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Abstract: Driving safety has become a global topic of discussion with the recent 

development of the Smart Car concept. Many of the current car safety monitoring systems 

are based on image discrimination techniques, such as sensing the vehicle drifting from the 

main road, or changes in the driver’s facial expressions. However, these techniques are 

either too simplistic or have a low success rate as image processing is easily affected by 

external factors, such as weather and illumination. We developed a drowsiness detection 

mechanism based on an electroencephalogram (EEG) reading collected from the driver 

with an off-the-shelf mobile sensor. This sensor employs wireless transmission technology and 

is suitable for wear by the driver of a vehicle. The following classification techniques were 

incorporated: Artificial Neural Networks, Support Vector Machine, and k Nearest Neighbor. 

These classifiers were integrated with integration functions after a genetic algorithm was 

first used to adjust the weighting for each classifier in the integration function. In addition, 

since past studies have shown effects of music on a person’s state-of-mind, we propose a 

personalized music recommendation mechanism as a part of our system. Through the  

in-car stereo system, this music recommendation mechanism can help prevent a driver from 

becoming drowsy due to monotonous road conditions. Experimental results demonstrate the 

effectiveness of our proposed drowsiness detection method to determine a driver’s state of 

mind, and the music recommendation system is therefore able to reduce drowsiness.  
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1. Introduction 

Many accidents are caused by driver fatigue after driving for a prolonged period of time under 

monotonous road conditions. The occurrence of these accidents is likely to be lowered if warning 

signals are triggered when the driver becomes drowsy. In the past, various studies on the detection of 

driver fatigue involved installing devices on the vehicle to detect whether or not the vehicle had drifted 

within a short period of time, or the frequency at which the accelerator is being pressed. These 

methods can easily produce false detection events due to the driver’s driving habits and road 

conditions. Other studies relied on capturing the frequency of eye movement as a reference for the 

level of drowsiness. However, detection results using this method could easily be compromised by 

external factors, for example the glare on the eye caused by external light sources would make the eye 

appear to be blinking. In order to more accurately determine the driver’s state of mind, some 

researchers base their analysis directly on human physiological signals. Electroencephalography (EEG) 

is a device that can be applied to the analysis of human drowsiness. Although many methods are 

available for classifying drowsy brainwave patterns, the devices required are usually unsuitable to be 

installed inside a vehicle. Therefore, our study demonstrated the capture of brainwaves using  

well-developed and portable devices to be used to test the effectiveness of a number of common 

classification methods. Since each classification method has its own unique characteristics, we chose 

to integrate these classifiers in order to enhance the classification effectiveness.  

There are five types of waves in an EEG defined by their frequency ranges [1]: the frequency of the 

α-waves fall between 8 and 13 Hz with amplitudes between 30 and 50 µV. A conscious person at rest 

in a quiet environment is likely to release α-waves from the parietal and the occipital regions of the 

brain. These waves disappear upon thinking or eye-blinking activities, or upon other types of 

stimulation. This phenomenon is called the alpha-block. The β-waves have frequencies between 14 

and 30 Hz, and amplitudes between 5 and 20 µV; they usually appear in the frontal region of the brain 

while a person is conscious and alert, and are especially prominent when the person is thinking or 

undergoing sensory stimulation. The θ-waves have frequencies between 4 and 7 Hz and normally have 

amplitudes less than 30 µV. They are mainly released from the parietal and the temporal regions of the 

brain when a person is emotionally stressed, unconscious, or when the person’s body is in a state of 

deep relaxation. The δ-waves have frequencies between 0.5 and 3 Hz, and amplitudes between 100 and 

200 µV. A person will normally release δ-waves during deep sleep, when unconscious, deeply 

anesthetized, or if experiencing hypoxia. The δ-waves are almost never released when a person is 

conscious. The γ-waves have frequencies between 31 and 50 Hz with amplitudes ranging from 5 to 10 µV. 

Recent studies have found links between the γ-waves and selective attention, human cognition and 

perceptive activities.  
All parts of the brain generate electrical signals, which are traditionally collected using the 

International 10–20 Electrode Placement System (10–20 System) by placing electrodes at 37 places on 

the scalp. This arrangement provides comprehensive monitoring of brainwaves, yet is inconvenient 
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and impractical for a driver. Since human emotions, state of mind and focus are controlled by the 

frontal region of the brain, it is feasible to capture brain signals from only this area for the purpose of 

determining the drowsy state of a driver. In order to minimize inconveniences for the driver caused by 

wearing electrodes, we adopted an off-the-shelf portable wireless EEG device for the detection and 

analysis of signals generated by the frontal region of the brain. 

Determining whether or not an EEG signal indicates drowsiness is a matter of classification. The 

most commonly adopted classifiers include Artificial Neural Network (ANN), Support Vector 

Machine (SVM) and k Nearest Neighbor Classifier (kNN). These three tools produce widely different 

results against the same set of data; in order to compensate for errors made by each tool and increase 

the classification accuracy, we consolidated and collectively processed all of the results. In addition, 

we used genetic algorithms to adjust the weighting of each of the classifiers in order to optimize the 

effectiveness of classification. 

A driver will often use music to refresh themselves on a long-distance driving trip. Although there 

are a lot of mechanisms that can be used to refresh the drowsy driver, the in-car stereo system can 

achieve the goal with minimal cost. Furthermore, according to the experimental results in [2], when the 

subjects were listening to louder music when in a resting state, the drivers’ autonomic nerve was 

activated. Therefore, we adopt music as the tool to refresh the driver. Our goal is to spontaneously play 

refreshing music upon the detection of drowsiness from the driver’s brainwaves. Artificial intelligence 

is employed to analyze brainwaves released by the driver in response to various types of music and its 

content, and is able to select the appropriate music to play based on this data. The classification of 

brainwaves and music selection using this method has been experimentally proven. 

The rest of this paper is organized as follows: Section 2 discusses relevant work. Section 3 

describes the design of the electroencephalography classifiers. Section 4 includes the mechanism for 

refreshing the music recommendation. In Section 5 the experimental results are presented and 

discussed. The work concludes with Section 6. 

