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Abstract
In this paper, we present a groupwise graph-theory-based parcellation approach to define nodes for
network analysis. The application of network-theory-based analysis to extend the utility of
functional MRI has recently received increased attention. Such analyses require first and foremost
a reasonable definition of a set of nodes as input to the network analysis. To date many
applications have used existing atlases based on cytoarchitecture, task-based fMRI activations, or
anatomic delineations. A potential pitfall in using such atlases is that the mean timecourse of a
node may not represent any of the constituent timecourses if different functional areas are
included within a single node. The proposed approach involves a groupwise optimization that
ensures functional homogeneity within each subunit and that these definitions are consistent at the
group level. Parcellation reproducibility of each subunit is computed across multiple groups of
healthy volunteers and is demonstrated to be high. Issues related to the selection of appropriate
number of nodes in the brain are considered. Within typical parameters of fMRI resolution,
parcellation results are shown for a total of 100, 200, and 300 subunits. Such parcellations may
ultimately serve as a functional atlas for fMRI and as such three atlases at the 100-, 200- and 300-
parcellation levels derived from 79 healthy normal volunteers are made freely available online
along with tools to interface this atlas with SPM, BioImageSuite and other analysis packages.

Keywords
Functional MRI; resting-state connectivity; network analysis; graph-theory-based parcellation;
whole-brain atlas

1. Introduction
Since the first demonstration of functional connectivity mapping through the analysis of
resting-state fMRI data (Biswal et al., 1995), neuroscientists have been investigating the
relationship between resting-state connectivity and functional organization of the brain. A
number of functional networks have been identified associated with the motor system,
language, and memory, in addition to numerous studies highlighting the default mode
network (Greicius et al., 2003; van den Heuvel et al., 2008; Smith et al., 2009; Salvador et
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al., 2005). These networks have been shown to be reproducible under different conditions
and in various brain states including different levels of consciousness (Vincent et al., 2007;
Greicius et al., 2008; Martuzzi et al., 2011). Together the previous work suggests that
resting-state connectivity reflects the underlying functional architecture of the brain.

More recently there has been an explosion of interest in applying network theory methods to
the analysis of functional connectivity data in order to characterize the connectivity between
nodes at the brain systems level (Rubinov and Sporns, 2009; Hagmann et al., 2010; Achard
et al., 2006; Bullmore and Sporns, 2009; Bressler and Menon, 2010). Voxel-level network
analyses have been developed that can provide insight into the functional connectivity of
individual tissue elements, and a number of important works have been published using such
approaches (Buckner et al., 2009; Martuzzi et al., 2011; Scheinost et al., 2012; Stufflebeam
et al., 2011). The voxel-level analyses have the benefit of not requiring a priori seed region
of interest (ROI) definitions but suffer from the need for arbitrary thresholds to define
network properties (although a recent solution to this problem has been presented in
mapping the intrinsic connectivity distribution (Scheinost et al., 2012)).

While voxel-based connectivity analyses are highly promising, there remains a need for
node-based approaches to allow studies of the brain’s basic functional organization. The
study of how different functional regions interact in complex tasks represents the next phase
in understanding how the brain works. Investigating the network level organization of the
brain may also provide important information in understanding a wide range of clinical
disorders and diseases (Buckner et al., 2009; Auer, 2008; Supekar et al., 2008; Brown et al.,
2011; Cao et al., 2011; Yao et al., 2010; Sanz-Arigita et al., 2010; Wang et al., 2012;
Anticevic et al., 2012; Venkataram et al., 2012). A significant challenge in applying nodal
connectivity analysis and network theory analyses to the whole brain is how to define nodes.
If a node contains a mixture of independent timecourses, then the net timecourse of that
node may not be representative of any of the individual timecourses and the resultant
connectivity or network results could be erroneous. Nodes have been defined using task-
based fMRI studies (Biswal et al., 1995; Cordes et al., 2000; Arfanakis et al., 2000; Hoffman
et al., 2011; Stevens et al., 2012; Fair et al., 2007) but these activate only a very limited
fraction of the brain and thus this approach is not appropriate for whole-brain network
analyses.

