape template matching, and
any putative single units for which this procedure could not be reliably
implemented (due to significant changes in spike shape across files or to
a low signal-to-noise ratio) were discarded. Single-unit neural spike
times were converted to instantaneous firing rates (IFRs). First, to quan-
tify steady-state spontaneous firing rate during each behavioral context, 5
to 10 s segments of data were taken from prestimulus and poststimulus
periods (head fixed only), and average firing rates [spikes per second
(spk/s)] were computed for each trial. Data segments that contained
transient head and/or tail movements (i.e., gaze saccades, tail lifts) were
excluded, as were data segments containing bursts or pauses in firing rate
(for EM neurons). To characterize transient changes in firing associated
with transitions between behavioral contexts, segments of spontaneous
firing (i.e., no whole-body motion stimuli) in which behavioral state
transitions were triggered by changes in airflow were fit with an ex-
ponential decay function to the IFR data. Next, for each sinusoidal
response, steady-state neuronal IFRs, as well as rate sensor and accel-
erometer signals, were fit with sine curves at the fundamental stimulus
frequency using a least-squares minimization algorithm. The fitted
curves were used to calculate the gain and phase values of the neural
response, relative to the stimulus. For rotational stimuli, neural gains
were expressed as the peak change in IFR (spk/s) relative to peak angular
velocity (°/s), and phase values were expressed relative to peak positive
angular velocity. Responses to translational stimuli were expressed rela-
tive to the apparent tilt—that is, the earth-horizontal axis rotation that
would produce the equivalent linear acceleration stimulus in the head
(McArthur and Dickman, 2008). For example, an x-axis (fore—aft) trans-
lation (0.5 Hz, 0.1G) would correspond to an apparent y-axis (pitch) tilt
(0.5 Hz, £6°, ~20°/s), allowing us to directly compare neural responses
to these two stimuli where the linear acceleration stimulus to the animal
was matched.

In addition to steady-state gain and phase, half-cycle spike counts were
also used to analyze neural responses to motion. On each trial, the sinu-
soidal fit to the IFR data was used to cut the neural response into excit-
atory (+) and inhibitory (—) half-cycle segments. The number of spikes
in each full half-segment was counted, and the mean + and — spike
counts for that trial were computed. Although the IFR sinusoidal fit was
used to establish half-cycle start times, the spike counts themselves were
independent of response nonlinearities (i.e., IFR rectification) that could
affect the gain values. Thus, when determining whether the magnitude of
a neuron’s response depended on behavioral state, statistical analyses
were performed on both IFR gain and +/— spike counts.

All statistical analyses were performed using Statistica (Statsoft).

Cell-by-cell analyses. To determine whether a single neuron’s response
to rotation was state dependent, a Wilcoxon matched-pair test was per-
formed, in which each pair of values (gain, phase, + or — spike count)
were matched for stimulus axis (x/y/z), amplitude (5-20°/s), and fre-
quency (0.25-1 Hz) but were recorded under different behavioral con-
ditions (default/flight). A t test for dependent samples was used to
determine whether spontaneous firing rate was state dependent.

Population analyses by category. To determine whether the rotational
gains of a given neuronal category were dependent on velocity, fre-
quency, and behavioral state, a factorial ANOVA was performed across
cells in that category (air-on, EM, or NEM) using all available head-fixed
data for the preferred cardinal axis of rotation of each unit, with behav-
ioral state (default/flight) and either frequency or velocity as factors. To
compare rotational responses under head-fixed and head-free condi-
tions, IFR gains were subjected to an ANOVA with head-fixed/head-free
and behavioral state as factors. To quantify the relationship between
rotational and translational (apparent tilt) gains for each neuronal cate-
gory, linear regressions were fit to the gain data (separately for each
behavioral state) using a fitting algorithm that accounted for the use of
two dependent variables by minimizing perpendicular errors and com-
puting asymmetrical confidence intervals.
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Figure 1. Frontal airflow triggers a change in a pigeon’s behavioral state. A, Default state
(air-off). B, Flight state (air-on). (Credit: Marcy Hartstein, MedPIC, Washington University
School of Medicine, St. Louis, M0.) €, Recording electrode tracks for the 10-wire electrode array
penetrating through the vestibular nuclei of four birds. Solid lines indicate the track of one array
that had split into two clusters of electrodes during the penetration. Dashed lines indicate the
approximate tracks from three otheranimals, based on histological verification. Cb, Cerebellum;
Ld, dorsal lateral vestibular nucleus; Lv, ventral lateral vestibular nucleus; M, medial vestibular
nucleus; S, superior vestibular nucleus.

