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Abstract
Seizures in newborns are associated with a high risk for subsequent epilepsy and adverse
neurodevelopmental consequences. Understanding the mechanisms by which neonatal seizures
adversely disturb the immature brain is important in developing therapeutic strategies. Using the
convulsant agent flurothyl to mimic repetitive neonatal seizures we show that early-life seizures
result in long-term alteration in the maintenance phase of long-term potentiation (LTP) in layer IV
to layer II/III synapses of the somatosensory cortex without alteration of basal synaptic
transmission, the induction phase of LTP and short-term depression. Such alterations may have a
role in functional deficits seen following neonatal seizures.
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1. INTRODUCTION
Seizures are one of the most common neurological emergencies occurring in newborns and
are associated with a considerable risk of long-term sequelae, including epilepsy, cognitive
and behavioral issues (Holmes, 2004, Ronen et al., 2007). While the etiology of the neonatal
seizures is the most important factor in outcome, there is increasing data from humans that
seizures independently contribute to long-term adverse consequences (Glass et al., 2009;
2011, but see Kwon et al., 2011).

To elucidate the effect of neonatal seizure on neuronal plasticity in the present study we
used flurothyl model of repetitive seizures. Flurothyl is a volatile convulsant that produces
well controlled generalized seizures with no apparent direct drug effect which makes it
widely used in basic epilepsy research (Velíšková et al., 2005; Khan et al., 2010). Using the
flurothyl model of repetitive seizures on immature rats we previously showed that neonatal
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seizures produce a long-term increase of seizure susceptibility and alteration in excitation/
inhibition balance of synaptic transmission in layer II/III neurons of the somatosensory
cortex (Isaeva et al., 2009; 2010). As the cerebral cortex is involved in encoding and
processing of sensory information and has been shown to express different forms of activity-
dependent synaptic plasticity (Castro-Alamancos et al., 1995) here we explored the
hypothesis that early life seizures can modify synaptic plasticity in the somatosensory
cortex.

2. MATERIAL AND METHODS
All experiments were performed in accordance with the guidelines set by the National
Institute of Health and Dartmouth Medical School for the humane treatment of animals.
Sprague-Dawley rats (N=8) were subjected to 75 flurothyl-induced seizures using
previously described method (Isaeva et al., 2010). To elucidate the effect of neonatal seizure
on neuronal plasticity in our animal model we chose the age range from postnatal day 0 to
15 which corresponds to the last trimester gestational period and first year of life in humans
(Avishai-Eliner, et al. 2002). Untreated littermate pups (N=9) were used as controls. Brain
slices were prepared from P46-P60 rats. The rats were deeply anesthetized with isoflurane
and decapitated. Slices (400 μm) were cut in the coronal plane transferred to an incubation
chamber where they rested for at least 2 hrs before recordings in oxygenated artificial
cerebrospinal fluid (ACSF) of the following composition (mM): NaCl 126, KCl 3.5, CaCl2
2.0, MgCl2 1.3, NaHCO3 25, NaH2PO4 1.2 and glucose 11 (pH 7.3-7.4).

Field potential (FP) recordings were made from LII/III of somatosensory cortex using
electrodes filled with ACSF (2-4mΩ). 2-(3-carboxypropyl)-3-amino-6-(4 methoxyphenyl)
pyridazinium bromide (SR95531) was included in the recording pipette (50 μM) to block
gamma-aminobutyric acid (GABA) A receptors. Synaptic responses were evoked by
stimulation of LIV of somatosensory cortex with 100 μsec pulses of 30-80 μA through a
concentric bipolar stimulating electrode using a stimulus isolator. Baseline responses were
obtained at 0.05 Hz using a stimulation intensity that produced half-maximal response for
each recording. To induce LTP we used a primed burst (PB) potentiation protocol repeated 5
times at intervals of 10 sec consisting of a single priming pulse followed 170 ms later by a
burst of 10 stimuli at 100 Hz (Diamond et al., 1988). Data were analyzed using the Mini
Analysis (version 6.0.3; Synaptosoft, Decatur, GA), Clampfit (Axon Instruments Inc, Union
City, CA) and Origin 7.0 (Microcal Software, Northampton, MA) software. Statistical
comparison was performed using unpaired Student’s t-test. Results in the text and in the
figures are expressed as the mean ± SEM.

