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Abstract

Quality assessment (QA) for predicted protein structural models is an important and challenging research problem in
protein structure prediction. Consensus Global Distance Test (CGDT) methods assess each decoy (predicted structural
model) based on its structural similarity to all others in a decoy set and has been proved to work well when good decoys are
in a majority cluster. Scoring functions evaluate each single decoy based on its structural properties. Both methods have
their merits and limitations. In this paper, we present a novel method called PWCom, which consists of two neural networks
sequentially to combine CGDT and single model scoring methods such as RW, DDFire and OPUS-Ca. Specifically, for every
pair of decoys, the difference of the corresponding feature vectors is input to the first neural network which enables one to
predict whether the decoy-pair are significantly different in terms of their GDT scores to the native. If yes, the second neural
network is used to decide which one of the two is closer to the native structure. The quality score for each decoy in the pool
is based on the number of winning times during the pairwise comparisons. Test results on three benchmark datasets from
different model generation methods showed that PWCom significantly improves over consensus GDT and single scoring
methods. The QA server (MUFOLD-Server) applying this method in CASP 10 QA category was ranked the second place in
terms of Pearson and Spearman correlation performance.
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Introduction

Protein three-dimensional (3D) structures are of great signifi-

cance for protein function analysis. Experimental methods for

protein structure determination such as X-ray crystallography and

nuclear magnetic resonance (NMR) are costly and time consum-

ing. Computational prediction provides an economic way to

bridge the increasing gap between the number of available protein

primary sequences and 3D structures. It is also a viable and

efficient approach to study proteins [1]. For example, high-

accuracy models can be directly used in studying catalytic activity

of enzymes and provide a basis for drug design. Structural models

with medium accuracy up to 6 Å of Root-Mean-Square Deviation

(RMSD) are often useful for understanding protein functions [2].

Although efforts of decades, protein structure prediction from

primary sequences is still a research challenge [3,4].

Most recent protein structure prediction methods such as

Rosetta [5], I-TASSER [6,7,8] and MUFOLD [9] adopt a

sampling procedure in which quite a number of candidate models

(decoys) are generated. One of the remaining issues is how to select

good models that are close to the native structure. Quality

assessment (QA) for protein structure models is therefore highly

important. Although a lot of work has been done, it still remains as

one of the bottlenecks in practical predictions and has large room

to improve.

QA methods roughly fall into two categories. The first one is a

single model assessment approach, which takes one single structure

as input and assigns a score to indicate its structural similarity or

distance to the native. In this category, physical-based energies

[10,11] calculate atomic level energies of a decoy according to

physical principles. However, the energy value is sensitive to minor

changes in structure, and hence it is hard to apply it to QA.

Knowledge-based scoring functions rely on statistical distributions

of atoms in native structures. For example, OPUS-Ca [12] uses

the distance distributions of residue pairs and DDFire [13]

constructs residue-specific all-atom potential of mean force from a

database of native structures. Several methods based on sequence-

structure relationship train a scoring function or machine-learning

model to estimate the quality of the predicted models

[14,15,16,17,18]. For example, QMean [18] combines sequence-

structure information such as atom-atom contact, secondary

structure prediction and solvent accessibility into a scoring

function to predict the quality of single models. The second

category of QA methods take a set of structures as input and use

the information from the decoy set to assign a score to each

structure member. The most widely used method is the consensus

approach, such as naı̈ve Consensus Global Distance Test (CGDT)

[19] which assigns a score to each decoy as its average structural

similarity (GDT score) to all other members in the set. This works

well when good models are among a major cluster, especially in

CASP (Critical Assessment of Protein Structure Prediction) [20],
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where all participating groups try to submit their best models.