Results

Flight state and state-dependent vestibular reflexes

To characterize the effect of behavioral state on neural responses
to motion, we used frontal airflow to simulate a gliding flight state
in minimally restrained pigeons, signaled by a robust postural
change including elevation of the tail and extension of the legs
underneath the tail (Fig. 1, compare A, B). Single-unit neuronal
activity was recorded from the VNC in the pigeon brainstem. We
confirmed that birds implanted with chronic microdrives for
neural recording still exhibited state-dependent vestibular be-
haviors, by recording their head and tail movements during ex-
periments (Fig. 2, sample behavioral data). Indeed, as previously
described for birds without microdrives (McArthur and Dick-
man, 2011), animals used in the current study increased the gain
of their VCR during flight. Further, a strong compensatory tail
response to pitch rotation was observed specifically during flight,
with the appropriate temporal relationship to the rotational stim-
ulus to contribute to stable body orientation during actual flight.
Thus, the previously reported phenomenon of state-dependent
vestibular processing was actively occurring during the neural
recordings described in the current study.
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Figure 2.

Sample behavioral and neuronal responses to rotational motion during two behavioral states: default state (left
column) and simulated flight (right column). All data were recorded during y-axis (pitch) rotation (0.5 Hz, 20°/s). Representative

NEM and EM neurons exhibited spon-
taneous firing rates ranging from 0 to
150 spk/s in the default state (Fig. 3B).
For EM neurons, mean values of 38.3
spk/s and 60.0 spk/s were observed for
the default and flight states, respec-
tively. These values were generally
higher than those observed for NEM
neurons, where mean values of 15.6
spk/s (default) and 25.4 spk/s (flight)
were observed. However, both EM and
NEM neurons exhibited significantly
higher firing rates during simulated
flight (¢ test: NEM, p < 0.05 for 13/13
cells; EM, p < 0.05 for 5/6 cells) (Fig.
3B). The dynamics of the transitions be-
tween flight states are shown for a rep-
resentative NEM neuron in Figure 3A.
Upon the onset of airflow and the begin-
ning of the flight state, there was an ini-
tial steep rise in firing rate, followed by
an exponential decay (7 < 1 s) to a sus-
tained firing level that was higher than
the original preairflow firing rate. When
the airflow ended and the animal re-

25 turned to its default state, the firing rate

quickly decayed back to its original level
(7 <1s). This pattern of transition was
consistent for all EM and NEM neurons.

EM (head-fixed), air-on (head-fixed), and NEM (head-free) neuronal responses are shown in the top, second, and third row panels,

respectively. Stimulus angular velocity (Sprcyy), head-on-body velocity (Hprc,y), and tail-on-body velocity (Tpr,,) are shownin the
bottom three panels and were recorded simultaneously with the NEM cell under head-free conditions. Neural waveforms are

shown in gray, and corresponding IFRs are overlaid as black dots.