2. Related Work  

PERCLOS [3–5] is a driver fatigue measurement system based on the detection of ocular 

movement. Since PERCLOS employs image processing techniques, a strict environmental setting is 

required for accurate measurements. For example, strong external lighting would cause unnatural 

movements in the driver’s eye, resulting in inaccurate detection. Recent research has shown new trends 

in fatigue measurement using physiological parameters. EEG has been widely applied in fatigue 

detection in studies relating to the central nervous system [6–8]. In [9], mental fatigue was evaluated 

using principal component analysis in conjunction with a cross-correlation function to compute the 

variation in the amplitude of the grand-averaged waveform at various points in time. The results 

demonstrated that the amplitude of the brainwaves would decrease as the level of mental fatigue 

increased. The study described in [10] looked at analyzing human consciousness from the EEG power 

spectrum, which would reflect changes in the level of alertness. The EEG power spectrum was paired 

with Independent Component Analysis (ICA) in [11]. The fast Fourier transform (FFT) was used to 

compute the brainwave spectrum, which was then used to calculate the level of fatigue. Lin et al. [12] 

established a sleepiness detection system, which determined the driver’s cognitive state using 
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statistical methods based on the analysis of multi-source EEG signals using ICA. The following study 

determined the level of fatigue by assessing the number of times the vehicle deviated from its course 

and the amount of time the driver needed to respond [13]. The study assumed that when the driver 

became drowsy the vehicle would deviate many times during a short interval. The study pointed out 

that when the driver began to take more time to correct the vehicle’s drift, there were marked electrical 

activities in the occipital lobe, the posterior parietal lobe, and the middle temporal cortex. In addition, 

the power of α, δ, and θ frequency bands also increased, with the largest power increase in the  

α-waves. Complex installation procedures were required for the detection and recording equipment 

used in this study. In addition, the driver would find such a setup difficult to operate. Therefore, in our 

study light-weight equipment was adopted.  

The studies in [14] and [15] captured the features of the EEG signals and used them as input to an 

ANN for the classification of brainwaves. In [16] and [17], a Discrete Wavelet Transform was used to 

analyze the EEG and the Daubechies 4 Wavelet Filter (DB4) was employed to categorize the signals 

into five levels. The features for these five levels were then fed into an ANN classifier. Another study 

used relative wavelet energy of the brainwaves as the input to the an ANN classifier [18], while [19] 

used Fast Independent Component (FastICA) to analyze the EEG before applying ANN classification.  

A brainwave is a complex physiological signal and can be classified and processed using SVM. For 

example, [20] simplified brain image analysis by combining the Laplacian and SVM classifiers; in [21] 

a multiclass SVM with the capability to produce error-correcting output codes (ECOC) was used to 

classify EEG signals. The authors of [22] designed a Brain Computer Interface (BCI) based on 

analysis of brainwaves using SVM. This system identified brainwave signals, such as those indicating 

movement of the right or left hand, or carrying out simple mathematical calculations. A BCI system is 

constructed by a number of sensors placed in various places on the brain. However, the placement of 

the sensors in a BCI system would affect the results of classification. A Sensor Weighting SVM  

(sw-SVM) was proposed to cater for such effects [23]. 

The Dempster-Shafter theory (DS)-based kNN classifier was applied to EEG data collected in five 

different psychological events [24]. Experimental data showed that the DS-based kNN classification 

method produced considerably increased accuracy in comparison to the traditional kNN method. In 

addition, some studies focused on human EEG signals in response to stress, such as [25]. The authors 

classified the data using kNN and achieved an accuracy rate of 88.89%. Some studies adopted the 

Ensemble Learning method in order to enhance accurate classification of EEG signals. In [26], the 

authors attempted to identify the characteristics of EEG signals produced by humans during a learning 

experience using the kNN and Naïve Bayes classifiers. These were used in conjunction with the  

Self-Assessment Manikin (SAM) model that is used for determining emotions to classify and analyze 

the level of focus while learning.  

In addition to using classifiers, brainwave signals can be classified based on mathematical and 

statistical models. Discriminative model and logistic regression techniques were used in [27] in the 

design of an EEG signal classification framework, which does not require the extraction of features or 

the removal of abnormalities from the EEG signals prior to classification. This still produces similar 

results to other classifiers. The study described in [28] proposed an algorithm for optimizing a spectral 

EEG filter; a common spatial pattern was incorporated in the design in order to increase classification 

accuracy. Another study proposed a Gaussian mixture model for the detection of neonatal seizure [29]. 
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The study in [30] applied the partial-least squares algorithm to the real-time classification of brainwaves 

pertaining to the human cognitive state. This method remained robust against the influence of noise. 

To help users find potential items of interest, recommendation systems are used. The most common 

types of recommendation systems utilize the content-based filtering method, the collaborative filtering 

method, or the hybrid recommendation method. The collaborative and hybrid filtering methods need 

the information provided by other members to predict a user’s preference. We do not use the 

collaborative and the hybrid filtering methods since the EEG between users who listen to the same 

music is often different. A content-based filtering method characterizes and recommends items based 

on textual attributes, social tags, cultural information, and other kinds of web-based annotations. Music 

recommendation systems using the content-based filtering method extract the content features of 

songs, analyze these features, and then use them to compare the similarity of songs. This information is 

used to recommend new songs to users. For example, in [31,32] a user profile is created to store a few 

keywords and related information. This is performed in order to understand the user’s music 

preferences and includes details such as the user’s basic personal information, the types of music they 

like, and their favorite artists. The content attributes of each song can be regarded as different features, 

such as the name of the song, the singer, the genre, etc. The system will then find and recommend 

similar songs based on the user’s profile. Pandora initiated The Music Genome Project [33] which 

attempts to analyze the content attributes of each song, such as melody, harmony, rhythm, musical 

instruments, and lyrics. A user only needs to input the names of the songs or artists that they desire and 

the system will find songs which are similar to recommend. A user can then rate the songs after 

listening to them. These ratings are used in the system as the basis for the next recommendation. The 

authors of [34] used cubic analysis of social tags to provide personalized music recommendations. In 

comparison, a high-level semantic description method was proposed in [35] to recommend music. The 

content-based technique was used in the research to automatically generate a semantic representation 

of the user’s musical preferences directly from the audio. 

3. Features Extraction and EEG Classification 

We adopted the portable brainwave sensor by NeuroSky (San Jose, CA, USA). This device has the 

following properties: (1) easy to use, (2) safe and harmless, (3) dry electrode transducer, (4) wireless and 

portable, (5) capable of processing raw brainwave data, and (6) open platform with an API allowing for the 

development of related software applications on Android, iPhone, and DotNET platforms. This device 

collects brainwaves released from location FP1, as shown in Figure 1. 

Figure 1. Brainwave collection points and a photo showing the device worn by a user. 
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We extracted the EEG signals for each wave type from the driver’s raw brainwave data and 

transformed them into respective features for classification. The real-time features were used as inputs 

for the classifier to evaluate the driver’s level of drowsiness. 

