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Abstract
We investigate architectures for time encoding and time decoding of visual stimuli such as natural
and synthetic video streams (movies, animation). The architecture for time encoding is akin to
models of the early visual system. It consists of a bank of filters in cascade with single-input
multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-
and-fire spiking mechanism with feedback. We show that analog information is represented by the
neural circuits as projections on a set of band-limited functions determined by the spike sequence.
Under Nyquist-type and frame conditions, the encoded signal can be recovered from these
projections with arbitrary precision. For the video time encoding machine architecture, we
demonstrate that band-limited video streams of finite energy can be faithfully recovered from the
spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery
calls for the number of neurons in the population to be above a threshold value.
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I. INTRODUCTION
TIME encoding machines (TEMs) [1] are asynchronous signal processors that encode
analog information in the time domain. TEMs play a key role in the representation of analog
waveforms by silicon-based information systems and in sensing the natural world by
biological sensory systems. There is also substantial amount of interest in TEMs as front
ends of brain-machine interfaces, i.e., as building blocks connecting biological and silicon-
based information systems.

Intuitively, TEMs encode a (input) band-limited time signal into a multidimensional time
sequence. For applications in the visual space, however, the input is a space-time function.
TEMs encoding space-time analog waveforms that are of interest in silicon-based
information systems and in early biological vision systems are discussed below.

Early hardware implementations of space-time encoding mechanisms include silicon retinas
for spike-based vision systems [2], [3]. Applications of silicon retinas include, among
others, spatial-contrast image encoding [4], motion detection [5], and real-time 2-D
convolutions [6]. The question of implementing silicon retinas that faithfully represent video
streams in the time domain and the associated design of perfect recovery algorithms has not
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been addressed in the literature. In neuromorphic engineering practice, the recovery of real-
time video streams has shown substantial aliasing effects [7].

Decoding of stimuli encoded by early biological visual systems is a grand challenge in
neuroengineering. A number of encoding models exist in the literature including
computational models for the retina, lateral geniculate nucleus (LGN), and V1 of mammals.
However, the representation power of these circuits in unknown. In [8], we initially
addressed the use of neurons modeled akin to simple V1 cells having Gabor-like spatial
receptive fields and a non-leaky integrate-and-fire (IAF) spiking mechanism. However, a
general methodology for building arbitrary neural circuits with feedback and arbitrary
receptive fields is not available.

In this paper, we introduce for the first time a general architecture of space-time video
TEMs. The architecture is inspired by models of the early visual system; it applies as a
template architecture for silicon-based TEMs. The basic TEM architecture is based on a
flexible set of interconnected building blocks. The key building blocks are filters modeling
receptive fields and single-input multiple-output (SIMO) neural circuits with feedback
representing analog information akin to neuronal circuits in the early visual system.

For each SIMO neural circuit, neuron spike generation is based on a threshold-and-fire
(TAF) or an IAF mechanism. The circuit models employed here include general feedback
connections within and in-between neurons. For each of the encoding neural circuits, we
study the representation of the input analog signal and its recovery from the output spike
train. As we shall demonstrate, these circuits project the input signal on a set of functions
determined by the spike sequence. Under appropriate conditions, these functions span the
space of band-limited signals, and, consequently, the encoded stimulus can be recovered
from these projections. We devise algorithms that faithfully recover the stimulus and
investigate changes in encoding due to feedback. We also demonstrate that encoding circuits
based on TAF and IAF mechanisms can be operationally treated in a similar manner.

For the overall video TEM architecture, we derive conditions for the faithful representation
of the analog input stream as a multidimensional time (spike train) sequence. We also
provide a stable algorithm for recovery of the video input from spike times. The key
condition for recovery comes from the mathematical theory of frames [9] and requires that
the population spike density as well as the number of neurons is above the Nyquist rate.

This paper is organized as follows. In Section II, we present SIMO neural circuits that map
an analog signal into a multidimensional time sequence. We show how these circuits encode
information and establish invertibility conditions. In Section III, the problem of time
encoding of analog video streams is posed in a general setting. We shall derive a time
decoding algorithm that faithfully recovers the video signal from the multidimensional spike
train in Section IV. Detailed examples are given in Section V. Finally, Section VI concludes
our work and discusses future directions.

II. Time Encoding with Neural Circuits with Feedback
In this section, we analyze the representation power of a number of encoding circuits based
on models of neurons of the early visual system as well as models of neurons arising in
silicon retina and related neuromorphic hardware. The basic encoding circuit investigated
here is a SIMO neural circuit with feedback that maps an analog input signal into a
multidimensional time sequence (see Fig. 1).

All analog input signals of interest u = u(t), t ∈ ℝ, in this section live in the space of band-
limited functions with finite energy and with spectral support in, the [−Ω, Ω]. We denote this
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space with letter Ξ. In Section II-A, single-input single-output (SISO) neural circuits are
investigated, in Section II-B and II-C single-input two-output neural circuits are considered.
We shall show that existing models of retinal ganglion cells (RGCs) and LGN neurons [10]
and simple neural circuits arising in frame-free cameras [5] have the same representation
properties. They are simple instantiations of the neural circuit model with feedback (see Fig.
1).

We demonstrate that information contained at the input of the neural encoding circuit can be
recovered by a decoder provided the average number of spikes is above the Nyquist rate. For
each TEM, we will show how to build a time decoding machine (TDM) that perfectly
recovers the encoded signal. The structure of the decoders is the same and consists of a low-
pass filter (LPF) whose input is a train of weighted spikes derived from those generated by
the neural circuit.

The theoretical framework presented in this section was first developed in [11]. It has only
been formally applied, however, to the decoding of stimuli encoded with a population of
unconnected IAF neurons without feedback. Here we show how to apply it to stimuli
encoded with fully pulse-connected neural circuits and extend it to circuits with neurons
with TAF with feedback. Moreover, by explicitly calculating the spike density of all the
neural circuits of interest, we greatly improve on the bounds presented in [11]. Examples are
given in Section II-D.