Many authors have used atlas-based definitions such as Brodmann areas (Brodmann, 1909;
Baria et al., 2011), or the Brodmann-based automatic anatomic labeling atlas (AAL)
(Tzourio-Mazoyer et al., 2002; Achard et al., 2006). This atlas results in a parcellation on
the order of 90 regions but different investigators have used different numbers of regions
(van den Heuvel et al. 2010, 108 regions; Lynall et al. 2010, 72 regions; Liu et al. 2008, 90
regions; Supekar et al. 2008, 90 regions). Others have used arbitrary spheres (Margulies et
al., 2007; Salvador et al., 2005) or arbitrary parcellation of the cortex into x number of nodes
(Hagmann et al., 2008). Finally, other studies have relied on parcellation algorithms
independent of anatomy or function that divide the brain into regions according to a set of
basic parameters–i.e., that nodes do not span hemispheres, and that there is no more than a
twofold difference in size between any two nodes (Alexander-Bloch et al. 2012, 278
regions). While apparently meaningful results have been obtained with such approaches,
they are not ideal because of the aforementioned risk of mixing different timecourses within
a single node, with the consequence that the resultant mean timecourse may not accurately
represent of any of the contributing timecourses. Thus there is a clear need for a method to
identify functional subunits throughout the brain in order to provide meaningful nodes (with
uniform temporal resting-state fluctuations within them) to facilitate whole-brain
connectivity and network analysis in both healthy and diseased brains. This work could
ultimately lead to a functional-connectivity-based atlas which could then be useful not only
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in connectivity studies but for framing task-based activation studies as well. There are
atlases based on anatomy (MNI (Evans et al., 1992), Talairach (Talairach and Tournoux,
1988)) and cytoarchitecture (Brodmann (Brodmann, 1909)) but to date there is no atlas
based on functional connectivity.

In this study, we present a novel approach to brain parcellation that is optimized to yield
nodes containing voxels with similar timecourses. This approach builds on our previous
work (Shen et al., 2010) to develop a brain atlas composed of minimal functional subunits
based on correlated BOLD signal, rather than cytoarchitecture or other anatomic
distinctions.

A number of approaches have been introduced for parcellating the cortex. Independent
component analysis (ICA) is the most popular of many data-driven analyses for delineating
resting-state brain functional networks (Damoiseaux et al., 2006; Luca et al., 2006; Smith et
al., 2009; Beckmann et al., 2005; Chen et al., 2008). A group level ICA is usually performed
by concatenating the temporal courses from each subject and applying the ICA algorithm to
the group data. ICA does not rely on a priori definitions of regions of interest (ROI) and
decomposes the data into a set of statistically independent components, which are
interpreted as brain networks. The number of components found using the ICA approach is
typically less than a hundred for a whole-brain analysis. This represents a similar coarseness
to the Brodmann atlas, which is insufficient for comprehensive nodal analyses.

Graph-theory-based approaches offer another option for whole-brain functional parcellation
without the need for a priori information. Van den Heuvel et al (van den Heuvel et al., 2008)
showed that the normalized cut algorithm (Shi and Malik, 2000) was capable of identifying
seven consistent functionally connected networks across a group of subjects. This gross-
level network identification represents a promising start for this approach but is also still too
coarse for many applications.