3.1. Features Extraction 

The collected raw brainwave signals were processed with a discrete-time Fourier transform (DFT) 

before the power spectral density (PSD) was calculated. Normalized PSD values were used as features 

and input to various classifiers. The sample rate, Fs, used for data collection was 500 Hz. While there 

are six brainwave types, namely, α-waves, β-waves, δ-waves, θ-waves, γ-waves and -waves, only the 

former four types of waves are heavily relevant to human psychological states [11]. Therefore, in this 

study, we processed the brainwaves using a DFT and transferred the signals from the time domain to 

the frequency domain before the aforementioned four types of waves were transformed into frequency 

spectra. These frequency spectra are used in the following power calculations. 

When the signal has been transferred from the time domain to the frequency domain, we can 

observe the signal’s movements in each frequency range. We called the square of the coefficient of a 

spectrum’s amplitude the spectrum’s power spectral density (PSD) or spectral power distribution 

(SPD) [11]. Therefore, the post-DFT sampled signal sections could generate α-, β-, δ-, and θ- spectra 

for each sample section, respectively. The square of a brainwave’s amplitude is the brainwave’s power 

value. If we assume x(t’) is the sample series, where t’ = 0, 1, 2, …, 999, then the equation for PSD is: 

 (1)

taking the sum of the PSD for each of α-, β-, δ-, and θ-waves over their respective frequency range 

would yield the brainwave’s energy value for each frequency range: 

 (2)

, 
，T = 1000

For the PSD for each of α-, β-, δ-, and θ-waves at time t were denoted as Eα,t, Eβ,t, Eδ,t and Eθ,t, 

respectively. Since a brainwave’s signal strength differs from person to person, resulting in 

compromised classification accuracy due to different measuring reference points, we adopted the 

relative energy for each wave type. This was the ratio of energy in a frequency band to the total energy 
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2|))'((|)( txFFTX 


























30)(14),(

13)(8),(

7)(4),(

3)(5.0),(

ifXE

ifXE

ifXE

ifXE









β

α

θ

δ

T

if
if s )(

2
3,2,1

T
i 



Sensors 2013, 13 8205 

 

 

 (3)

where RE,t , REθ,t , RE,t and REβ,t are the brainwaves’ features. A brainwave signal is a time-based 

series therefore, we defined a pattern as a brainwave feature of length n, as shown in Figure 2. 

Figure 2. An example of EEG feature patterns. 

 

Figure 2 shows that each pattern consists of 4  n values. We divided the raw data into two 

categories: Drowsy and non-drowsy, and the resultant patterns were to be the training data sets for the 

classifiers. The most effective pattern length is evaluated during experiments. 

3.2. Mechanism of Drowsy State Classification 

Sample data was fed to each classifier for training. Since each classifier classifies data differently, 

we consolidate results from all of the classifiers to create a classifier with an increased rate of 

accuracy. Once the classifiers have completed adjusting their parameters, they can begin processing 

real-time brainwave data, that is, determine whether or not the driver is drowsy. 
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• Classifier Based on Artificial Neural Networks (ANN) 

ANN is a mature technology, which can be used in pattern classification. Having measured both 

types of pattern, the network starts to adjust weights between neurons via back-propagation [36]. In an 

ideal situation, the weights would converge and this completes the training. In a vehicle transport 

system, we collected the driver’s EEG data in real-time and input their features to a trained neural 

network; the output from the neural network indicates if the driver was drowsy or non-drowsy. For 

example, if we marked the drowsy pattern with “+1” and the non-drowsy pattern with “0”, a trained 

ANN would be able to output a value between 0 and 1 from an input pattern. The closer the output is 

to 1, the more likely the driver is in the drowsy state, as shown in Figure 3. We evaluate the most 

appropriate number of layers for the ANN, since too many hidden layers creates an excessive 

calculation overhead. 

Figure 3. The structure of our artificial neural network. 

 

• Classifier Based on a Support Vector Machine 

The idea of a SVM is to position a hyper plane to divide high-dimensional data into two separate 

sets, i.e., classification [37]. Two hyper planes that separate two sets of data are parallel to each other 

and are closest to the training data point in their pertaining data set. The larger the distance between the 

parallel planes the smaller the classification error. Figure 4 illustrates the concept of SVM classification. 

Figure 4. Illustration of SVM classification. 
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We used manually classified data patterns as training data for the SVM classifier. The training was 

deemed complete when a hyperplane was found such that the error was smaller than the value defined 

as the pre-condition. The SVM classifier would be able to determine if a real-time input pattern of the 

driver was a drowsy or a non-drowsy pattern. The classification result of the SVM was the probability 

of the input pattern being a drowsy pattern. If we assume the drowsy pattern is “1”, then the 

probability equation would be [38]: 

 (4)

where f(x) is the hyper plane of the SVM. 

• kNN Classifier 

The k-nearest neighbor (kNN) classifier is a kind of instance-based classifier that predicts the class 

of the unknown instances by relating the unknown to the known according to a distance function. We 

calculated the distance between the real-time brainwave pattern and other known patterns that had 

already been classified and selected k patterns that were the closest to each other. Within these k 

patterns, the ratio of drowsy patterns to k was the probability of the real-time brainwave that would 

indicate a drowsy state. The Euclidean distance was adopted to calculate the distance between patterns. 

• Integrated Classification Method 

The three aforementioned classification methods were sufficient to determine the drowsy state of a 

driver. It is instinctive to take the average of the three sets of results as the final outcome. However, we 

should adjust the weighting of each method since they do not yield the same accuracy. If we assume 

the drowsy state probability of a pattern is P1 after ANN classification, P2 after SVM classification, and 

P3 after kNN classification, then the final probability LP after weighting adjustment is: 

 

 
(5)

where w1, w2, and w3 are the respective weights of ANN, SVM, and kNN classifiers in the drowsy state 

calculation. We adopted a genetic algorithm to estimate the values for the weights since these 

calculations are non-trivial. A genetic algorithm is a search algorithm for optimization problems. The 

core theory behind genetic algorithms is to base the algorithm on observed traits from evolutionary 
biology, including inheritance, mutation, selection, and crossover [39].The steps of the genetic 

algorithm are: 

Represent the Problem Domain as a Chromosome 

For a weight vector W, we represent each weight value wn with 16 bits. The chromosome modeled 

is illustrated in Figure 5. 
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Figure 5. Data structure of chromosome. 

 
As 1  wn 0, the decoding function is defined as follows: 

Assume the decimal value (base 10) of the 16 bits wn is (Dn)10, then 
.
 