Reconstruction of recording electrode tracks (Fig. 1C) con-
firmed that the majority of the neurons included in this study
were located in the LVN, while some medial vestibular nuclei and
superior vestibular nuclei cells were also likely included. All well
isolated single units that were sensitive to at least one cardinal axis
of rotation (roll/pitch/yaw) during at least one behavioral state
(default/flight) were analyzed further. Motion-sensitive neurons
in the VNC (n = 27) were divided into three categories, based on
qualitative observations regarding their spontaneous firing
rates, rotation sensitivity, and correlations between their ac-
tivity and behavior (Fig. 2). Most neurons fired action poten-
tials spontaneously during at least one behavioral state. Of
these, neurons that also showed bursts or pauses in their firing
rates correlated with saccades were categorized as EM neurons
(n = 6); the remaining spontaneously active neurons were
categorized as NEM neurons (n = 13). Both EM and NEM
neurons were rotation sensitive during both behavioral states.
A third group of neurons (n = 8) was not spontaneously active
during either behavioral state, nor were they rotation sensitive
during the default state. However, during simulated flight, these
neurons became sensitive to rotational motion and were thus
categorized as air-on neurons. Both NEM and air-on neurons
sometimes exhibited transient increases in firing rate correlated
with sudden, large tail movements (data not shown). While neu-
rons like the EM and NEM neurons analyzed here have been
reported previously (Scudder and Fuchs, 1992), air-on neurons
have not been previously described, to the best of our knowledge.

Rotation response: gain and phase
by category
The differences in cell groups and the ef-
fect of behavioral state are evident in the
mean motion response curves shown in
Figure 4A. During the default condition, only EM (Fig. 4A,
green) and NEM (Fig. 4 A, blue) neurons were sensitive to head-
fixed rotations. However, air-on (Fig. 4 A, red) neurons only re-
sponded to rotation specifically during flight. All three neuronal
categories exhibited rotational gains that decreased with increas-
ing stimulus peak velocity (p < 0.002, ANOVA). However, only
air-on neuronal gains depended on stimulus frequency, tending
to be higher during lower-frequency stimuli (p = 0.02, ANOVA).
In no case was there a significant interaction between either stim-
ulus velocity or frequency and the effect of behavioral state (p >
0.7, ANOVA). The largest state-dependent change in response
was exhibited by the air-on neurons, each of which increased its
gain from zero during the default state to values ranging from 0.1
to 1 during flight (Fig. 4 A, filled vs open red symbols). When
considered as a category, the NEM neurons also exhibited state-
dependent rotational sensitivity (p = 0.06, ANOVA), though
their gains tended to be lower during flight, while the EM cell
population did not show significant state-dependent gains over-
all (p> 0.9, ANOVA). Further, for the subset of neurons (n = 12)
recorded under both head-fixed and head-free conditions, the
effect of state on neural gains was similar under both conditions
(p > 0.2, ANOVA, state x head-fixed/free; data not shown).
The temporal relationship, or phase, between rotational stim-
uli and neural responses varied widely across the population (Fig.
4B), although some clustering was observed by cell category.
Most EM cells (Fig. 4B, green) exhibited peak firing rates that
were approximately in phase with the peak angular head velocity
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(IFR phase = 0°). In contrast, most NEM
(Fig. 4 B, blue) cells fired approximately in
phase with peak stimulus position (IFR
phase = —90°). Air-on (Fig. 4B, red) cells
were mixed; some had phases between
stimulus position and velocity (—30° to
—75°), and a few were closer to stimulus
acceleration (90-135°). One cell from
each group fired out of phase relative to
peak angular velocity (IFR phase =
—180°). Neither EM nor NEM cell popu-
lations exhibited a significant effect of fre-
quency or velocity on phase (p > 0.3,
ANOVA), and the effect on air-on neural
phase was highly variable across neurons
(data not shown). Further, the response
phase of most EM and NEM neurons did
not vary across behavioral states (Fig. 4B,
filled vs open symbols in each row) (5/6
EM cells and 11/13 NEM cells with p >
0.05, Wilcoxon matched-pair test). Thus,
we did not analyze response phase further.