There are also a great variety of other algorithms available for functional brain parcellation.
Some of the approaches require an initial data reduction. For example, hierarchical
clustering (Salvador et al., 2005) can be performed on a set of mean timecourses generated
initially from a 90-region anatomical template. Yeo et al (Yeo et al., 2011) applied a
clustering algorithm based on a mixture model (Lashkari et al., 2010) to a whole-brain
correlation matrix yielding both a seven-node network and a 17-node network parcellation.
The correlation was computed from every individual voxel to a set of ROIs obtained by
uniformly sampling the cortex. Other clustering approaches have limited the size of the data
by focusing on a particular anatomical structure or a region of interest. In our previous work
(Shen et al., 2010) we applied the normalized cut algorithm to segment the visual cortex and
the intraparietal sulcus. Kim et al (Kim et al., 2010) applied the k-means clustering
algorithm to delineate the medial frontal cortex into SMA and pre-SMA subregions. Cohen
et al (Cohen et al., 2008) presented a correlation pattern-classification approach and applied
it to a region near the left cingulate sulcus and adjacent medial cortex. More recently, Ryali
et al (Ryali et al., 2013) proposed a parcellation scheme based on von Mises-Fisher
distributions and Markov random fields and applied it to segment artificially combined data
drawn from a number of regions including primary auditory, primary motor, primary visual,
superior parietal lobule, inferior frontal gyrus, etc. All of these voxel based approaches have
the potential to be extended to whole-brain parcellation. However, the ability to extend such
approaches could be limited by the increase in computational complexity caused by the
increase of data size or the increase in the number of parameters to be estimated.

The most related work was by Craddock et al (Craddock et al., 2012), where a series of
whole-brain functional parcellations were generated based on resting-state data. It was
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shown that ROIs extracted from these parcellations had higher functional homogeneity and
thus were more relevant for fMRI analysis. However, the group parcellation approaches
used in their work suffered from two shortcomings. First, the approaches relied on the use of
a spatial constraint to obtain spatially coherent segments. Second, the averaging and hard
thresholding used in the computation of the group parcellation discarded the original
connectivity information from individual subjects and as such, individual connectivity
information was lost. The two parcellation approaches used by Craddock et al are described
in section 3.5. We demonstrate that the groupwise clustering approach proposed in this work
does not require the use of spatial constraint, yet it outperforms these two approaches in
terms of both classification accuracy and spatial continuity.

The work presented here is focused on whole-brain parcellation using a data-driven
approach. We introduce a new groupwise clustering algorithm that jointly optimizes the
group and the individual parcellation. The group constraint is imposed implicitly in the
formulation of the optimization problem, and it drives the clustering of each individual
subject toward a common configuration while allowing individual differences. Additionally
there is no need to add a spatial constraint to the model. Group results obtained by the new
algorithm are shown to have high spatial coherence. Another important contribution of this
work is the proposed use of reproducibility as a measure to evaluate the reliability of each
parcellated functional subunit and the parcellation as a whole. Due to high individual
functional and anatomic variability in the organization of the brain, it is unrealistic to
assume uniform functional homogeneity at all scales across a population. Therefore it is
crucial to be able to differentiate subunits or regions of high reproducibility from subunits or
regions of low reproducibility for both interpretation and ROI selection.

The paper is organized as follows. In the algorithm section, we outline the derivation of the
proposed groupwise multigraph K-way spectral clustering algorithm. The generation of
synthetic data and the acquisition of the resting-state fMRI data are described in the Material
and Methods section. Also in the Methods section, we define the measure of reproducibility
that is used to evaluate parcellations based on resting-state fMRI data. We also include a
description of the two competing whole-brain parcellation approaches used in Craddock et
al. 2012 and van den Heuvel et al. 2008 in the Methods section. The results, evaluation and
interpretation are presented in the Results and Discussion sections respectively.

2. Groupwise Clustering
2.1. Normalized Cut

In a previous study (Shen et al., 2010) we showed that the normalized cut, a graph-based
partitioning algorithm, had the best performance in subdividing the cortex using resting-state
fMRI data. This new approach begins with the same basic graph structure. Given a resting-
state fMRI dataset, we construct a graph G = {V, E}, where the vertex set V = {v1, v2, …,
vN} corresponds to all selected voxels in the brain (e.g. within the gray matter), and the edge
set E = {e(i, j)|vi, vj ∈ V} represents the connections between pairs of voxels. The strength
of the connections are characterized by the weight w(i, j), which is usually a function of the
Pearson’s correlation coefficient between the two resting-state timecourses at voxel i and
voxel j. A two-way normalized cut divides the set V into two disjoint sets A1 and A2 (A1 ∪
A2 = V) through simultaneously maximizing the similarity within each of the two sets and
minimizing the similarity between the two sets. The objective function for the optimization
is given by
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(1)

The normalized cut criteria can be extended to a K-way partition of a graph. Yu and Shi (Yu
and Shi, 2003) proposed an iterative algorithm called the multiclass spectral clustering to
solve the K-way normalized cut. For derivation and discussion, we refer the readers to the
original paper.