Define a Fitness Function to Evaluate the Chromosome Performance 

We aimed to adjust the values for W such that the total difference between the LP and the expected 

value for each training pattern would reach a minimum. For example: out of three patterns, pattern1 

and pattern2 represented drowsy states with an expected LP of 1, and pattern3 represented a  

non-drowsy state with an expected LP of 0. If the actual LP values were 0.6, 0.9, and 0.2, respectively, 

the sum of differences would be | 1−0.6 | + | 1−0.8 | + | 0−0.2 | = 0.8. Assuming Set1 was the set of 

drowsy patterns and Set2 was the set of non-drowsy patterns, the sum of the difference between the 

training data and the expected values under the specific condition, W, could be defined as: 

 
(6)

The lower the difference, the higher the fitness value. Therefore, we define the fitness function as: 

 (7)

Run the genetic algorithm and tune its parameters  

The genetic algorithm achieves an acceptable value of W as follows [40]: 

Step 1: We first randomly generate a population of chromosomes of size S: W1, W2, …, WS 

Step 2: Next, we calculate the fitness of each chromosome: f(W1), f(W2), …, f(WS) 

Step 3: A pair of chromosomes for mating are selected based on their fitness values. 

Step 4: A pair of offspring chromosomes is created by applying the genetic operators: crossover with a 

probability pc and mutation with a probability pm. 

Step 5: The resulting chromosomes are placed in the new population and step 4 is repeated until the 

size of the new chromosome population becomes equal to the size S. 

Step 6: The current chromosome population is replaced with the new population. 

Step 7: Return to step four and repeat the process until the termination criterion (e.g., number of 

generations) is met. 
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4. Refreshing Music Recommendation Mechanism  

Past research has shown that music helps to increase alertness. In addition to developing a method 

to determine the level of driver fatigue, we also designed a music module which would automatically 

select refreshing music to play when the driver becomes tired from monotonous road conditions. Since 

the effects of music on a person’s feelings and emotions differ from one individual to the next, the 

adopted artificial intelligence techniques were used to develop a music module that was able to deliver 

personalized music delivery services.  

4.1. Music Features Extraction 

As is widely known, music has characteristics including tempo and pitch. Traditionally, a digital 

music file can be either two formats: audio or symbolic data, for example, MIDI. The MIDI format is 

able to incorporate elaborate music styles and features and maintain an accurate representation of pitch 

and note length. We use the MIDI format to gather statistics of pitch and note length for use as 

features. Since the main melody is often indicative of the style of a piece of music, we extracted the 

following features [40]: 

Average Pitch (AP): Indicates whether the piece of music is, on average, high pitched or  

low pitched: 

 (8)

where vi is the pitch scale of the note and n is the length of the sequence of notes. 

Pitch Entropy (PE): Indicates the degree of variation in the piece of music: 

 (9)

where np is the number of distinct pitches that appear in the piece of music, and PNi is defined as: 

 (10)

where Ni is the number of notes with the same pitch and T is the total number of notes. 

Pitch Density (PD): Represents the number of different pitches that occur in the piece of music: 

 (11)

where np is the number of distinct pitches in the piece of music and 128 is the number of distinct 

pitches available in the MIDI standard. 

Average Duration (AD): Describes the rhythm of the piece of music (for example, fast or slow): 

 (12)
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where Di = ei-si, is the duration of note i and n is the length of the sequence of notes. 

Duration Entropy (DE): Indicates the degree of variation between rhythms present in the piece  

of music: 

 (13)

where nd is the number of distinct durations that appeared in the piece of music and PRi is defined as: 

 (14)

where Di is the number of notes with the same duration and T is the total number of notes. 

Pitch Interval Entropy (PIE): Represents the degree of variation in the piece of music under  

key-invariant conditions: 

 (15)

where ni is the number of distinct intervals that appear in the pitch interval string and PIi is defined as: 

 (16)

where Ii is the number of intervals with the same value and TI is the length of the interval string. 

While the features obtained from the MIDI files were used to classify music, our music  

database contained music in both MIDI and Wave formats. Wave music files were used in the 

vehicle’s stereo system. 

4.2. Music Classifier 

To each individual, music can be divided into two types: refreshing and non-refreshing. We were 

able to determine whether or not a piece of music appeared refreshing to a driver by examining the 

driver’s brainwaves at the time the music is being played, that is, the disappearance of drowsy 

brainwaves would indicate that the music currently playing is refreshing to this particular driver. The 

following table of data was collected after the system was utilized for a length of time. 

Table 1 allows us to determine the features that would make a piece of music appear refreshing to a 

particular driver. This system uses the C4.5 algorithm [41] for dealing with continuous numerical 

attributes for category learning as the basis to build up the user’s refreshing music model. The C4.5 

algorithm is used to generate a decision tree. The decision tree generated by C4.5 can be used for 

classification. We will discuss how to establish the user’s refreshing music model in each step by 

employing this algorithm [33]. 

Table 1. An example of a user table. F1, F2, …, F6 are the music features. 

Music ID F1 F2 F3 F4 F5 F6 Refreshing Music 

5 82 0.9 0.5 1.3 0.4 0.3 Yes 
9 75 0.4 0.3 2.1 0.3 0.2 No 
13 64 0.6 0.1 0.5 0.2 0.5 Yes 
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Step 1: Interval Initialization 

The order of the values in a feature, F, from small to large, e.g., F = {A1, A2, …, An}, allows us to 

establish a candidate cut point, CP. This point is obtained through the calculation between adjacent 

numbers, defined as: 

CP= (Ai, Ai+1)/2 (17)

where Ai stands for the continuous numerical values within the interval, Ai+1 is the adjacent number of 

Ai, and CP is the value of the cut point. 

Step 2: Search the Real Cut Point Position  

A candidate cut point is obtained through the search and used to calculate the maximum 

information gain in order to determine the position of the real cut point. The maximum information 

gain is calculated as the ‘entropy before cut’ minus the “entropy after cut”, this is expressed as: 

 (18)

If it is required to calculate the information gain of F, the entropy after the cut is needed, such as 

that shown in Equation (19). When n results are included in S incidents, Cp is the probability of each 

result corresponding to a type. The entropy in S is: 

 (19)

which is used to calculate the comparison between the cut point and information gain, and determine a 

point K as the position of the real cut point. The real cut point can be used to divide the numerical 

attribute information into two sections, “ K” and “> K”, by means of binary segmentation. 