MUFOLD-WQA [21] is a variation of pure consensus approach

which introduces a weight for each pair of decoys. Consensus and

knowledge-based scoring functions reveal different but comple-

mentary aspects of structural models. The consensus method

utilizes geometric information exclusively from the decoy set

without taking advantage of the biophysical or statistical properties

within and between primary sequences and 3D structures. Several

works have been done to combine the two approaches using

machine-learning methods such as neural network (NN) or support

vector machine (SVM) [18,22,23,24,25]. Noticing the fact that

knowledge-based scoring functions are relatively ‘‘noisy’’ and have

low correlations to the actual decoy quality, in [26] we developed a

protein-dependent scoring method to combine consensus and

single scoring functions for decoy selection. In this method, the

optimal weights for each of the component scores were obtained in

the first optimization step to increase their discerning power. Then

in the second step, the weighted scores and other sequence-related

features were directly mapped to the GDT score of each decoy by

an SVM. This method achieved some improvement over CGDT

and single scoring functions in selection performance. Almost all

the combination methods mentioned above use machine learning

modules to capture the complex and remote relationship between

feature scores and the decoy structural quality, such as GDT score.

And the performance still has large room to improve. In this

paper, we proposed a new method to combine consensus GDT

and knowledge-based scoring functions to obtain better QA

performance. First, a consensus score called Position Specific

Probability Sum (PSPS) was developed as one of the features.

Here, the structural state of each residue in a decoy was

represented by the bond angles of four consecutive residues.

Thus, each decoy was represented by a sequence of structure codes

(states). A probability score was calculated for each decoy of a set

based on consensus. Although this method alone did not have

outstanding performance in decoy selection, it was quite different

Figure 1. Angle representation of four consecutive residues.
doi:10.1371/journal.pone.0074006.g001

Figure 2. GDT score distribution of benchmark 1.
doi:10.1371/journal.pone.0074006.g002
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from all other methods, and outperformed CGDT when

combined with other methods such as OPUS-Ca [12], DDFire

[13] and RW [27]. Second, a two-stage method was developed to

perform QA. We trained two neural-network models to sequen-

tially capture the underlying correlation among different features

(scoring functions). Specifically, for every two decoys, the first

neural-network model decided whether they were structurally

close or not in terms of their GDT scores to the native, and

subsequently, the second model determined which one was closer

to the native. After the comparison between all pairs of decoys, we

calculated a score for each decoy in the pool based on the number

of winning times. We applied this method to three benchmark

data sets from different protein structure prediction methods and

demonstrated significant improvements over CGDT and state-of-

art single scoring functions in terms of best model selection

performance and Spearman correlation to actual GDT score. We

also modified this method to attend the QA category of CASP 10

in 2012 and the server (MUFOLD-Server) was ranked the second

place in terms of Pearson and Spearman correlation performance.

Methods

Position Specific Probability Sum (PSPS) Score
To obtain PSPS score, each decoy in a decoy set was

transformed to a sequence of structural code based on the study

in [28]. For each residue Rk, we calculated an angle triplet

xk:(hk,tk,hkz1) for four consecutive C-alpha atoms, where hk is

the bend angle of (Rk{2,Rk{1,Rk), tk is the dihedral angle of

(Rk{2,Rk{1,Rk,Rkz1) and hkz1 is the bend angle of

(Rk{1,Rk,Rkz1), as shown in Figure 1. xk is assigned to one of

the 17 clusters (states) according to the following Gaussian Mixture

Model:

P(xkjCi)~pi � (2p)
{3

2jS{1
i j

{1
2 � exp

{
1

2
(xk{ui)

0 � S{1
i � (xk{ui)

� �
,1ƒiƒ17

ð1Þ

Ci~ max
1ƒiƒ17

P(xk DCi) ð2Þ

After we had all the structure-code sequences of the decoys for

the same protein, we calculated Position Specific Frequency

Matrix (PSFM). PSFM(i,j) is the occurring frequency of state i at

sequence position j, where i is the state index from 1 to 17,

representing the 17 clusters; j is the residue position from 3 to L-1

(L is the length of protein). This matrix was counted in the decoy

pool and normalized by dividing the number of decoys. We then

got Position Specific Probability Sum (PSPS):

PSPS(k)~
1

L

XL{1

j~3

PSFM(SAk
j ,j) ð3Þ

Figure 3. GDT score distribution of benchmark 2.
doi:10.1371/journal.pone.0074006.g003
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where k is the decoy index and SAk
j is the cluster state of position j

in the structure code (state) sequence of decoy k, which is

calculated by Eqn. 2.

Combine Consensus and Single Scoring Functions
For a set of decoys of a target protein, the input features for

every decoy-pair were the respective differences between OPUS-

Ca, RW, DDFire, PSPS and CGDT of the two decoys.