2.2. Multigraph K-way clustering
The proposed multigraph K-way spectral clustering algorithm jointly segments a set of
graphs, under the assumption that the connectivity of the graphs should exhibit similar
patterns across subjects. In other words, the functional brain networks obtained from
different healthy individuals should have similar connectivity patterns. The algorithm we
present here is closely related to the K-way normalized cut algorithm developed by Yu et al
(Yu and Shi, 2003).

Let S = {1, 2, …, M} denote the set of graphs to be partitioned. We first obtain a new set of
coordinates Xs for each graph. The matrix Xs is of size N by K, the columns of Xs are the
first K eigenvectors of the normalized weight matrix W̃s ranked by the eigenvalues (1 = λ0

> λ1 > ··· > λK), , where Ds is the diagonal matrix of degrees Ds(i, i) = Σj
ws(i, j). Each row of the input data Xs is normalized to have unit norm, thus Xs represents a
set of points projected to the unit sphere. These points on the unit sphere are rotation
invariant, meaning that the absolute position of any point is irrelevant, the relevant
information is encoded in the relative positions of the individual points, hence we can rotate
the sphere arbitrarily with no effect on the clustering. The multigraph clustering approach is
formulated as follows,

(2)

where ||·|| denotes the Frobenius norm of matrix, and . The solution Y to the
optimization problem defined in (2) is a binary matrix of K columns, where each column is
an indicator vector that defines the membership to the kth cluster. The matrix Rs is a
generalized rotation matrix in this high-dimensional space (similar to the hyperalignment

approach of Haxby et al. 2011). By definition, , where IK is the identity matrix. The
goal of the groupwise optimization is to rotate the individual point sets so that corresponding
points from each graph (subject) align with the same axes (in the K-dimensional space) thus
resulting in a groupwise parcellation. The multigraph clustering approach includes all graphs
in a single optimization and solves for one groupwise parcellation. The advantage of this
formulation is that the groupwise parcellation Y acts like an implicit constraint that directs
the parcellation of each graph toward a common configuration. However, in the meantime,
each graph is still kept as a separate entity through the individual rotation matrix Rs, which
allows us the flexibility of creating “groupwise influenced” individual parcellations. The
objective function in Eq. 2 can be further simplified,
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where tr(·) denotes the trace of a matrix, and .

The solution to the discretization problem (2) can be found iteratively using the following
two steps.

Step 1: given {Rs}, Eq. 2 is reduced to,

Let Z = Σs XsRs, each row of Y is given by,

(3)

Step 2: given Y, Eq. 2 is reduced to,

and the optimal solution of Rs is given by,

(4)

Note that after convergence, we not only obtain the group parcellation Y, but we also
obtain the individual parcellation Ys through Zs = XsRs,

(5)

Because the whole parcellation is performed simultaneously, the correspondence between all
individual and group results is straightforward. Note also that the normalized cut problem is
NP-complete even in the case of K = 2 for one graph. The multigraph K-way clustering
algorithm does not solve for a global minimum, but is aimed at finding a close enough
solution that is computationally efficient.

2.3. Algorithm
The multigraph K-way clustering algorithm is summarized in Figure. 1.
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3. Material and Methods
In order to investigate the performance of the proposed groupwise multigraph clustering
algorithm, we generated a set of synthetic data and compared the parcellation results to those
obtained using the two competing approaches described later in this section (3.5). The
evaluation and comparison were based on three measures: the Hausdorff distance, the Dice’s
coefficient and the median minimal distance (MMD), each of which is defined below. In
addition, resting-state fMRI data from 79 healthy subjects was collected to measure the
performance of this approach with real data. The groupwise clustering algorithm was
applied to a series of whole-brain parcellations at a number of different scales.