>
IFR (spk/s)
S & 3

o

Spont FR (spk/s) @
g 8 g

o

Rotation response: gain and spike
counts cell by cell

The state dependence of air-on neurons
was clearly homogeneous, in that every
neuron exhibited the same state-specific
rotation sensitivity during flight. How-
ever, when data were pooled across neu-
rons in other categories, it was unclear
whether behavioral state had a real effect
on neural response and whether or not this effect was similar
across neurons. To address this issue, we conducted a cell-by-cell
comparison of NEM and EM cell IFR gains during default and
flight states, matched by stimulus amplitude and frequency (Fig.
5A). The results indicated that approximately one-half of these
neurons (Fig. 5A, blue) had lower rotational gains during flight
(p < 0.07, Wilcoxon matched-pair test; 1/6 EM neurons, 9/13
NEM neurons). An additional two NEM neurons (Fig. 54, red)
responded with higher gains during flight (p < 0.08, Wilcoxon
matched-pair test), and the remaining EM and NEM neurons
(Fig. 54, black) did not significantly change their gain as a func-
tion of behavioral state. Thus, cell-by-cell analyses were consis-
tent with the trends observed for the population data, but there
may be some real heterogeneity among neurons in the same cat-
egory regarding the effect of state on rotational gains.

While the IFR gain provides one measure of a neuron’s sensi-
tivity to sinusoidal motion stimuli, this metric is derived from the
depth of the modulation in firing rate (peak to trough) during the
stimulus cycle around the mean firing rate (generally close to the
value of the spontaneous firing rate). Thus, a neuron might ex-
hibit higher activity during the flight state without changing its
IFR gain value, if the difference in its peak and trough firing rates
remains proportionally the same. Alternatively, a neuron with a
low spontaneous firing rate during the default state could ex-
hibit rectification during rotational motion, when the trough
firing rate was driven to zero (Fig. 2, NEM neuron). However,
during flight, the neuron’s baseline firing rate would increase,
and the IFR modulation would no longer rectify, thereby decreas-
ing the proportional peak-trough modulation and decreasing its
gain value. Although IFR gain serves as an important measure of
neural sensitivity, neural information transmission may rely

Figure3.
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OFF

“»

Spontaneous firing rates of NEM and EM neurons are state dependent. A, Representative NEM neuron’s activity during
transitions from default to flight state (left) and from flight to default state (right). Gray lines indicate airflow onset (ON) and offset
(OFF). B, Mean (= SEM) spontaneous firing rates measured for each neuron during default (solid bars) and flight (hatched bars)
states. A subset of neurons with the lowest spontaneous firing rates (inset) exhibited rectification during modulated firing in
response to sinusoidal rotation. Spont, Spontaneous.

more upon absolute firing rate or spike density than on cyclical
modulation. Thus, we next quantified the mean number of spikes
fired by each neuron during its excitatory response to the sinu-
soidal rotation stimulus (Fig. 5B, + spike counts). While some
neurons exhibited lower gains during the flight state, no neurons
decreased the number of spikes they fired during an excitatory
stimulus. On the contrary, approximately one-half of the popu-
lation (Fig. 5B, red) had significantly higher excitatory spike
counts during flight (p < 0.06, Wilcoxon matched-pair test; 3/6
EM neurons, 7/13 NEM neurons). In fact, some neurons exhib-
ited both a lower gain and a higher excitatory spike count during
flight. Thus, the effect of state on EM and NEM neurons, though
somewhat heterogeneous across cells, may be best described as an
increase in the number of spikes fired during an excitatory rota-
tional stimulus, against a background of higher overall activity—
similar to the observed increase in firing activity to rotation
during flight observed for air-on neurons.