A. Time Encoding with a Single Neuron
The object of this section is the analysis of SISO TEMs with feedback (see Fig. 2). We will
refer to these circuits as single neuron TEMs. Fig. 2(a) shows the spiking mechanism of a
time encoding neural circuit consisting of a single neuron with feedback. The structure of
the circuit is inspired by a neuron model that was first proposed in [10]. The neuron fires
whenever its membrane potential reaches a fixed threshold value δ. After a spike is
generated, the membrane potential is reset through a negative feedback mechanism that gets
triggered by the just emitted spike. The feedback mechanism is modeled by a filter with
impulse response h(t).

The encoding is quantified with the t-transform [1] that, given the input stimulus, describes
in mathematical language the sampling process. Let (tk), k ∈ ℤ, be the set of spike times at
the output of the neuron. Then the t-transform of the TEM depicted in Fig. 2(a) can be
written for all k, k ∈ ℤ, as

(1)

Equation (1) can be written in inner product form as

(2)

where qk = δ + Σl<k h(tk−tl), χk(t) = g(t−tk), k ∈ ℤ, and g(t) = sin(Ωt)/πt, t ∈ ℤ, is the
impulse response of a LPF with cutoff frequency Ω. The impulse response of the filter in the
feedback loop is causal, and in widely adopted models it is decreasing with time (e.g.,
exponential decay) [10].

Fig. 2(b) depicts a time encoding neural circuit consisting of an IAF neuron with feedback.
IAF neurons have been used to model RGCs and LGN neurons in [12]. The t-transform of
the encoding circuit can be written as
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(3)

or in inner product form as

(4)

where  and χk = g *1[tk, tk+1], for all k, k ∈ ℤ (*
denotes the convolution).

It is easy to see that both encoding circuits described above have a similar operational
structure. Both encode the signal u by projecting it on a set of sampling functions (χk), k ∈
ℤ. A decoder with observations (tk), k ∈ ℤ, can readily evaluate the inner product
(projection) sequence (qk), k ∈ ℤ. Assuming that the spike density of the observations is
above a threshold value, the following proposition provides a representation of the stimulus
that is stable. The spike density intuitively formalizes the notion of average number of
spikes in an arbitrarily large time interval. Appendix A provides a detailed methodology for
computing the spike density of the simple neurons models employed in this paper.

Proposition 1: The band-limited input stimulus u, encoded with a single neuron TEM (Fig.
2), can be recovered as

(5)

where ηk (t) = g(t−tk), provided that the spike density of the single neuron TEM is above the
Nyquist rate Ω/π. Moreover, with [c]k = ck, the vector of coefficients c is given by

(6)

where G+ denotes the pseudoinverse of G, [q]k = qk and [G]kl = 〈χk, ηl〉, for all k, l ∈ ℤ.

Proof: The representation result (5) holds and it is stable if the sequences of sampling
functions χ = (χk), k ∈ ℤ, and representation functions η = (ηk), k ∈ ℤ, form frames for the
space of band-limited functions Ξ. From the theory of frames for complex exponentials [13],
the sequence η is a frame if the spike density is above the Nyquist rate. For the TAF with
feedback TEM of Fig. 2(a), χk = ηk, for all k ∈ ℤ, and therefore, the sequence χ is a frame.
For the IAF with feedback TEM of Fig. 2(b), the sequence η can be mapped to χ by a
bounded operator with closed range, and thus, the frame property is preserved [9]. The
interested reader can find a more detailed technical discussion in [11] and [14].

Equation (6) can be obtained by substituting the representation of u in (5) into the equation
of the t-transform in (2) or (4), respectively. Since the sequence η, is a frame for Ξ, (5) and
(6) are guaranteed to give a stable reconstruction [15].

B. Time Encoding with ON-OFF Neurons
In this section, we analyze single-input two-output TEMs with feedback (see Fig. 3). Two
different circuits are shown. Each circuit consists of two neurons with the same spike
triggering mechanism and feedback. We will refer to these circuits as ON-OFF TEMs.

Fig. 3(a) shows a circuit consisting of two interconnected ON-OFF neurons each with its
own feedback. Each neuron is endowed with a level crossing detection mechanism with a
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threshold that takes a positive value δ1 and a negative value −δ2, respectively. Whenever a
spike is generated, the feedback mechanism resets the corresponding membrane potential. In
addition, the firing of each spike is communicated to the other neuron through cross-
feedback. In general, the cross-feedback brings the other neuron closer to its firing threshold
and thereby increases its spike density. The two neurons in Fig. 3(a) arise as models of ON
and OFF bipolar cells in the retina and their connections through the non-spiking horizontal
cells [16].

With ( ), k ∈ ℤ, the set of spike times of the neuron j, j = 1, 2, the t-transform of the ON-
OFF TEM amounts to

(7)

for all k, k ∈ ℤ. Equation (7) can be written in inner product form , where  is the

right side of (7) and , k ∈ ℤ, j = 1, 2, are the sampling functions.

Fig. 3(b) shows a circuit consisting of two interconnected ON-OFF neurons each with its
own feedback. The neurons are IAF. The t-transform of the neural circuit can be written as

(8)

or in inner product form , with  the right side of (8), and the sampling functions

are , for k ∈ ℤ, and j = 1, 2.

Proposition 2: The input stimulus u, encoded with an ON-OFF TEM (Fig. 3), can be
recovered as

(9)

where the representation functions are given by , j = 1, 2, provided that the
spike density of the ON-OFF TEM is above the Nyquist rate Ω/π. Moreover, with c = [c1;

c2] and , the vector of coefficients c can be computed as

(10)

where q = [q1; q2] with , and

for all i, j = 1, 2, and k, l ∈ ℤ.
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Proof: It is similar to the proof of Proposition 1.