3.1. Synthetic data
In generating the synthetic data, we created 10 virtual subjects to form a group. For each
subject, a single slice of fMRI data was simulated. The simulated fMRI data was divided
into six regions. The actual partitioning of the six regions was a randomly varied version of
the base template shown in Figure 2. The variation was mainly from the four boundary lines
and the size of the inner circle, which can be clearly seen from the probability map in Figure
2. The probability map shows the maximal probability that a voxel belongs to one of the six
regions. Note that among all six regions, region three has bilateral components that are
spatially disconnected. It was created in this way to mimic certain parts of the human brain.

Timecourses of the synthetic data were generated using real resting-state fMRI time series.
We manually selected six regions from the group parcellation results of the in vivo data
using the proposed clustering approach (see Fig. 3). The regions were chosen based on their
high reproducibility and spatial locations. The mean timecourses from the six regions were
computed and used as the signal timecourses si(t) for the synthetic data. The noise-corrupted
time series f(t) is given by,

(6)

where n(t) is white Gaussian noise with mean 0 and standard deviation 1. α is the parameter
we used to control the signal to noise ratio (SNR). It was tested at levels of 0.2, 0.3 and 0.4,
representing low, medium and high SNR. At a given SNR, 10 sets of simulated data were
created for each of the 10 virtual subjects, thereby providing 10 group parcellation results
which were used for statistical comparison of the different parcellation approaches. The
synthetic data matrix was of size 31 × 31 × 212.

3.2. Resting-state fMRI
Imaging was performed on two 3T Siemens Trio scanners at Yale University School of
Medicine in the Yale Magnetic Resonance Research Center. A T1-weighted 3-plane
localizer was used to localize the slices to be obtained and T1 anatomic scans were collected
in the axial-oblique orientation parallel to the AC-PC line. Resting-state fMRI data was
obtained using a gradient echo T2*-weighted echo planar imaging sequence, flip angle
alpha= 80 degrees, echo time TE = 30ms, repetition time TR = 1550ms, 64 × 64 matrix,
with 25 slices 6mm thick, skip 0mm, 22 × 22cm2 FOV, providing whole-brain coverage
with voxel size of 3.4mm × 3.4mm × 6mm. Eight six-minute runs of resting-state data were
collected for each subject. A total of 100 healthy right-handed subjects participated in the
study after giving informed written consent and from this data a subset of 79 subjects with
the requisite number of complete runs and minimal motion were retained for the
parcellation. This study was approved by the Human Investigation Committee of the Yale
University School of Medicine.
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Functional data was motion corrected and slice-time corrected using SPM5. The data was
then mapped to a common space of size 3mm × 3mm × 3mm using BioImage Suite software
(BioImage-Suite.org). Masks of white matter, gray matter and the cerebrospinal fluid (CSF)
were created in the common space. The mean timecourses from the white matter and CSF
were calculated. Time-courses from the gray matter were orthogonalized with respect to the
white matter and CSF mean timecourses and to the six motion-related signals estimated by
SPM5. The timecourses were filtered using a bandpass Butterworth filter with passing band
0.02 – 0.1Hz. A Gaussian kernel of FWHM 6mm was applied for spatial smoothing and the
linear trend was removed from all signals.

3.3. Quantitative Evaluation of Parcellation Accuracy
We evaluated the performance of all three parcellation approaches using the synthetic
dataset. The evaluation was based on measuring the accuracy of the groupwise parcellation
against the ground truth. Note that the cluster labels of the ground truth and the resulting
parcellations may be different, therefore we matched each cluster to the most overlapped
cluster in the ground truth.

There are a number of measures available for the evaluation purpose: for this work we used
the Dice’s coefficient, the Hausdorff distance, and the median minimal distance (MMD).
Each of these measures is described below.

3.3.1. Dice’s coefficient—Dice’s coefficient is a measure of parcellation overlap. Given
two sets A and B, the Dice’s coefficient measures the ratio of the number of voxels that
belong to both sets to the total number of voxels in A and B,

(7)

When two sets are perfectly aligned, the Dice’s coefficient is one and if there is no overlap
between the two sets, the Dice’s coefficient is zero.