S
ij
(k)~Si

(k){S
j
(k) ð4Þ

where i,j are decoy indexes, and k~1,2,::,5 represents five

different scores.

Two neural-network models were used to compare a decoy pair.

Model 1 was trained to determine whether two decoys were

significantly different or not in terms of the GDT scores to their

native. We chose the cutoff to be 0.025, which meant that if the

Figure 4. GDT score distribution of benchmark 3.
doi:10.1371/journal.pone.0074006.g004

Table 1. Performance on benchmark 1.

Benchmark 1

GDT1 avgGDT5 Spearman

GDT 0.6946 0.6767 1.0000

CGDT 0.6058 0.6039 0.5845

DDFire 0.6006 0.5906 0.4403

OPUS-Ca 0.5959 0.5925 0.4156

RW 0.5954 0.5879 0.4172

PSPS 0.5847 0.5734 0.3299

PWCom 0.6105 0.6056 0.6011

WQA [26] 0.6098 0.6034

doi:10.1371/journal.pone.0074006.t001

Table 2. Performance on benchmark 2.

Benchmark 2

GDT1 avgGDT5 Spearman

GDT 0.5449 0.5219 1.0000

CGDT 0.4255 0.4060 0.5584

DDFire 0.3901 0.3788 0.2722

OPUS-Ca 0.3763 0.3663 0.2739

RW 0.3662 0.3696 0.2766

PSPS 0.3435 0.3534 0.2462

PWCom 0.4529 0.4309 0.5615

WQA [26] 0.4446 0.4220

doi:10.1371/journal.pone.0074006.t002
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GDT difference of two decoys was larger than 0.025, they were

treated as being significantly different. Model 2 was used to predict

whether one decoy was better than the other. To train this model,

considering the training error, we removed those of pairs wherein

the GDT difference was less than 0.01 from training data. Model 2

was tested only on the pairs that were predicted to be significantly

different by Model 1. Both classifying neural networks had the

same configuration, which is one hidden layer of 3 nodes with

sigmoid activation functions, and same input feature vectors of five

dimensions, each of which is specified by Eqn. 4. After the

comparison between all pairs of decoys, the final score, named as

PWCom, for each decoy was simply the number of winning times

during the pair-wise comparisons. The training and testing were

done in a leave-one-out manner at protein (target) level, which

meant each target (decoy set) was tested on the models trained on

all other targets (decoy sets).

Table 3. Performance on benchmark 3.

Benchmark 3

GDT1 avgGDT5 Spearman

GDT 0.6503 0.6431 1.0000

CGDT 0.6023 0.6042 0.3199

DDFire 0.6091 0.6094 0.3049

OPUS-Ca 0.6054 0.6085 0.2395

RW 0.6008 0.6056 0.2233

PSPS 0.5987 0.6002 0.2307

PWCom 0.6131 0.6136 0.3377

doi:10.1371/journal.pone.0074006.t003

Table 4. Comparison of 1NE3 from benchmark 1.

GDT1 avgGDT5 Spearman

GDT 0.6295 0.6179 1.0000

CGDT 0.5446 0.5268 0.7551

DDFire 0.4464 0.4696 0.2675

OPUS-Ca 0.5670 0.5330 0.3870

RW 0.5134 0.5411 0.1437

PSPS 0.4330 0.5035 0.1739

PWCom 0.5804 0.5339 0.7556

doi:10.1371/journal.pone.0074006.t004

Figure 5. Distribution of CGDT and PWCom for 1NE3 from benchmark 1. The black circle on the top is the selected best decoy according to
PWCom and the black box at the bottom according to CGDT.
doi:10.1371/journal.pone.0074006.g005
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Datasets
We applied this method to three benchmark datasets from

different model prediction methods. Each target (protein) had

hundreds of decoys. The best decoy in each target had a GDT

score greater than 0.4, which ensured that the pool contained

reasonably good decoys. The first dataset contained 56 targets

with decoys generated by I-TASSER ab initio modeling method

(http://zhanglab.ccmb.med.umich.edu/decoys/) [7]. The second

dataset consisted of 35 CASP 8 [20] targets predicted by Rosetta

or Robetta. The third dataset contained 50 CASP 9 targets with

decoys generated by our in-house template-based model genera-

tion tool MUFOLD. Figures 2, 3, and 4 show the GDT

distribution information, i.e., maximum, average and minimum

GDT of each dataset respectively.