C. Time Encoding with Silicon ON-OFF TEMs
ON-OFF spiking mechanisms have been used in various neuromorphic hardware
applications [2], [5]. In this section, we present simplified versions of the ON-OFF neurons
presented in Section II-B that have been implemented in silicon. We will refer to these
circuits as silicon ON-OFF TEMs.

Fig. 4(a) depicts the silicon neuron implemented in [5]. A spike is generated whenever a
positive or negative change of magnitude δ is detected. Immediately thereafter, the input to
the thresholding blocks is reset to zero through a simple feedback mechanism. The encoding
circuit in Fig. 4(a) can be obtained from the ON-OFF TEM depicted in Fig. 3(a) by setting
δ1 = δ2 = δ and h11(t) = h22(t) = h12(t) = h21(t) = δ · 1[t>0]. The input to both the ON and
OFF branch is

where τ(t) is the last spike before time t.

For arbitrary n ∈ ℤ and k ∈ ℕ, the t-transform of the silicon TEM amounts to

(11)

As in the previous examples, the above equalities can also be expressed in inner product
form.

The circuit in [17, Fig. 4(b)] can be obtained by simplifying the ON-OFF TEM shown in
Fig. 3(b) with δ1 = δ2 = δ, κ1 = κ2 = κ and h11(t) = h22(t) = h12(t) = h21(t) = κδ · 1[t>0]. We
finally note that Proposition 2 holds for the silicon ON-OFF TEMs briefly sketched above,
thus establishing conditions for perfect recovery.

D. Example
We illustrate the recovery algorithms for the TEMs presented above with an example using
a band-limited function with Ω = 2π · 100 rad/s on the time interval [0, 0.2] s. For simplicity
in presentation, we restrict ourselves to neuron models based on TAF spiking mechanism. In
order to simplify the comparison of the performance of recovery algorithms for signals
encoded with different neural circuits, the circuit parameters were chosen so that all TEMs
approximately generated the same number of spikes.

For the single neuron TEM, the threshold was δ = 0.01 and the feedback filter h(t) = 0.1
exp(−100t)1[t>0] For the ON-OFF TEM, δ1 = δ2 = 0.47, h11(t) = h22(t) = 0.1
exp(−100t)1[t>0], and h12(t) = h21(t) = 0.075 exp(−t/0.015)1[t>0]. For the silicon ON-OFF
TEM δ = 0.21. The results are shown in Fig. 5.

The single neuron TEM fired a total of 87 spikes, fired in clusters when the input signal is
greater than the threshold and the stimulus is increasing. The neuron does not fire any spikes
when the input is negative. In theory, this does not create problems as long as the spike
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density is above the Nyquist rate. In practice, however, signals have finite time support. As a
result, in negative signal regions the recovery might be poor.

The situation improves with the ON-OFF TEM which also fired a total of 87 spikes (51 for
the ON part and 36 for the OFF part). Trigger times occur again in clusters but sample the
stimulus at both positive and negative values. Note that the signal entering the thresholding
block has a reduced range when compared to the encoded stimulus. In general, for the same
number of trigger times, the ON-OFF TDM tends to lead to better recovery results than the
single neuron TDM. For example, in the time interval [0.025, 0.175] s the single neuron
TDM had a signal-to-noise ratio (SNR) = 13.87 [dB] whereas the ON-OFF TDM recovered
the stimulus with SNR = 54.04 [dB].

Finally, the silicon ON-OFF TEM produced a similar number of spikes (84 spikes, 42 for
each branch). The spikes were more uniformly distributed when compared to the spikes of
the single neuron TEM and the ON-OFF TEM, both of which occur in clusters. This resulted
in a better stimulus recovery with SNR = 64.2 [dB] in the time interval [0.025, 0.175] s. The
improved performance is primarily due to the precision in representing the signal samples as
integer multiples of the threshold value. In the case of the ON-OFF TEM, numerical errors
are introduced through the feedback current. The latter is dependent on the previous spike
times that are measured with a finite temporal resolution.

III. Architecture of Video TEMs
In this section, we introduce a model architecture for video TEMs (see Fig. 6). The
architecture consists of a bank of N spatiotemporal filters and N neural circuits. The neural
circuits are SIMO TEMs. Each filter is connected to a single neural circuit and represents its
spatiotemporal receptive field (STRF). The input video stream is considered to be band-
limited in time and continuous in space.

By establishing the t-transform of the video TEM, we show how an analog video stream is
represented in the time domain. In Section IV, we shall prove that under mild conditions the
video stream can be perfectly recovered by only knowing the encoder parameters and the
spike times and derive perfect recovery algorithms.

Let  denote the space of (real) analog video streams I = I (x, y, t), (x, y, t) ∈ ℝ3, that are
band-limited in time and continuous in space, and have finite energy. It is clear that the
space  is a Hilbert space, when endowed with the inner product 
defined by

In full generality, we assume that each neural circuit j has an STRF described by the
function Dj = Dj (x, y, t), (x, y, t) ∈ ℝ3, j = 1, 2, …, N. In what follows, we assume that the
filters describing the STRFs are bounded-input bounded-output stable. Filtering the video
stream with the receptive field of the neural circuit j gives the receptive field output vj(t).
The latter serves as the main input to neural circuit j and amounts to

(12)

Following the discussion of Section II, the t-transform of ith branch of the jth neural circuit
is described by
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(13)

where the sampling functions  and the inner products , for all k ∈ ℤ, i = 1, 2,
…, M, and all j = 1, 2, …, N. Depending on the spiking mechanism of the neural circuit, the

sampling functions are of the form  or , t ∈ ℤ, where

( ), k ∈ ℤ, i = 1, 2, …, M, and j = 1, 2, …, N, is the spike sequence generated by the video
TEM. Therefore, the t-transform of the video TEM is given by

(14)

where  for all k ∈ ℤ, i = 1, 2, …, M, and j = 1, 2, …, N
(D̃j(x, y, t) = Dj (x, y, −t)).