Response to rotation versus translation

Most EM and NEM neurons that were sensitive to pitch and roll
rotation also responded during head-fixed horizontal linear
translations (0.5 Hz, 0.1G) along the fore—aft axis, lateral axis, or
both during both default and flight states. Most strikingly, the
relative amplitude of rotational and translational responses was
highly state dependent for the air-on neurons. As previously
noted, air-on neurons responded to rotation only during flight.
However, all air-on neurons did respond to translation during
the default state. For example, the representative air-on neuron
shown in Figure 6 responded to translation (Fig. 6 A) during both
default and flight states, but this cell only responded to rotation
(Fig. 6 B) during flight. Note that the rotational stimulus was an
earth-horizontal pitch rotation about the animal’s interaural axis
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(0.5 Hz,20°/s). Due to reorientation of the head relative to gravity
(£6°), the pitch stimulus also generated a sinusoidal linear accel-
eration along the animal’s naso-occipital (fore—aft) axis (0.5 Hz,
0.1G). The combination of dynamic angular velocity and linear
acceleration did not drive a response except during the flight state
(Fig. 6A). However, linear acceleration alone (of the same fre-
quency and amplitude) during translation was sufficient to drive
aresponse during both default and flight states during translation
(Fig. 6 B). All air-on neurons exhibited this pattern: rotation re-
sponses were flight specific, while translation responses could be
evoked during both behavioral states. These data are summarized
and compared with the results for EM and NEM neurons in
Figure 6C. Responses to translation are expressed relative to the
equivalent rotational velocity (see Materials and Methods) to
compare the relative strength of each response during head rota-
tion relative to gravity. While air-on neurons (Fig. 6C, red)
showed a clear preference for translation during the default state,
most NEM neurons (Fig. 6C, blue) exhibited similar gains for tilt
and translation across the two behavioral states, with the excep-
tion of a single outlying neuron that showed a preference for tilt
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Figure 5. Comparison of gains and spike counts for NEM and EM neurons during default
(air-off) and flight (air-on) states. All data were recorded during head-fixed rotational motion
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a single neuron’s response to a specific combination of stimulus velocity (5-20°/s) and fre-
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value (black) between behavioral states, based on the results of a Wilcoxon matched-pair test.
A, Gain values (spk/s per °/s) from steady-state sinusoidal fits to the IFR. B, Mean + half-cycle
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(Fig. 6C, gray box; includes data for a single neuron recorded
during two axes of stimulation, indicated by different symbol
shapes). This observation was supported by linear regressions
through the NEM cell data. Excluding the outlier, linear regres-
sions relating NEM cell gain values during rotation and translation
were highly significant (p < 0.001) for both default (» = 0.96) and
flight (r = 0.89) states, with slopes that were not statistically distin-
guishable from unity (default: slope = 0.90, 95% CI = 0.66, 1.25;
flight: slope = 1.04, 95% CI = 0.68, 1.585). Thus, a state-specific
preferential response to translation over rotation appears to be re-
stricted to the population of air-on neurons.

Discussion

Our objective was to provide an initial characterization of state-
dependent responses in the vestibular nuclear complex. Behav-
ioral state had an effect on the activity of all vestibular motion-
sensitive neurons observed, though the nature of this effect varied
cell by cell. Spontaneous firing rates were higher during flight for
both EM and NEM neurons. While the number of excitatory
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spikes fired by EM and NEM neurons in response to rotational
stimuli tended to be higher during flight, the air-on neurons
exhibited the most dramatic state-dependent responses. Air-on
neurons responded to translation during both behavioral states;
however, these cells responded to rotation only during flight.
These results provide insight into the underlying substrates for
previously reported state-dependent vestibular behaviors in birds
(McArthur and Dickman, 2011) and contribute to our general
understanding of state-dependent neural processing.