Modification for CASP 10 QA Category
We applied this method to attend the QA Section 1 in CASP 10

worldwide competition in 2012. In this QA section, 150 CASP

server models were selected using naı̈ve consensus GDT method

for each protein. Usually, for these subsets of decoys, applying a

naı̈ve consensus GDT method again does not work well.

Considering the fact that some of decoys in CASP are incomplete,

which affects the performance of scoring functions like OPUS-Ca,

DDFire and RW, we used another set of feature scores in the

following:

1. Secondary structure match score between the predicted

secondary structures from sequence by PSIPRED [29] and

the actual secondary structures calculated from decoy by DSSP

[30].

2. Solvent accessibility match score between the predicted solvent

accessibility from sequence by SSPro [31] and the actual

solvent accessibility calculated by DSSP.

3. Mean square error between predicted backbone w,y dihedral

angles by SPINE [32] and actual dihedral angles from decoys

by DSSP.

Figure 6. Distribution of CGDT and PWCom for T0527 from benchmark 3. The black circle on the top is the selected best decoy according
to PWCom and the black box at the bottom according to CGDT.
doi:10.1371/journal.pone.0074006.g006

Table 5. Comparison of T0527 from benchmark 3.

GDT1 avgGDT5 Spearman

GDT 0.5900 0.5816 1.0000

CGDT 0.5000 0.4896 0.3924

DDFire 0.5770 0.5808 0.8157

OPUS-Ca 0.5670 0.5670 0.8886

RW 0.5770 0.5744 0.7709

PSPS 0.5350 0.5150 0.3013

PWCom 0.5810 0.5808 0.8742

doi:10.1371/journal.pone.0074006.t005
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4. Structural environment fitness score which measures the

propensity of an amino acid type to appear in a structural

environment specified by secondary structure type and solvent

accessibility type [26].

5. Naı̈ve Consensus GDT score, CGDT.

Our automated CASP 10 QA server was trained using CASP 9

decoy data sets.

Results

In the test, each score was used to rank the decoys of a given

protein. We studied the selection performance using three

measures to compare each method. In the following comparison

tables, ‘‘GDT1’’ is the average GDT score of the top-1 model;

‘‘avgGDT5’’ is the average of the mean GDT score of the top 5

models; ‘‘Pearson’’ is the average Pearson correlation coefficient to

actual GDT score and ‘‘Spearman’’ is the average Spearman

correlation coefficient to actual GDT score. As Spearman is the

correlation between the respective ranks given by two scores

instead of the actual scores values, we use Spearman as the major

correlation coefficient to measure protein structure selection

performance.

Performance Statistics
As shown in Tables 1, 2 and 3, CGDT has better performance

than all other single scoring functions in terms of the three

measures. Specifically, in benchmark 1, although CGDT’s top-1

selection performance is not significantly better than that of other

feature scores, its correlation (Spearman: 0.5845) is much higher

than the others, among which DDFire is the best (Spearman:

0.4403). In benchmark 2, CGDT is significantly better than

OPUS-Ca, DDFire, RW and PSPS in terms of all three measures.

Its top-1 selection performance (average GDT: 0.4255) has more

than 3 GDT points than DDFire (0.3901), which is the best among

Figure 7. Distribution of CGDT and PWCom for T0396 from benchmark 2. The black circle on the top is the selected best decoy according
to PWCom and the black box at the bottom according to CGDT.
doi:10.1371/journal.pone.0074006.g007

Table 6. Comparison of T0396 from benchmark 2.

GDT1 avgGDT5 Spearman

GDT 0.7810 0.7591 1.0000

CGDT 0.7762 0.6852 0.9098

DDFire 0.4000 0.4724 0.3677

OPUS-Ca 0.2595 0.4586 0.1514

RW 0.3786 0.4029 0.2600

PSPS 0.6071 0.5919 0.4990

PWCom 0.7333 0.6819 0.8954

doi:10.1371/journal.pone.0074006.t006
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the remaining feature scores. In benchmark 3, the top-1 selection

performance of all feature scores are similar, but in terms of

Spearman correlation, CGDT is still the best (0.3199) with

DDFire in second place (0.3049).