The t-transform in (14) quantifies the projection of the video stream I onto the sequence of

sampling functions , j = 1, 2, …, N, i = 1, 2, …, M, k ∈ ℤ. If the sequence ϕ is a
frame for , then I can be perfectly recovered from this set of projections. Furthermore, the
recovery is stable. Our goal in the next section is to find sufficient conditions on the
sequence ϕ to be a frame for  and to provide a recovery algorithm.

IV. Time Decoding and Perfect Recovery
In this section, we present the conditions on the set of receptive fields that guarantee a
faithful representation of video stimuli and provide an algorithm for perfect signal recovery.

A. Conditions for Perfect Stimulus Recovery
Theorem 1: The input video stream I can be perfectly recovered from the set of spike times

( ), j = 1, 2, …, N, i = 1, 2, …, M, k ∈ ℤ, provided that the spike density of the neural
circuits is sufficiently large, and for every ωt ∈ [−Ωt, Ωt]

(15)

is a frame for the space of spatially band-limited images. Here,  and  denote the 2-D
and 3-D Fourier transforms, respectively.

Proof: The proof is presented in Appendix B. Note that an explicit sufficient density
condition is to have the spike density of every neural circuit above the temporal Nyquist rate
Ωt/π. Note also that a necessary condition for (15) to hold is to have the number of neurons
at least equal to the number of independent spatial components of the input video stimulus.
The latter is in full generality equal to Ωx · Ωy/π2 per unit area, where Ωx and Ωy denote the
spatial bandwidth along the x and y directions, respectively. In practice, although the video
streams are defined on a finite spatial aperture, the spatial bandwidths are assumed to be
finite.

Remark 1: The assumption of finite spatial bandwidth is supported in practice. In the visual
system, the maximum spatial resolution is finite and depends (among others) on the density
of the photoreceptor rods and cones [18].

Remark 2: Space-time separable receptive fields of the form
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(16)

are of particular interest in systems neuroscience. For such receptive fields, the frame
condition for perfect recovery becomes

where  denotes the (1-D) Fourier transform of . This holds, for example, when the
temporal components of the receptive fields have full frequency support, i.e.,

, and the spatial receptive fields form an overcomplete wavelet
filterbank. Such filterbanks arise as a model of receptive fields in the primate retina [19]. For
more information, see the examples in Section V or [8].

The required conditions of Theorem 1 are rather abstract. These conditions are satisfied,
however, for a number of practical applications with STRFs that:

1. are space-time separable and the spatial components form an overcomplete spatial
filterbank (see Remark 2);

2. form an overcomplete space-time wavelet filterbank. Such a case can be useful for
tracking applications [20];

3. are chosen randomly according to a known distribution (e.g., Gaussian). The latter
case, briefly explored in example V-C, arises in analog-to-information conversion
for compressed sensing [21].

Remark 3: The result of Theorem 1 along with the above discussion has a simple
evolutionary interpretation. If every neuron responds to the stimulus with a positive,
nonvanishing, spike rate, then visual stimuli can be faithfully represented in the spike
domain using a finite number of neurons.

B. Perfect Recovery Algorithm
In order to devise a general recovery algorithm for the infinite dimensional case, we use the
sequence of representation functions k ∈ ℤ, j = 1, 2, …, N, i = 1, 2, …, M, k ∈ ℤ, with

(17)

where , t ∈ ℤ. We have the following.

Algorithm 1: If the assumptions of Theorem 1 hold, then for a sufficiently large N, the video
stream I, encoded with a video TEM (Fig. 6), can be recovered as

(18)

where , j = 1, 2, …, N, i = 1, 2, …, M, k ∈ ℤ, are suitable coefficients. With c = [c1, c2,

…, cN]T, cj = [cj1, cj2, …, cjM]T and , the coefficients c can be computed as

(19)

Lazar and Pnevmatikakis Page 9

IEEE Trans Neural Netw. Author manuscript; available in PMC 2013 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where T denotes the transpose, q is a vector with entries , and G+ denotes the
pseudoinverse of G. G is a N × N block matrix. Each block Gij is in turn a M × M block
matrix with entries given by

(20)

for all i, j = 1, 2, …, N; k, l ∈ ℤ and m, n = 1, 2, …, M.

Proof: Equation (19) can be obtained by substituting the representation of I in (18) into thet-
transform equation (14).

The video TDM pertaining to Algorithm 1 is depicted in Fig. 7.

V. Examples
In this section, we present examples of encoding of synthetic and natural video scenes with
various video TEM architectures and analyze the performance of the associated decoding
algorithms. The examples highlight the versatility of video TEMs for modeling purposes and
the generality of their underlying structure. A note of caution, the video TEMs are clockless.
In order to simulate them on Turing machines, however, only frame-based digital video
sequences can be used. Consequently, in all our examples we employed natural scenes with
a high frame rate. The high frame rate allowed us to load an approximation of the analog
waveforms into our computation platform.

In Section V-A and V-B, we consider video TEMs with receptive fields used in models of
RGCs and simple cells in V1. In Section V-C, the STRFs are randomly drawn and are
space-time nonseparable. An encoding example of natural video scenes is presented in
Section V-D.

A. Video TEM with Spatial Gabor Filterbank
The video TEM in this section consists of a spatial Gabor filter bank and neural circuits
using four different firing mechanisms. Such encoding circuits are encountered in modeling
simple cells and their receptive fields in the area V1 of the visual cortex in mammals [22].