State-dependent neural activity
One of the primary findings in the present study was the effect of
state on the spontaneous firing rates of vestibular neurons. The
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transition from the default state into simulated flight dramati-
cally increased the firing rate of all EM and NEM neurons, reach-
ing the higher steady-state firing rate within the first few seconds
following airflow onset. Others have observed facilitation of
spontaneous activity in vestibulospinal LVN neurons in mam-
mals, related to limb stimulation and simulated locomotion
(Wilson et al., 1967; Orlovsky, 1972; Marlinsky, 1992). Facilita-
tion of spontaneous neuronal activity has also been observed
during simulated flight in flies for visual neurons driving opto-
motor responses (Longden and Krapp, 2009; Maimon et al.,
2010). The flight-related increase in baseline activity enhanced
the dynamic range of some neurons by bringing their modulated
firing rates out of inhibitory rectification. The flight state might
thus improve motion information fidelity by increasing the size
of the population that encodes the entire movement profile
(Longden and Krapp, 2009).

State-dependent responses to motion

In a previous study, we demonstrated that vestibular eye (VOR)
and head (VCR) responses increased in gain during simulated
flight (McArthur and Dickman, 2011). We predicted that vestib-
ular neurons would exhibit similar gain increases during flight,
providing the substrate for state-dependent facilitation of behav-
ior. Instead, many vestibular EM and NEM neurons had mod-
estly lower gains during flight, though this occurred against a
background of higher activity overall. Only air-on neurons sig-
nificantly increased their sensory gains during flight. These cells
responded to translation across behavioral states, but their sensi-
tivity to rotation was state specific and occurred only during
flight. The activity of these air-on neurons would be consistent
with state-specific gating or facilitation of their rotational inputs.
To the best of our knowledge, state-specific vestibular neurons,
like the air-on cells described here, have not been previously re-
ported. We speculate that these neurons were Deiters’ cells, a
group of vestibulospinal neurons in the dorsal LVN that do not
receive primary vestibular afferent input, exhibit low spontane-
ous activity, and have highly nonlinear responses to stimulation
(Tto, 1972; Sun et al., 2002; Uno et al., 2003; Straka et al., 2005).
What has been shown is that many vestibular neurons are mod-
ulated by the motion context, as with the attenuation of motion
responses during active gaze shifts (Roy and Cullen, 1998; Mc-
Crea et al., 1999). Further, simulated locomotion can modulate
vestibular sensitivity of neurons in the LVN (Orlovsky and Pav-
lova, 1972; Marlinsky, 1992). State-dependent facilitation of sen-
sory sensitivity has also been demonstrated for fly visual neurons
during walking (Chiappe et al., 2010) and flying (Longden and
Krapp, 2009; Maimon et al., 2010; Rosner et al., 2010).

Neurons and state-dependent behavior

Several observations support the suggestion that air-on cells drive
state-specific tail responses during flight. First, transient bursts of
activity from some of these cells appeared to be correlated in time
with strong, transient tail movements, likely representing either
motor signals or proprioceptive feedback from tail muscles re-
layed by spinovestibular projections (Pompeiano, 1972). Also,
though phase values varied across neurons, most air-on cells had
peak responses that were nearly in phase with peak stimulus an-
gular position (—90°), matching the phase of state-specific tail
responses (McArthur and Dickman, 2011). Further, tail re-
sponses were apparent during pitch and roll rotation but not
during yaw (McArthur and Dickman, 2011); similarly, the air-on
neurons preferred pitch or roll rotation and responded mini-
mally during yaw. The air-on neurons were not the only neurons
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to exhibit these additional properties relating them to the tail
response. In fact, many of the moderately active NEM neurons
also responded in phase with stimulus position, preferred pitch
and roll rotations, and modulated their firing rate with tail move-
ments. Whether these neurons are also related to postural re-
sponses is unknown; however, NEM cells in other species have
often been associated with vestibulospinal pathways (McCrea et
al., 1999; Boyle, 2001; Sadeghi et al., 2009).