From Tables 1, 2 and 3, we can see that PWCom is significantly

and consistently better than CGDT in three benchmarks. Notably,

in benchmark 2, the top GDT performance of PWCom is much

higher than that of CGDT, with the improvement of 0.4529–

0.4255 = 0.0274. In the other two benchmarks, PWCom score still

improves in average top-1 GDT performance over CGDT, and

even more over single scoring functions. As for Spearman

correlation, PWCom is consistently better than CGDT in all

three benchmarks.

Case Study
In addition to average performance shown above, we use some

individual cases from these benchmark datasets to see more

detailed comparisons. Figure 5 and Table 4 shows target 1NE3

from benchmark 1. Figure 5 compares the distribution of CGDT

and PWCom for this decoy set, and Table 4 shows the QA

performance. We can see that in this target, CGDT has a higher

Spearman correlation coefficient than that of OPUS-Ca, RW,

DDFire and PSPS, but its top-1 or top-5 selection performance is

not the best. PWCom achieves the best performance in top-1

selection performance with similar performance to CGDT in

Spearman correlation.

Figure 6 and Table 5 shows target T0527 from benchmark 3.

For this target, most of the single scoring functions are better than

CGDT; for example, the Spearman correlation coefficient of

CGDT is only 0.3924, while the one of OPUS-Ca is as high as

0.8886. PWCom combines these scores to achieve the best

selection performance. From Figure 6, we also see that PWCom

has much better correlation with GDT than that of CGDT.

Figure 7 and Table 6 show target T0396 from benchmark 2. In

this case, CGDT is the best performer in terms of all three

measures. From Figure 7, we can see that CGDT is almost linearly

correlated with the actual GDT scores and Table 6 shows CGDT

selects nearly the best one in the decoy set. Although PWCom has

better performance than single scoring functions, it does not

improve over GDT in this case. This might be because CGDT is

already very good as shown in the big performance gap between

CGDT and single scoring functions, and there is no room to

further improve it in this particular case.

Table 7. Performance in CASP 10.

Server Pearson correlation (X100) Spearman correlation (X100)

Pcomb 52.921 52.766

MUFOLD-Server 51.486 52.612

Pcons 46.389 46.579

ProQ2clust 50.11 50.002

MULTICOM-CONSTRUCT 49.621 49.797

ConQ 45.707 46.333

MULTICOM-REFINE 49.796 50.116

PconsQ 45.668 45.97

GOAPQA 47.431 51.843

MQAPsingle 45.703 45.868

MQAPfrag 45.703 45.868

MQAPfrag2 45.703 45.868

MQAPmulti 45.897 45.801

ModFOLDclust2 47.556 47.699

Ariadne 43.227 46.669

doi:10.1371/journal.pone.0074006.t007

Table 8. Average spearman correlations between scores on
benchmark 3.

GDT CGDT DDFire OPUS-Ca RW PSPS PWCom

GDT 1.000 0.320 0.305 0.240 0.223 0.231 0.338

CGDT 1.000 0.380 0.340 0.288 0.652 0.630

DDFire 1.000 0.420 0.698 0.438 0.702

OPUS-Ca 1.000 0.359 0.400 0.702

RW 1.000 0.296 0.386

PSPS 1.000 0.635

PWCom 1.000

doi:10.1371/journal.pone.0074006.t008

Table 9. Performance on benchmark 3 with 4 features.

GDT1 avgGDT5 Pearson Spearman

PWCom 0.6131 0.6136 0.3328 0.3377

PWCom, No CGDT 0.6081 0.6062 0.2928 0.2971

PWCom, No PSPS 0.6141 0.6102 0.3243 0.3320

PWCom, No DDFire 0.6071 0.6081 0.2688 0.2713

PWCom, No RW 0.6022 0.6054 0.2624 0.2647

PWCom, No OPUS-Ca 0.6031 0.6053 0.3034 0.3071

doi:10.1371/journal.pone.0074006.t009

PWCom: A New Method for Protein Decoy Selection
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Performance in CASP 10
Table 7 shows the top 15 out of total 37 servers in CASP10 QA

section 1 in terms of Pearson and Spearman correlation. The

MUFOLD-Server was ranked at the second best server in both

Pearson and Spearman performance. Especially, its total Spear-

man score was 52.612, which was nearly the same as the best

server performance (52.766).