3. RESULTS
Stimulation of LIV of somatosensory cortex evoked FPs in LII/III in all slices from
flurothyl-treated and control groups of animals. The maximal rising slope of the FP as a
measure of synaptic efficiency was not significantly different between groups (0.55 ± 0.11
mV/ms (n=7 animals/16 slices) in control vs 0.41 ± 0.05 mV/ms (n = 6 animals/14 slices) in
flurothyl-treated group, p = 0.24). We next examined the effect of repetitive flurothyl
seizures on synaptic plasticity using the PB potentiation protocol. In the presence of SR
95531 in the recording electrode the delivery of the PB potentiation protocol to the LIV of
somatosensory cortex consistently induced prolonged enhancement of the evoked FP in LII/
III in controls as well as flurothyl-treated group. Application of the NMDA receptor
antagonist D-2-amino-5-phosphonovaleric acid blocked the induction of LTP in both
groups. LTP maintenance phase was increased significantly in the flurothyl-treated group
when compared with controls (FP changes 50 min after PB stimulation: 153.3 ± 18.6 %, n =
6 animals/7 slices vs 94.4 ± 7.4%, n = 6 animals/ 9 slices, p = 0.01). This increase in LTP
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maintenance occurred without modifications in the induction phase of LTP (Fig. 1). The
average maximal response was not significantly different between groups: control (n=6
animals/ 9 slices): 231.8 ± 23.5 % of baseline and flurothyl-treated group (n= 6 animals/7
slices): 212.4 ± 12.3 %, p = 0.54. During high-frequency stimulus trains FP exhibit a strong
depression. This form of short-term synaptic plasticity has been observed in different
cortical areas (Castro-Alamancos et al., 1995, Hernan et al., 2013) and is thought to provide
the synapse specific gain control of cortical circuits (Abbott et al., 1997). In our study FP
slope decreased to 12.8 ± 3.1% (n=6 animals/10 slices) of its initial value over the course of
a 100 Hz train in control, and to 8.0 ±1.8% (n=6 animals/ 9 slices) in the flurothyl-treated
group. Figure 2 demonstrates that there was no difference in response to repetitive
stimulation between the flurothyl and control groups.

3. DISCUSSION
We previously reported that neonatal seizures resulted in enhanced excitability in
somatosensory cortex which can be due to the disruption of the excitation-inhibition balance
in sensory pathways in the flurothyl group (Isaeva et al., 2010). In the present study the
postsynaptic response in LIV to LII/III network in somatosensory cortex was not changed in
the flurothyl-treated group compared to controls, indicating that the basal evoked synaptic
transmission in this vertical pathway is unaltered in rats experiencing recurrent neonatal
seizures.

In our study neither short-term depression nor induction phase of LTP was modified in the
flurothyl-treated group. However, the maintenance phase of LTP was significantly altered.
Expression of LTP at layer IV to layer II/III synapses in the somatosensory cortex depends
on changes in the postsynaptic NMDA receptors (Bender et al., 2006). Lack of an effect of
early life seizures on the induction phase of LTP is in agreement with our previous study
where it was shown that amplitude of miniature NMDA-dependent excitatory postsynaptic
currents (as indicator of postsynaptic alteration) was not altered in layer II/III synapses in
somatosensory cortex after early life seizures (Isaeva et al., 2010).

During high frequency stimulation Ca2+ entry through the postsynaptic NMDA receptors
activates different Ca2+ dependent second messengers which are crucial for the maintenance
of LTP. Most factors with established molecular mechanisms responsible for the
maintenance phase of LTP interfere with these cascades (Malinow et al., 1988, Matthies et
al., 1991). Several studies show that the maintenance phase of LTP could be disrupted by
seizures or altered in seizure-prone animals (Hesse and Teyler, 1976, Schubert et al., 2005).
However, the lowered threshold for epileptiform activity is not always associated with loss
or impairment of LTP and alteration of LTP rather depends on the cellular mechanism
underlying the increase in neuronal activity (Luthi et al., 1997).

In summary, the results from the present study demonstrate that neonatal seizures have long-
term effects on synaptic plasticity in the somatosensory cortex. Understanding the molecular
mechanism of these synaptic changes and determining whether alterations in plasticity
reported here interfere with sensory processing in patients with a history of neonatal seizures
requires further investigation.
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ABBREVIATIONS

FP field potential

P postnatal day

LIV layer 4

LII/III layer 2/3

LTP long-term potentiation

NMDA N-methyl-D-aspartate

GABA gamma-aminobutyric acid
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Figure 1.
Effect of flurothyl induced seizures on the expression and maintenance of LTP in the
somatosensory cortex. The baseline FP in control (white) and flurothyl-treated (grey) group
was recorded for 10 min, then the primed burst potentiation protocol was applied and the
recording was continued for another 50 min. All data were normalized to baseline. Insert:
examples of FPs recorded in LII/III before (black) and 50 min after conditioning stimulation
of LIV of somatosensory cortex (grey). Traces scale bars are 0.3 mV by 10 ms. Values are
mean ± SEM.
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Figure 2.
Repetitive neonatal seizures do not affect the short-term depression of synaptic responses
during conditioning stimulation. FP slopes were normalized to the FP slope in response to
first pulse and graphed versus pulse number. Pulses 1–10 were averaged individually. Insert:
trace represent average of five consecutive FP recordings during the conditioning
stimulation consisted of 10 pulses delivered at frequency 100 Hz. Traces scale bars are 0.3
mV by 10 ms. All measurements are reported as mean ± SEM.
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