Since most EM and NEM cells exhibited modestly lower gain
values during flight, what is driving the flight-related increase in
VOR and VCR gains? One could speculate that the increase in
behavioral gains is driven by the increased bidirectional signaling
and greater number of neurons responding to the entire mo-
tion profile during flight, due to bilateral vestibular projec-
tions that converge onto motor neurons in the spinal cord
(Rabin, 1975a,b). Alternatively, we observed higher excitatory
spike counts during flight, carried by higher overall activity. Thus, it
is possible that EM and NEM neurons drive higher behavioral gains
through absolute firing rate and temporal summation, rather than
the depth of modulation (gain) in the neural response. Finally, it is
possible that the observed changes in neuronal activity and behavior
might be mediated in parallel by the same central signal related to
behavioral state but remain otherwise independent of one another,
possibly through state-dependent modulation of reticulospinal
pathways (Wilson and Peterson, 1981).

Possible mechanisms of state-dependent

neuronal modulation

What is the nature of the central signal that drives neural and
behavioral state dependence? We believe that the vestibular state-
dependent processing shown here could be derived from modu-
lations in cellular excitability. Each neuron would lie somewhere
along a continuum of baseline excitability in the default state,
with air-on, NEM, and EM neurons being of low, moderate, and
high excitability, respectively. The transition into flight would
shift the neuronal population toward higher excitability. For ex-
ample, during the default state, the rotational input to air-on
neurons is insufficient to exceed spiking threshold. However,
during flight, rotation becomes an effective stimulus for air-on
neurons against a background of increased excitability. Similarly,
both NEM and EM neurons increase their excitability during
flight, reflected in higher firing rates that no longer rectify during
sinusoidal modulation.

Others have demonstrated changes in intrinsic cellular excit-
ability in the vestibular nuclei as occur following periods of inhi-
bition (Nelson et al., 2003) and during vestibular compensation
(for review, see Straka et al., 2005). Further, there are at least two
key synaptic inputs to LVN neurons that could strongly influence
their excitability in a state-dependent manner. The locus ceruleus
(LC) sends noradrenergic projections to the vestibular nuclei,
particularly to Deiters’ cells in dorsal LVN (Schuerger and Bal-
aban, 1993) where norepinephrine application increases neuro-
nal excitability (Yamamoto, 1967; Kirsten and Sharma, 1976). In
fact, the invertebrate adrenergic homolog octopamine increases
visuomotor neuronal excitability in flies and is used to simulate
the flight state (Longden and Krapp, 2009) (for review, see Roe-
der, 2005). Noradrenergic LC projections might, as a result, sim-
ilarly signal the flight state in pigeons and increase LVN neuronal
excitability, which is associated with the switch to an active-
locomotor condition. However, the time course of norepineph-
rine’s action in LVN (~30-60 s) was longer than that observed
for state-dependent changes evoked by airflow. An alternative
mechanism might be the state-dependent modulation of tonic
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GABAergic inhibition from Purkinje cells in cerebellar cortex.
Application of GABA causes strong, rapid hyperpolarization of
the membrane potential and decreased excitability in LVN neu-
rons (Obata et al., 1967). Further, LVN neurons receive a balance
of monosynaptic cerebellar inputs, with tonic inhibition from the
cortex (Ito and Yoshida, 1966; Ito et al., 1968) and excitation
from the deep nuclei (Ito, 1972). Though previous work has been
done primarily in mammals, there are consistent anatomical pro-
jections from cerebellar cortex and the medial cerebellar nucleus
in pigeons (Arends and Zeigler, 1991ab). The cerebellar cortex
receives convergent multisensory inputs that could determine the
bird’s behavioral state (Shelhamer and Zee, 2003; Manzoni, 2005,
2007) and modulate the balance of cerebellar excitation and in-
hibition accordingly, thus implementing state-dependent excit-
ability of LVN neurons and possibly other neuronal populations
driving the eye, head, and tail. Indeed, this balance of cerebellar
inputs might provide a common mechanism across species for
modifying the excitability of sensorimotor populations based on
a multitude of factors related to behavioral state.
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