The signal at the input of the video TEM is a synthetically generated space-time separable
video stream of the form I (x, y, t) = S(x, y)u(t). The stream has the following
characteristics. The temporal component has an equivalent bandwidth of 20 Hz in the time
interval = [0, 250] ms. A temporal bandwidth of 20 Hz (Ω = 2π · 20 rad/s) has been
reported to contain almost all the information for natural video streams [23]. The spatial
component is defined on the domain (aperture) ⅅ = [−4, 4] × [−4, 4]. One hundred and
twenty-eight pixels were used for the spatial discretization in each direction. This spatial
resolution supports stimuli with spatial bandwidth of up to 8 Hz in each direction. In our
case, the spatial bandwidth was 2.5 Hz in each spatial direction (2π · 2.5 rad/degree).

The architecture of the video TEM consists of a spatial Gabor filterbank in cascade with a
population of neural circuits. The (Gabor) mother wavelet employed here was originally
proposed by Lee [24] based on a number of mathematical and biological constraints. It is
given by
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with κ/2π = 0.75 Hz. For (real) video streams, the mother wavelet decomposes into two
wavelets corresponding to its real and imaginary part, respectively. To construct a spatial
filterbank, one performs the operations of rotations, dilations, and translations on the mother
wavelet. More information can be found in [8]. On both wavelet components, operations on
three scales, three rotations, and 5 × 5 translations along both dimensions were used to
generate a spatial Gabor filterbank consisting of a total of N = 2 × 3 × 3 × 5 × 5 = 450
filters.

Four different firing mechanisms for the neural circuits were considered, single neuron
TEMs (with TAF, IAF with bias and feedback, and IAF with feedback without bias) and
ON-OFF TAF TEM. In each case, the 450 SIMO TEMs were chosen to be the same. By
appropriately choosing certain parameters, the four different video TEMs realizations
approximately generated the same number of spikes. More specifically, the parameters of
the neurons were chosen as follows. For every single neuron TEM with TAF, δ = 0.06 and
h(t) = 0.055 exp(−t/0.03) · 1(t ≥ 0). For every single neuron TEM with IAF with bias, b =
1.1, δ = 2.7, κ = 0.01, and h(t) = 0.055 exp(−t/0.03) · 1(t ≥ 0), and finally, for the IAF
without bias, b = 0, δ = 0.068, κ = 0.01, and h(t) = 0.055 exp(−t/0.03) · 1(t ≥ 0). For every
ON-OFF TEM δ1 = −δ2 = 0.085, h11(t) = h22(t) = 0.08 exp(−t/0.06) · 1(t ≥ 0) and h12(t) =
h21(t) = 0 (time in seconds).

To quantify the quality of the recovery, we used the peak-SNR (PSNR) for the spatial
component (PSNR[S]) and for the entire video stream (PSNR[I]) and, SNR for the temporal
component (SNR[u]). The performance of the various architectures under these metrics is
summarized in Table I, where we also provide the total number of spikes for each
architecture and the number of neurons that fired spikes out of the total 450. All the quality
metrics are measured in dB.

From Table I, we conclude that the best results were achieved by the video TEM realized
with IAF neurons with bias, followed by the video TEM realized with ON-OFF TAF TEMs.
The bias term in the former TEM forces every neuron to fire and, thereby, provides a “more
uniform” sampling of the video stream. Consequently, information about all the projections
of the video stream onto the elements of the filterbank is obtained. This leads to improved
performance in recovery.

For the remaining cases, it is clear that the video TEM built with ON-OFF TAF TEMs
significantly outperforms the other two. The reasons are similar to the ones mentioned in the
example of Section II. It is important to note that for the spatial component, the largest
errors appear at the spatial boundaries of the video stream. This is of course expected since
the finite aperture stream fails to be spatially band-limited. By excluding the boundaries (5
pixels on each side), the spatial component PSNR[S] and of the video stream PSNR[I]
significantly increases in all four cases (2–3.5 [dB]).

For the ON-OFF TAF-based video TEM, we also examined the quality of signal recovery as
a function of the number of spikes that the neurons produced. In order to do so, we changed
the feedback parameters of the ON-OFF TEMs while leaving the rest of the parameters
(receptive fields, thresholds) unchanged. The plot of the three quality measures (PSNR[S],
SNR[u], and PSNR[I]) as a function of the number of spikes is shown in Fig. 8. As shown,
with an increase in the number of spikes, the quality of the recovery also increases.

B. Video TEM with Spatial Isotropic Wavelet Filterbank
The methodology presented in the previous example can also be applied to video TEMs with
spatial receptive fields constructed from other mother wavelets. For example, a filter bank
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with a difference-of-Gaussians (DoG) mother wavelet has been used to model the spatial
receptive fields of RGCs [25], [26].

As above, we used a space-time separable video stream with the same bandwidth, duration
of 200 ms, spatial domain ⅅ = [−2, 2] × [−2, 2], and 128 pixels in each direction. To
eliminate the boundary effects, the spatial domain was extrapolated to [−2.5, 2.5] × [−2.5,
2.5] (with 160 pixels per direction). The spatial filterbank had a wavelet structure generated
from an isotropic wavelet given by a DoG

with α2 = 0.5, α1 = α2/1.6. Since the DoG wavelet is isotropic, the filterbank was
constructed by performing only dilations and translations. Six different scales were used, m
= −2, −1, …, 3, and , and a different number of translations was performed for each
scale. For each scale , the number of translations in each direction was given by

, with resolution , where b0 = 0.55. Here nint(x) denotes the
nearest integer of x. In total, 622 filters were constructed. The ON-OFF TEM had a TAF
with feedback spiking mechanism and parameters δ1 = −δ2 = 0.7, h12(t) = h21(t) = 0.01
exp(−t/0.01)1[t>0] and h11(t) = h22(t) = 0.65 exp(−t/0.015)1[t>0]. Overall, 554 neuron pairs
fired at least one spike amounting to a total of 5660 spikes. The input and the recovered
components of the stimuli are shown in Fig. 9. The performance of the stimulus recovery
was PSNR[S] = 34.57 dB, PSNR[I] = 30.26 dB, and SNR[u] = 39.37 dB.