Step 3: Select the Best Features of the Attribute Nodes 

The results after segmentation are passed to the gain ratio function to calculate the importance of this 

attribute. If an attribute F is included in S, this calculation is needed. This is calculated as the “entropy 

before cut’ minus ‘entropy after cut”, and then divided by the “entropy after segmentation”, as:  

 (20)

Various features are applied to calculate and compare with the gain ratio; the larger value will be 

chosen to be considered as the root node. We are able to determine the next feature node and branch by 

recursive repetition of Steps 1 to 3, until either every subset belongs to the same category, or there is 

no information to be used for classification. 

A leaf node in a decision tree represents the category (refreshing or non-refreshing) of the pieces of 

music that satisfy the conditions of a decision. We limit the height of the decision tree to eliminate 

problems of over fitting. A leaf node in a segregated decision tree may contain both types of music; 

therefore we used the ratio of each type of music against the total number of music pieces, as classes.  

Figure 6 shows an example of a refreshing music decision tree. 
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Figure 6. An example of a user’s refreshing music decision tree. 

 

There are four levels in the decision tree shown in Figure 6. The number in a leaf node is the 

refreshing score with a value between 0 and 1; it represents the ratio of the number of refreshing music 

pieces against the total number of music pieces. For example, a song with the following attribute 

values AP = 40, PE = 0.3 and AD = 0.9 is classified as 0.6 by the decision tree, which means the 

refreshing effectiveness of this song is 0.6. 

4.3. Music Scheduling Mechanism 

A piece of music was given a refreshing score (i.e., classes in the decision tree) by the refreshing 

music decision tree. However, having the system play the music piece with the highest refreshing score 

may result in a single piece of music being selected every time refreshing music needs to be played. 

Our initial experiments and observation revealed that the user lost interest in repeating music, possibly 

resulting in reduced refreshing effectiveness for that particular piece of music. Therefore, to avoid 

playing just the highest scoring song every time, we use the scores as the probability of playing each 

song. The higher the score, the higher the probability for the song to be played. In other words, for a 

music set C, if song s has a score of F(s), then the probability that s is played is: 

 
(21)

5. Experiments 

There were two primary sections to our experiment. First, the coefficients of the ANN, SVM, and 

kNN classifiers were adjusted to optimize classification efficiency. Second, tests were carried out to 

evaluate if the integration of the three classifiers would result in increased classification accuracy. 

5.1. Experimental Results of Drowsy Patterns Classification 

Since it is difficult to collect a large number of EEG patterns during an actual driving experience, 

our test subject used a driving simulation system to simulate driving on a freeway at night. The system 

set up is shown in Figure 7. To accurately identify the states of the subject’s EEG signals, in addition 
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to recording the EEG signal data during the experimentation process, the facial image at the time of the 

experiment was also recorded through a camera. The test subject’s state of mind (drowsy or  

non-drowsy) was manually determined by observing brainwaves and video collected by the simulation 

system. In the other words, if the video clips show that the test object was drowsy, the brain patterns 

for the associated time segment were labeled as drowsy patterns. In contrast, the brain patterns were 

labeled as non-drowsy patterns for the inverse case. The test subjects included 20 males and 20 

females between the ages of 20 and 25. 600 brainwave patterns consisting of 300 drowsy patterns and 

300 non-drowsy patterns were collected from each test subject. The k-fold cross validation method was 

used to evaluate the efficiency of the classifiers. During testing for each classifier we can determine the 

optimum EEG pattern length (PL). 

Figure 7. A driving simulation system for the collection of driver’s brainwaves. 

  

The energy of each type of brainwave was also used as a feature in addition to RE defined earlier. 

The correctness ratio as a result of classification using these features is called the RE-Correctness 

when using RE as features and E-Correctness when using the energy as features. Correctness is 

defined as: 

 (22)

A false negative error, i.e., when an actual drowsy state brainwave is classified as a non-drowsy 

state, is considered a critical error as it will result in the system not prompting the driver at all. A false 

negative error (FN) is defined as: 

 (23)

False negative errors when classifying using RE as features are named RE-FN, and E-FN when 

classifying using energy as features. A false alarm occurs when a non-drowsy state is classified as a 

drowsy state – a false positive error: 

 (24)
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False positive errors when classifying using RE as features are named RE-FP, and E-FP when 

classifying using energy as features. We desire the system in our design to have less FN than FP in 

order to reduce the risk of accidents due to a non-reported drowsy state. 

Table 2. Experimental results of ANN classifier (%). 

Pattern 

Length (PL) 

Hidden 

Layer 
RE-Correctness RE-FP RE-FN E-Correctness E-FP E-FN 

1 

1 55.9 38.7 49.3 47.1 49.7 56.1 

2 60.5 36.3 42.7 49.2 48.8 52.8 

3 66.2 35.9 31.8 50.1 48.9 50.9 

4 66.1 31.9 35.9 51.1 46.9 50.9 

5 66.2 30.5 37.2 51.1 49.9 48.0 

2 

1 57.2 36.8 48.8 48.3 47.2 56.2 

2 62.6 34.4 40.4 50.5 46.5 52.5 

3 69.0 31.6 30.3 52.2 45.9 49.7 

4 69.2 30.2 31.4 53.2 45.9 47.8 

5 69.2 29.0 32.7 53.4 44.5 48.6 

3 

1 61.2 34.9 42.7 52.4 43.8 51.4 

2 65.9 32.1 36.1 53.9 42.4 49.8 

3 72.4 28.7 26.5 53.2 45.9 47.8 

4 72.5 26.4 28.6 54.3 43.0 48.4 

5 71.9 26.2 29.9 52.6 49.3 45.5 

4 

1 58.5 38.2 44.8 59.3 35.0 46.4 

2 64.8 33.8 36.6 51.7 44.4 52.2 

3 72.4 29.3 26.0 54.4 41.9 49.2 

4 72.3 26.6 28.8 55.1 42.3 47.6 

5 72.1 25.7 30.2 55.6 42.6 46.1 

Analysis of ANN Training Experiments 

Since the number of hidden layers in an ANN has an effect on the system’s efficiency, it was 

important to select an appropriate number of layers. Our goal was to achieve optimal classification 

accuracy with a relatively small number of layers. In this experiment, the number of neurons in each 

layer was set to be twice as many as the dimensions of the pattern. The output layer was set to 1 as 

there were only two classes. The results are shown in Table 2. As shown in Table 2, increased 

accuracy was achieved when the pattern length (PL) was greater than 3, while similar results were 

obtained when PL = 4. If we consider the speed of the ANN calculations, we chose patterns of length 3 

to be the inputs to the classifier. In addition, the classification accuracy increased with patterns that 

used RE as features than those that used energy as features, which indicates that RE features were more 

suitable for determining a drowsy state. ANNs that used RE patterns produced very similar precision 

when the number of hidden layers was three, four, and five. On the other hand, more RE-FP than  

RE-FN incidents were produced when the number of hidden layers was three. Therefore, the number of 

hidden layers for the consolidated ANN was set to three, taking into consideration both the execution 

speed and accuracy. 
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Analysis of the SVM Training Experiments 

As different kernel functions produce different classification outcomes, it is crucial to choose a 

suitable kernel function for an SVM [37]. Commonly used kernel functions include linear functions, 

polynomial functions, radial basis functions, and sigmoid functions. The same data used for the ANN 

experiments was also used here to test the classification efficiency of various kernel functions. The 

results are listed in Table 3. 