Discussion

Our new approach combines the advantages of consensus GDT

method and single scoring functions through pairwise comparison

and a two-stage machine-learning scheme. Consensus GDT

method depends on the decoy distribution and relies on geometric

information of protein structures only, while single scoring

functions produce a wide range of values for different decoys,

which makes their scores unstable and noisy. Our method tries to

capture the correlation between score differences and actual

structural quality difference as well as the complementarity among

these scores. It does so through a pairwise comparison between

any two decoys. Although this approach takes more computing

time than ranking single scores directly, it is more sensitive to

capture the differences among models and less prone to systematic

errors of single scores on the decoys. Because of using single score

information, PWCom is more correlated to the real GDT score

with respect to the native structure than consensus methods.

Our test result shows that PWCom was better than CGDT or

single scoring functions in selection performances (GDT1 or

avgGDT5) and correlations. PWCom was also better than the

previous WQA method [26]. This may be because WQA trained a

SVM to directly map feature scores like CGDT, OPUS-Ca score

etc. to actual GDT scores of decoys, which is less stable generally

when applied to different kinds of structural models. In addition,

the weights of WQA for single scoring functions were optimized

through quadratic programming, which required much more

computation than PWCom.

PWCom’s performance is affected by the performances of the

feature scores, and hence may vary in individual cases. For

example, in the target shown in Figure 7 and Table 6, PWCom is

worse than CGDT. Like CGDT and WQA, PWCom was also

inevitably affected by the decoy distribution. Comparing Table 2

to Tables 1 and 3, we can see PWCom score got more

improvement over other scores in benchmark 2 than those in

benchmarks 1 and 3. For example, in benchmark 2, the top-1

selection performance of PWCom was 0.4529, while the best of

others was CGDT (0.4255). The improvement (0.4529–0.4255)

was 0.0274; while in benchmarks 1 and 3, the improvement was

less significant. Comparing the decoy distributions of benchmark 2

to 1 and 3, the gap between maximum and mean GDT curve in

Figure 3 was much bigger than that of Figures 2 and 4 [26].

Furthermore, for quite a few targets in benchmarks 1 and 3, the

gap between maximum and minimum GDT was quite small. This

may explain why the average top-1 selection performance of single

scoring functions was close to that of CGDT in these two

benchmarks. In spite of this, in terms of Spearman correlation,

CGDT was still better than single scoring functions.

One important factor when combining different scoring

methods is the correlation or redundancy within these methods.

In [33], before linear combination of the predictions from different

methods, principal component analysis was carried out to reduce

the correlations among them. Highly correlated scores are not

good for our combination, although neural networks are more

tolerant of feature redundancy and have more power to capture

complex relationships. Table 8 shows the average Spearman

correlation among the scores on benchmark 3. As we can see,

among the 5 feature scores, RW and DDFire have the highest

average correlation coefficient, which is 0.698 The correlation

between CGDT and PSPS is 0.652, which means that RW and

DDFire, as well as CGDT and PSPS may encode similar

information. We tested the procedure on benchmark 3 with each

component score removed at a time. Table 9 shows the

performance of each test. As it shows, the correlation performance

of PWCom decreases dramatically after removing RW or DDFire,

although they have the highest average correlation. Removing

PSPS does not result in as much decreases as other tests. However,

it is not obvious to see the relationship between the features and

the final QA performance. The best way is to test different feature

scores and study their correlations, which may lead to more

significant QA improvements. Another issue is the significant

similarity among different structural models due to related

prediction methods, which has been addressed in previous studies

[16]. We plan to improve our method using such an approach in

the future.

There are other aspects that this method can be improved in

terms of training errors and parameter optimization. We

empirically chose 0.025 as the cutoff for neural-network model 1

and 0.01 to screen training data for neural-network model 2.

Large-scale training and testing may help find better values for

these cutoffs and other parameters in this approach. On the other

hand, in terms of model training itself, we trained two neural-

network models to predict whether two decoys are similar and

which one is better than the other. An alternative machine

learning method, such as regression, might help further improve

over classification methods. Once these issues are addressed and

the method is fine-tuned, we plan to release PWCom to the public.
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