The results of Fig. 9 suggest that any possible mother wavelet (or in general x-let structure)
can be used as long as the set of wavelets is “dense enough” so that it can faithfully
represent the required spatial characteristics of the input video stream. Consequently, the
optimal choice of the mother wavelet largely depends on the desired application.

C. Video TEM with Nonseparable STRFs
In this section, we highlight the versatility of the theoretical framework and the generality of
the decoding algorithms presented in this paper. From a technical standpoint, both the input
video stimulus I and the set of STRFs are nonseparable.

The input video stream belongs to a discretized version of , the space of trigonometric
polynomials (see Appendix B) with Mx = My = 3, Mt = 5, and bandwidth Ωx = Ωy = 2π · 2
rad/degree, Ωt = 2π · 7.5 rad/s. The STRFs also belong to the same space of trigonometric
polynomials. Their line frequency response was randomly chosen, for each frequency, from
a standard normal distribution. One hundred STRFs were constructed in this way. Since the
frequency responses were picked randomly, all the necessary rank conditions (required rank
= 49) were satisfied with high probability. The neural circuits consisted of ON-OFF neuron
pairs with TAF with feedback spiking mechanism. These neurons produced a total of 1150
spikes.

The video synthetic stream was reconstructed using Algorithm 2 (see Appendix C). The
encoded and recovered synthetic video stream are shown for three different time instances in
Fig. 10. The embedding of the videos and the STRFs into the finite-dimensional space of
trigonometric polynomials enables the closed form evaluation of the dendritic outputs vj [see
(30)] as well as the entries of the matrix F. As such, there are no numerical errors introduced
during the encoding and reconstruction phase beyond finite precision considerations of the
spike times. This leads to a practically perfect reconstruction of the input stimulus. The
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performance of the reconstruction algorithms speaks for itself: SNR [I] = 74.78 [dB] and
PSNR 86.96 [I] = [dB]. Note that random filters have been used as analog-to-information
converters for compressed sensing applications [21].

D. Natural Video Scene Example
The most experimentally demanding case pertains to the encoding and decoding of natural
scenes. As already mentioned, we used high-frame-rate video sequences captured with
special cameras. The high computational demands were met by employing a computational
platform based on GPUs.

The video TEM architecture consisted of 2744 neurons with spatial receptive fields drawn
from a Gabor filterbank. Seven different scales and four different orientations were used. On
average, for each pair of orientation/scale 49 different translations along the both axes were
employed, more translations were used for finer scales and less for coarser ones. For m = 0
and m = −1, three translations were used in each direction, for m = −2 five, for m = −3 and
m = −4 seven, for m = −5 nine and finally for m = −6 eleven translations were used.

All the neurons had an IAF spiking mechanism with bias b = 0.25, threshold δ = 0.04, and
integration constant κ = 0.01. The input video, showing a fly taking off, had a duration 20
ms with a frame rate of 6000 frames/s, resulting in an effective temporal bandwidth of 3
kHz. Ninety-six pixels were used in each direction giving a total of 9216 pixels. The neurons
fired a total of 33 713 spikes, giving an average of 12.3 spikes per neuron, and 615 spikes
per neuron per second. Note that this number is one order of magnitude less than the 6-kHz
frame rate of the video stream. The recovered video had PSNR[I] = 31.28 [dB].

Three of the recovered video, along with the corresponding encoded ones, are shown in Fig.
11. Note that the number of neurons used to encode the video is significantly lower than the
number of pixels that are used to display the video stream. This highlights one of the
potential advantages of the video TEMs when compared to past silicon retina
implementations.

VI. Discussion and Conclusion
Stringent requirements for extremely low-power information processing systems are one of
the main drivers for information representation in the time domain. Due to the ever-
decreasing size of integrated circuits and the attendant low voltage, in traditional silicon-
based information systems amplitude-domain high precision quantizers are more and more
difficult to implement. By representing information in the time domain, SISO TEMs
leverage the phenomenal device speeds that a temporal code can take advantage of [27].
Consequently, next-generation encoders in silicon are expected to represent information in
the time domain [28]. Widely used modulation circuits such as asynchronous sigma/delta
modulators and FM modulators in cascade with zero-crossing detectors have been shown to
be instances of TEMs [1]. These advances served as a basis for (1-D) TEM implementations
in hardware [29]-[35]. These implementations exhibit extremely low power requirements,
see [34] for an extensive discussion on SISO TEMs meeting these power requirements.

Video TEMs realized in silicon are a natural extension of SISO information systems that
represent analog waveforms in the time domain. They are highly versatile for modeling
purposes, since they enable different combinations of filters/receptive fields and spiking
mechanisms. Unlike asynchronous silicon retina implementations, which assign to every
pixel a neuron, video TEMs use a bank of STRFs to map the incoming video streams into a
train of spikes. Thus, video TEMs provide a more compact representation of information in
the time domain and can serve as templates for future neuromorphic hardware applications.

Lazar and Pnevmatikakis Page 13

IEEE Trans Neural Netw. Author manuscript; available in PMC 2013 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In quantized form, the spike sequence generated by video TEMs can be used for
transmission and for further processing with any digital communications and/or signal
processing system.

The interest in temporal encoding in systems neuroscience is closely linked with the natural
representation of sensory stimuli (signals) as a sequence of action potentials (spikes) in early
olfaction, audition, and vision. TEMs based on single-neuron models such as IAF neurons
[36] and more general Hodgkin–Huxley neurons with multiplicative coupling, feedforward,
and feedback have also been investigated [37]. Video TEMs can be used to represent analog
information residing in the visual world as a multidimensional time (spike) sequence. They
are versatile encoding circuits for modeling information representation in the early visual
system.