Table 3. Experimental results of SVM classifier (%). 

Pattern 

Length (PL) 
Kernel RE-Correctness RE-FP RE-FN E-Correctness E-FP E-FN 

1 

Linear 62.60 38.15 36.65 51.90 49.06 47.14 

Polynomial 69.10 32.14 29.66 54.30 48.44 42.96 

Radial basis 65.60 36.46 32.34 51.58 50.36 46.48 

Sigmoid 66.50 34.84 32.16 52.01 47.03 48.95 

2 

Linear 66.90 32.44 33.76 56.10 43.02 44.78 

Polynomial 72.30 29.92 25.48 58.80 42.85 39.55 

Radial basis 69.10 32.14 29.66 55.48 45.41 43.63 

Sigmoid 70.10 30.50 29.30 54.81 42.48 47.90 

3 

Linear 69.3 31.9 29.4 58.4 43.2 40.0 

Polynomial 75.3 25.2 24.2 60.2 40.6 39.0 

Radial basis 71.8 29.3 27.1 57.9 44.6 39.6 

Sigmoid 73.2 28..4 25.2 58.2 45.1 38.4 

4 

Linear 68.20 33.07 30.53 57.30 40.99 44.41 

Polynomial 73.20 26.26 27.34 59.70 42.72 37.88 

Radial basis 71.70 29.43 27.17 57.58 44.12 40.72 

Sigmoid 72.20 28.36 27.24 57.11 41.17 44.61 

Table 3 shows that the highest accuracy was achieved with a PL of 3. Therefore, as with the ANN 

classifier, patterns of length 3 were used for the SVM classifier. The table also indicates the highest 

accuracy when the SVM classifier used the polynomial kernel functions and RE features. The 

difference between the occurrences of RE-FN and RE-FP was small. We adopted the polynomial 

functions as the kernel functions for the SVM classifier for the system. 

Analysis of the kNN Training Experiments 

We conducted analysis on the value of k to be used in a kNN classifier as it would have an impact 

on the accuracy of the classification. We adopted the class in which most of the k closest patterns fell 

to be the class for testing the patterns, hence an odd number for the value of k. The experimental 

results for the kNN classifier are listed in Table 4. 
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Table 4. Experimental results of kNN classifier (%). 

Pattern Length (PL) k RE-Correctness RE-FP RE-FN E-Correctness E-FP E-FN 

1 

1 49.70 76.46 24.14 49.70 63.38 37.22 

3 51.50 72.75 24.25 51.10 70.42 27.38 

5 50.20 75.70 23.90 50.20 66.73 32.87 

7 49.80 74.30 26.10 50.40 60.51 38.69 

9 50.10 69.86 29.94 49.70 54.32 46.28 

2 

1 50.52 74.22 24.74 49.90 72.14 28.06 

3 52.25 70.67 24.83 51.63 66.75 29.99 

5 51.14 71.34 26.38 50.66 71.05 27.63 

7 50.59 78.07 20.75 51.07 62.63 35.23 

9 50.73 71.93 26.61 50.63 58.26 40.48 

3 

1 52.34 69.58 25.74 51.13 61.58 36.16 

3 54.10 66.10 25.70 53.03 67.64 26.30 

5 54.08 66.12 25.72 51.64 64.80 31.92 

7 52.38 69.53 25.71 52.49 57.96 37.06 

9 52.56 70.21 24.67 51.49 52.39 44.63 

4 

1 53.2 77.7 15.9 52.2 65.0 30.6 

3 55.6 74.6 14.2 53.4 64.3 28.9 

5 54.8 67.8 22.6 52.6 61.6 33.2 

7 53.5 67.8 25.1 52.5 53.2 41.8 

9 53.7 63.0 29.6 52.3 50.6 44.8 

5 

1 52.99 76.16 17.86 51.94 66.32 29.80 

3 55.29 70.64 18.78 53.05 66.67 27.23 

5 54.63 66.24 24.50 51.85 65.48 30.82 

7 53.30 67.25 26.15 51.91 54.82 41.36 

9 53.40 64.31 28.89 51.61 54.20 42.58 

We can see from Table 4 that the classification accuracy was the highest when PL = 4, hence the 

EEG pattern length of 4 for the kNN classifier. The value of k was set as 3 since the best classification 

accuracy was achieved when k = 3 and the value of RE-FP was the smallest when RE features were 

used. If we compare the results listed in Tables 2–4 we can see that the SVM classifier produced the 

best classification results while the kNN classifier had the worst accuracy. However, the kNN classifier 

produced the best RE-FN outcomes. Therefore, in the following experiments we employ genetic 

algorithms to adjust the weighting and consolidate the results from all three classifiers. 

Analysis of the Integrated Classifier Experiment 

In our previous experimental results an unsatisfactory classification outcome when energy was used 

as features was seen, and therefore, energy as a feature is excluded from this experiment in which the 

three classifiers are integrated. The best values of coefficients for all three classifiers from previous 

experiments are also used for this experiment. In this experiment, the probability of crossover was 0.7 

and the probability of mutation was 0.001. Table 5 shows the results of the impact of varying number 

of generations on the accuracy of the classification.  
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Table 5. Experimental results of integrated classifier (%). 

Generations RE-Correctness RE-FP RE-FN 

1000 76.3 28.9 18.5 
2000 77.4 29.3 15.8 
3000 81.3 23.9 13.5 
4000 81.2 24.3 13.3 

We can see, from the results listed in Table 5 that an integrated classifier would achieve better 

classification results because: (1) classification accuracy reached a stable state once the number of 

generations reached 3,000, (2) classification accuracy of the RE-Correctness was better than that from 

each of the three classifiers independently, and (3) the number of RE-FN incidents decreased.  

5.2. Experimental Results of Refreshing Music Scheduling 

In this stage, we evaluated the effectiveness of the machine-picked refreshing music to reducing 

drowsiness. The experiment involved ten test subjects consisting of five males and five females, and 

100 pieces of music in the music database. Each subject has one personal refreshing music decision 

tree. A different test subject would spend a long period of time each day at the same driving simulator 

used earlier in this study. The test subjects’ EEG data was collected while music was being played. A 

music recommendation would be regarded as successful when the refreshing music stopped a drowsy 

EEG pattern from occurring. While no drowsy pattern was detected, the test subjects could make their 

own, or the system would play a random, selection of music. A test subject had their own dedicated 

decision tree, which was updated once a week. The criteria for evaluating the effectiveness of the 

refreshing music scheduling is: 

 (25)

Figure 8. Experimental results for the refreshing music recommendations. 

 

The experiment was conducted over six weeks and the results are shown in Figure 8. Random 

music was played during the first week due to a lack of data to construct a decision tree. The system 

was able to make better music recommendations as the decision came to effect in week two. As can be 
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seen, the precision value began to stabilize from week five. The experimental data shows that the 

precision grew with the height of the decision tree before the Tree Height reached 25, after which the 

Tree Height had little effect on the precision. Overall, a success rate of close to 80% can be achieved 

based on the EEG data collected over the weeks.  

6. Conclusions 

As EEG devices become smaller and more portable, it is possible to help refresh and alert a drowsy 

driver using the driver’s state of mind, which can be determined from their brainwave data. In this 

work, we proved through experiments, that brainwave features and discriminating patterns can be used 

to determine whether or not the driver is in a drowsy state. The classification effectiveness of the 

ANN, SVM, and kNN classifiers were examined. These classifiers were eventually integrated using 

integration functions after a genetic algorithm was used to adjust the weighting for each classification 

method in the integration function. The integrated classification function achieved better performance 

than the individual classifiers alone. The system we designed did not only detect the driver’s state of 

mind but also incorporated a mechanism for recommending refreshing music. Music selection was 

based on learnt experiences from the user’s brainwave data. Experimental results were seen to produce 

positive outcomes for the driver.  

All experiments were carried out using a driving simulation system for safety reasons; an extension 

of our study will be to conduct experiments using actual vehicles to further evaluate the effectiveness 

of our system in reducing a driver’s drowsiness. In order to improve the accuracy of drowsiness 

detection we aim in future studies to consolidate our system with image processing techniques to 

detect the frequency of the opening and closing of the driver’s eyes. This is a commonly adopted 

method for drowsiness detection. Many sensor devices for human physiological changes are being 

miniaturized, for example, blood oxygen and heart rate sensors. These devices can potentially be 

integrated with our system and help increase the accuracy of the classification. In our experiments, the 

training samples of drowsy and non-drowsy patterns were subjectively defined. Therefore, we will 

incorporate brain specialists or researchers to identify the patterns objectively in the future.  

Acknowledgments 

This work was supported in part by the NSC in Taiwan under the contact numbers NSC101-2221-

E-020-025 and NSC101-2221-E-020-023. 

Conflict of Interest 

The authors declare no conflict of interest.  

References  

1. Noachtar, S.; Binnie, C.; Ebersole, J.; Mauguiere, F.; Sakamoto, A.; Westmoreland, B. A glossary 

of terms most commonly used by clinical electroencephalographers and proposal for the report form 

for the eeg findings. The international federation of clinical neurophysiology. Electroencephal. Clin. 

Neurophysiol. Supple. 1999, 52, 21. 



Sensors 2013, 13 8219 

 

 

2. Yokoyama, M.; Oguri, K.; Miyaji, M. Effect of Sound Pressure Levels of Music on Driver’s 

Drowsiness. In Proceedings of the 15th World Congress on Intelligent Transport Systems and ITS 

America’s 2008 Annual Meeting, New York, NY, USA, 16–20 November 2008. 

3. Xia, Q.; Song, Y.-W.; Zhu, X.-F. The research development on driving fatigue based on perclos. 

Tech. Autom. Appl. 2008, 6, 13. 

4. Wang, L.; Wu, X.-J.; Ba, B.-D.; Dong, W.-H. A vision-based method to detect perclos features. 

Comput. Eng. Sci. 2006, 6, 17. 

5. Yang, B.; Huang, Y.-Z. A study on drowsy driver monitor system using perclos. Contr. Autom. 

2005, 21, 119–121. 

6. Zhang, L.-Y.; Zheng, C.-X.; Li, X.-P.; Shen, K.-Q. Measuring kolmogorov entropy of eeg for 

studying the state of mental fatigue. J. Chin. J. Biomed. Eng. 2007, 26, 170–176. 

7. Wang, L.; Yu, T.; Wen, B.-C. Assessment based on nonlinear parameters of eeg α waves for 

human-body fatigues. J. Northeast. Univ. 2005, 26, 1174–1177. 

8. Yan, S.; Wei, J.-Q.; Wu, Y.-H. Study of eeg features extraction for doze car driver. Chin. J. 

Biomed. Eng. 2005, 24, 110–113. 

9. Murata, A.; Uetake, A.; Takasawa, Y. Evaluation of mental fatigue using feature parameter 

extracted from event-related potential. Int. J. Ind. Ergonom. 2005, 35, 761–770. 

10. Jung, T.-P.; Makeig, S.; Stensmo, M.; Sejnowski, T.J. Estimating alertness from the eeg power 

spectrum. IEEE Trans. Biomed. Eng. 1997, 44, 60–69. 

11. Li, M.-A.; Zhang, C.; Yang, J.-F. An Eeg-Based Method for Detecting Drowsy Driving State. In 

Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge 

Discovery (FSKD), Yantai, China, 10–12 August 2010; pp. 2164–2167. 

12. Lin, C.-T.; Wu, R.-C.; Liang, S.-F.; Chao, W.-H.; Chen, Y.-J.; Jung, T.-P. Eeg-based drowsiness 

estimation for safety driving using independent component analysis. IEEE Trans. Circu. Syst. I 

Regul. Pap. 2005, 52, 2726–2738. 

13. Huang, R.-S.; Jung, T.-P.; Makeig, S. Tonic changes in eeg power spectra during simulated 

driving. Found. Augment. Cognit. Neuroerg. Operat. Neurosci. 2009, 5638, 394–403. 

14. Srinivasan, V.; Eswaran, C.; Sriraam, N. Artificial neural network based epileptic detection using 

time-domain and frequency-domain features. J. Med. Syst. 2005, 29, 647–660. 