From a theoretical point of view, video TEMs realize two operators in cascade. The first,
which is a filter bank or receptive field, is a vector linear operator. The second, which is
population of neural circuits, is a vector nonlinear operator. The task of decoding, which is a
key challenge both in silicon-based information systems and in systems neuroscience, calls
for finding the inverse of the composition of these two operators. We formally investigated
conditions for the existence of the inverse, i.e., for the faithful representation of analog
band-limited video streams using the sequence of spikes. We examined a variety of neuron
spiking mechanisms, such as level-crossing detection and IAF with feedback, and combined
these with models of receptive fields that arise in the early visual system. Our investigations
demonstrated that the visual world can be faithfully represented with a population of
neurons, provided that the size of the population is beyond a critical value. Based on the
characteristics of the input signal, we showed that this estimate is substantially smaller than
the total number of pixels.

Finally, we note that the formal representation of spatiotemporal information as a set of
projections in the Hilbert space of band-limited functions may serve as a theoretical
foundation for future asynchronous stimulus encoding algorithms. The work presented here
raises a number of issues regarding the encoding efficiency of video TEMs. These and other
issues will be investigated elsewhere.
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appendix A

Spike Density of Spiking Neural Circuits
In this section, we present a formal definition of the notion of spike density and a general
methodology for its computation for spiking neural circuits. The methodology to evaluate
the spike density for spiking neurons was first developed in [38] for the case of a single IAF
neuron without feedback.

Definition 1: A real sequence  is called separated if infk≠l |λk − λl| > 0 and
relatively separated if it is a finite union of separated sequences.
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Definition 2: Let  be a sequence of real numbers that is relatively separated. Let
N(a, b) the number of elements of Λ that are contained in the interval (a, b). The upper and
lower (Beurling) densities of Λ are defined as

(21)

A. Spike Density of Ideal IAF Neural Circuits
Lemma 1: The interspike time interval generated by an IAF neuron (wlog without feedback)
with input  and bias b > 0 is bounded.

Proof: Let t1 be a spike time and assume that the neuron did not fire another spike until time
t2, (t2 > t1). Then

where the first inequality follows from the Cauchy–Schwartz inequality. Solving for t2 − t1
we obtain the bound

(22)

Note that this bound is presented here for the first time.

Let [a1, a2] be an arbitrary time interval and let t1 denote the first spike time immediately
after a1 and t2 denote the last spike time just before a2. The average number of spikes in the
interval [a1, a2], D(a1, a2), of the IAF neuron is given by

(23)

Assume that |a2 − a1| → ∞. From Lemma 1, we have (t1−α1)/(α2−α1) → 0(t2−α2)/(α2−α1)
→ 0 and therefore the integration interval [t1, t2] in (23) can be replaced with [a1, a2].

Proposition 3: For all inputs u, u ∈ Ξ, the spike density of an ideal IAF neuron with
feedback is equal to

(24)

Proof: We will compute the lower and upper densities D−, D+ defined above. Let I denote
the whole current due to feedback. Proceeding as above
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Using again the Cauchy-Schwarz inequality, we get

(25)

For the feedback current we have

provided that  since each spike produces enough feedback current to elicit
another spike with a continuously increasing frequency. Otherwise

and the result of (24) is a lower bound for D−. Repeating the procedure for the upper density
D+ we can show that the right side of (24) is an upper bound and the general result follows.

Remark 4: Note that the result of (24) is asymptotic in the sense that the instantaneous firing
rate of the neuron converges to the value of the density.

Using similar arguments, one can also derive the spike density of the IAF ON-OFF TEM as
follows.

Proposition 4: Consider the IAF ON-OFF TEM of Fig. 3(b) and let , i, j = 1, 2.
Assume that Hij > −κiδi, i = 1,2 and that

The spike density of the IAF ON-OFF TEM is given by

(26)

If one of the inequality conditions is not satisfied, then the spike density is infinite.

Proof: Similar to the proof of Proposition 3.

Lazar and Pnevmatikakis Page 16

IEEE Trans Neural Netw. Author manuscript; available in PMC 2013 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



B. Spike Density of TAF Neural Circuits
For completeness, we present the evaluation of the spike density of neurons with TAF with
feedback spiking mechanism. We assume that the neuron exhibits a bias b. This bias was
absent in our analysis in Section II since in applications stimuli have finite time support and
therefore the neural circuits do not fire infinitely often.

Proposition 5: The spike density D of the single neuron TEM with TAF with feedback
spiking mechanism and external bias b is 0 for b ≤ δ. For b > δ, the spike density is the
solution of the equation

(27)

where ℕ is the set of positive integers.

Proof: In the absence of a time-varying external input, the neuron will not fire at all if b < δ.
If b > δ, then the neuron will fire periodically with period T at times tk = kT, k ∈ ℤ. From
(1), we have that

Since u = 0, the result follows. If the feedback mechanism is of the form h(t) = h(0) exp(−t/
τ) · 1[t≥0], with h(0) > 0, then the spike density becomes

(28)

Appendix B

Proof of Theorem 1
In this section, we first present the proof of Theorem 1 for band-limited video streams that
belong to the finite-dimensional space of trigonometric polynomials. Subsequently we shall
extend these results to the infinite-dimensional case.

Let the set of functions (emx, my, mt (x, y, t)) for all mx = −Mx, …, Mx, my = −My, …, My,
and mt = −Mt, …, Mt, be defined as

with  and emy, emt similarly defined. The space
spanned by this set consists of the band-limited and periodic video streams, with space-time
bandwidth (Ωx, Ωy, Ωt) and period (2πMx/Ωx, 2πMy/Ωy, 2πMt/Ωt), respectively. The band-
limited and periodic video streams are elements of a Hilbert space endowed with the usual
(sesquilinear) inner product and with (emx, my, mt (x, y, t)) as its orthonormal basis.

The elements of the space represent a natural discretization of band-limited functions in the
frequency domain. The functions in the Hilbert space have a discrete spectrum at
frequencies (my(Ωx/Mx), my(Ωy/My), mt(Ωt/Mt). By letting Mx, My, Mt → ∞, the spectrum
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becomes dense in [−Ωx, Ωx] × [−Ωy, Ωy] × [−Ωt, Ωt] and these functions converge to band-
limited functions.

Let the input video I and the STRFs Dj be expressed by

(29)

Let a = [a1; … ; amt], denote the column vector of coefficients, with

Similarly, let  for all j, j = 1, 2, …, N, denote the set of coefficients for every
STRF. To simplify the notation we assume that i = 1, i.e., all neurons have a single
component (this can easily be generalized). The problem is to recover the vector a.

We assume here that the spike density of every neural circuit j, j = 1, 2, …, N, is above the
temporal Nyquist rate Ωt/π. Based on Propositions 1 and 2, for each j, j = 1, 2 …, N, the set

of sampling functions ( ), forms a frame for Ξ. Therefore, all the dendritic outputs (vj), j =
1, 2, …, N, can be perfectly recovered. Equation (12) can be rewritten as

where the coefficients are given by

(30)

For a fixed mt ∈ [−Mt, …, Mt] we can write (30) for all neurons in the matrix form

(31)

where , , for each mt, mt = −Mt, …, Mt. For these
equations to be solvable, we need the matrices Dmt to have full row rank (2Mx + 1)(2My +
1) for all mt. A necessary condition to achieve full row rank is to have the number of
neurons N at least equal to the number of independent spatial components (2Mx + 1)(2My +
1). Note that this full row rank condition is equivalent with having the columns of the matrix
form a frame for the space of images spanned by the set of basis functions (emx, my) [9].

Moreover, each vector  represents the Fourier transform of the receptive field Dj at the
temporal frequency mtΩt/Mt. Therefore, the rank condition on the matrices Dmt calls for the
set of STRFs to form a frame for the space of spatial images when restricted to each and
every temporal frequency mtΩt/Mt, mt = −Mt, …, Mt.

In order to extend the above results to the infinite dimensional case, let Mx, My, Mt → ∞.
Then the set {mxΩx/Mx}, mx = −Mx, …, Mx becomes dense in the interval [−Ωx, Ωx], and
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where  denotes the 3-D Fourier transform. Let also  denote the 2-D (spatial) Fourier
transform. In the limit, the rank condition becomes a frame condition for every ωt ∈ [−Ωt,

ωt], the set of spatial receptive fields ( ), j = 1, …, N, is a frame for the
set of spatially band-limited images.

Appendix C

Finite-Dimensional Recovery Algorithm
We now present an algorithm that faithfully recovers a video stimulus with a finite-
dimensional representation in the space of trigonometric polynomials.

Algorithm 2: If the assumptions of Theorem 1 hold, then for a sufficiently large N, the finite
dimensional video stream I, encoded with a video TEM (Fig. 6), can be recovered as

(32)

where the vector of coefficients c is given by

(33)

with q = [q1; q2; … qN]T, qj = [qj1, qj2, …, qjM]T and  and F+ denotes the
pseudoinverse of F. The matrix F has dimensions NT × (2Mx + 1)(2My + 1)(2Mt + 1), where
NT is the total number of spikes (measurements). If the lth entry of the vector q corresponds

to the spike at time , then the lth row of F is given by

with mx = −Mx, ’, Mx, my = −My, …, My, mt = −Mt, …, Mt.

Proof: By considering (14) for all spike times and substituting the finite-dimensional
representations of the sampling functions and of the input video stream, we obtain

If the rows of F form a frame for the finite-dimensional video space, then the inversion is
stable. A necessary condition is to have F of rank (2Mx + 1)(2My + 1)(2Mt + 1). This can be
guaranteed by increasing the number of neurons and appropriately chosing their receptive
fields (e.g., randomly).

Algorithm 2 assumes that the input stimulus belongs to a known space of trigonometric
polynomials, i.e., has a discrete spectrum with a known structure. This assumption leads to
an algorithm that can be fully discretized and implemented without numerical errors, thereby
exhibiting very high accuracy (see for example, V-C). In practice, however, this information
may not be available.
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Fig. 1.
SIMO neural circuit with feedback.
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Fig. 2.
Single neuron TEMs with feedback. (a) TAF with feedback. (b) IAF with feedback.
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Fig. 3.
ON-OFF TEMs with feedback. (a) TAF with feedback. (b) IAF with feedback.
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Fig. 4.
Encoding with a silicon ON-OFF TEM. (a) TAF with feedback. (b) IAF with feedback.
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Fig. 5.
Recovery of signals encoded with TAF with feedback TEMs. Top row: Encoding
mechanisms. Single neuron TEM (left), ON-OFF TEM (middle), and silicon ON-OFF TEM
(right). Middle row: Encoding mechanisms zoomed in, in the time interval [0.024, 0.038 s.
Bottom row: Comparison between the encoded and the recovered signals.]
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Fig. 6.
Architecture of the video TEM.
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Fig. 7.
Architecture of the video TDM.
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Fig. 8.
Performance of the video TEM as a function of the number of spikes. Each neuron is
realized as an ON-OFF TEM.
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Fig. 9.
Performance of a video TEM based on a DoG wavelet. Each neuron is realized as an ON-
OFF TEM.
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Fig. 10.
Performance of a video TEM based on filters with random STRFs. The upper row shows
three of the encoded frames and the lower one the corresponding recovered ones.
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Fig. 11.
Encoding of a natural video scene with a video TEM. The upper row shows three of the
encoded frames and the lower one the corresponding recovered frames. The PSNR for each
of these three frames is also displayed.
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TABLE I

Performance of the Various Video TEM Realizations

PSNR[S] SNR[u] PSNR[I] Spikes # fired

TAF 26.67 28.21 29.25 4667 259

IAF w bias 44.36 44.44 40.90 4409 450

IAF w/o bias 20.17 28.83 25.69 4543 215

ON-OFF TAF 32.63 42.3 35.11 4258 239
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