15. Rivero, D.; Dorado, J.; Rabuñal, J.; Pazos, A. Evolving Simple Feed-Forward and Recurrent Anns 

for Signal Classification: A Comparison. In Proceedings of the International Joint Conference on 

Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 2685–2692. 

16. Subasi, A. Epileptic seizure detection using dynamic wavelet network. Exp. Syst. Appl. 2005, 29, 

343–355. 

17. Subasi, A. Eeg signal classification using wavelet feature extraction and a mixture of expert 

model. Exp. Syst. Appl. 2007, 32, 1084–1093. 

18. Guo, L.; Rivero, D.; Seoane, J.A.; Pazos, A. Classification of Eeg Signals Using Relative Wavelet 

Energy and Artificial Neural Networks. In Proceedings of the first ACM/SIGEVO Summit on 

Genetic and Evolutionary Computation, Shanghai, China, 12–14 June 2009; pp. 177–184. 

19. Sivasankari, N.; Thanushkodi, K. Automated epileptic seizure detection in eeg signals using 

fastica and neural network. Int. J. Adv. Soft Comput. Appl. 2009, 1, 91–104. 



Sensors 2013, 13 8220 

 

 

20. Cuingnet, R.; Chupin, M.; Benali, H.; Colliot, O. Spatial and Anatomical Regularization of Svm 

for Brain Image Analysis. In Proceedings of the Neural Information Processing Systems 

Conference, Vancouver, BC, Canada, 6–9 December 2010; pp. 460–468. 

21. Guler, I.; Ubeyli, E.D. Multiclass support vector machines for eeg-signals classification.  

IEEE Trans. Inform. Technol. Biomed. 2007, 11, 117–126. 

22. Costantini, G.; Casali, D.; Todisco, M. An SVM Based Classification Method for EEG Signals. In 

Proceedings of the 14th WSEAS International Conference on Circuits, Corfu Island, Greece,  

22–24 July 2010. 

23. Jrad, N.; Congedo, M.; Phlypo, R.; Rousseau, S.; Flamary, R.; Yger, F.; Rakotomamonjy, A.  

Sw-SVM: Sensor weighting support vector machines for EEG-based brain–computer interfaces. 

J. Neur. Eng. 2011, doi:10.1088/1741-2560/8/5/056004. 

24. Yazdani, A.; Ebrahimi, T.; Hoffmann, U. Classification of EEG Signals Using Dempster Shafer 

Theory and a K-Nearest Neighbor Classifier. In Proceedings of the 4th International IEEE/EMBS 

Conference on Neural Engineering, Antalya, Turkey, 29 April–2 May 2009; pp. 327–330. 

25. Sulaiman, N.; Taib, M.N.; Lias, S.; Murat, Z.H.; Aris, S.A.M.; Hamid, N.H.A. EEG-Based Stress 

Features Using Spectral Centroids Technique and K-Nearest Neighbor Classifier. In Proceedings 

of the 13th International Conference on Computer Modelling and Simulation (UKSim), 

Cambridge, UK, 30 March–1 April 2011; pp. 69–74. 

26. Li, X.; Zhao, Q.; Liu, L.; Peng, H.; Qi, Y.; Mao, C.; Fang, Z.; Liu, Q.; Hu, B. Improve affective 

learning with EEG approach. Comput. Inform. 2012, 29, 557–570. 

27. Tomioka, R.; Aihara, K.; Müller, K.-R. Logistic regression for single trial EEG classification. 

Adv. Neur. Inform. Proc. Syst. 2007, 19, 1377–1384. 

28. Tomioka, R.; Dornhege, G.; Nolte, G.; Aihara, K.; Müller, K.-R. Optimizing spectral filters for 

single trial eeg classification. Lect. Note. Comput. Sci. 2006, 4174, 414–423. 

29. Thomas, E.M.; Temko, A.; Lightbody, G.; Marnane, W.P.; Boylan, G.B. A Gaussian Mixture 

Model Based Statistical Classification System for Neonatal Seizure Detection. In Proceedings of 

IEEE International Workshop on the Machine Learning for Signal Processing, Grenoble, France, 

1–4 September 2009; pp. 1–6. 

30. Wallerius, J.; Trejo, L.J.; Matthews, R.; Rosipal, R.; Caldwell, J.A. Robust Feature Extraction and 

Classification of Eeg Spectra for Real-Time Classification of Cognitive State. In Proceedings of 11th 

International Conference on Human Computer Interaction, Las Vegas, NV, USA, 22–27 July 2005. 

31. Chen, H.-C.; Chen, A.L. A music recommendation system based on music and user grouping.  

J. Intell. Inform. Syst. 2005, 24, 113–132. 

32. Chen, H.-C.; Chen, A.L. A Music Recommendation System Based on Music Data Grouping and 

User Interests. In Proceedings of the Tenth International Conference on Information and 

Knowledge Management, Atlanta, Georgia, 5–10 November 2001; pp. 231–238. 

33. Liu, N.-H.; Lai, S.-W.; Chen, C.-Y.; Hsieh, S.-J. Adaptive music recommendation based on user 

behavior in time slot. Int. J. Comput. Sci. Netw. Secur. 2009, 9, 219–227. 

34. Nanopoulos, A.; Rafailidis, D.; Symeonidis, P.; Manolopoulos, Y. Musicbox: Personalized music 

recommendation based on cubic analysis of social tags. IEEE Trans. Aud. Spee. Lang. Proc. 2010, 

18, 407–412. 



Sensors 2013, 13 8221 

 

 

35. Bogdanov, D.; Haro, M.; Fuhrmann, F.; Xambó, A.; Gómez, E.; Herrera, P. Semantic audio 

content-based music recommendation and visualization based on user preference examples. 

Inform. Proc. Manag. 2012, 49, 13–33. 

36. Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed.;  

Addison-Wesley: New York, NY, USA, 2002. 

37. Gunn, S.R. Support Vector Machines for Classification and Regression; ISIS Technical Report: 

Southampton, UK, 1998.  

38. Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized 

likelihood methods. Adv. Large Marg. Classif. 1999, 10, 61–74. 

39. Li, Y.; Zeng, X. Sequential multi-criteria feature selection algorithm based on agent genetic 

algorithm. Appl. Intell. 2010, 33, 117–131. 

40. Liu, N.-H. Comparison of content-based music recommendation using different distance 

estimation methods. Appl. Intell. 2013, 38, 160–174. 

41. Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan; Morgan Kaufmann 

Publishers, Inc.: San Francisco, CA, USA, 1993. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