3.3.2. Hausdorff distance—The Hausdorff distance between two sets A and B is the
maximal distance one needs to travel if starting from a point in A and trying to reach any
point in B or vice versa,

(8)

where d(i, j) is the Euclidean distance. If the two sets are close in Hausdorff distance, then
points in either set must be close to some points in the other set. The Hausdorff distance is
more sensitive to outliers than the Dice’s coefficient in measuring closeness of two sets. For
example, if there are a few points in one parcellated region that are far away from all points
in the other region, then the Hausdorff distance would be large, while the Dice’s coefficient
would remain close to one.

3.3.3. Median minimal distance—To compensate for the fact that a few misclassified
points could dramatically increase the Hausdorff distance, we designed another measure, the
median minimal distance (MMD), as an additional way to characterize the distance between
two sets. Instead of finding the maximal distance, the MMD finds the median of the minimal
distances from any point in set A to set B and the minimal distances from any point in set B
to set A,
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(9)

A zero MMD does not guarantee an exact match of two sets, but they should be very similar.

In the results that follow, all three of these measures are used to evaluate the accuracy of the
parcellation. Moreover, visual inspection of the parcellation results was also used to ensure
each segment was spatially coherent.

3.4. Reproducibility
To investigate the extent to which functionally homogeneous subunits are stable and
invariant across a healthy population, we measure the extent to which similar parcellation
results are obtained in different groups of healthy subjects. Reproducibility is an important
measure to assess the reliability of the delineation of each parcellated subunit. It could well
be the case that some brain regions have higher reproducibility due to their highly focused
functionality and high anatomic reproducibility, while other regions have relatively low
reproducibility due to their functional diversity and/or anatomic variability. Reproducibility
of functional subunits is inherently affected by how well anatomic variations line up across
subjects. In this work, reproducibility was obtained at both whole-brain level and individual
subunit level. At the whole-brain level, the reproducibility was obtained by comparing
parcellation results obtained from mutually exclusive groups of subjects. Given the 79
healthy subjects used in this work, we divided them into two groups, one containing 40
subjects and the other containing the rest. We performed the division 20 times with a
random permutation of subjects, thus obtained 20 pairs of mutually exclusive groups of
subjects. We applied the groupwise clustering algorithm on the mutually exclusive groups
and obtained 20 pairs of parcellation results. We denote one pair of parcellation results as A1
and A2. For each subunit in A1, we found the best matching subunit in A2 with the highest
Dice’s coefficient and saved the coefficient as the reproducibility score for that subunit, and
repeatd this same calculation for all subunits in A2. Then the reproducibility score from each
individual subunit was weighted by the ratio between the size of the subunit and the total
number of voxels within the gray matter mask and summed over the whole brain. The
whole-brain reproducibilities of A1 and A2 were then averaged to yield the reproducibility
of that particular pair.

To further evaluate the reproducibility of an individual subunit, we extended the comparison
to groups of overlapping subjects. Basically, we included all 40 parcellations from the
pairwise comparison described above. Denote the whole set of parcellation results as {A(r), r
= 1, 2, …, 40}, with each individual parcellation A(r) composed of K subunits,

. The reproducibility of an individual subunit in a single parcellation was
computed as follows. Given the kth subunit in the rth parcellation, denoted as A(r)(k), we
first found its best matching subunit in each of the remaining 39 parcellations. For example,
to find the best matching subunit in parcellation A(q), q ≠ r, we computed the Dice’s
coefficient between the target subunit A(r)(k) and all subunits in A(q), and we selected the
one subunit in A(q) with the highest Dice’s coefficient as the best matching subunit. The
highest Dice’s coefficient was saved as the matching score M((r, k), q) for subunit A(r)(k)
and parcellation A(q). The matching scores for all 39 parcellations across subjects were
computed and the reproducibility Rep(r, k) of subunit A(r)(k) was defined to be the average

of the 39 matching scores, .

Shen et al. Page 9

Neuroimage. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.5. Competing Groupwise Approaches
In addition to the proposed groupwise multigraph clustering algorithm introduced in section
2.2, there are two other approaches that have been used to obtain whole-brain groupwise
parcellation based on the graph-theory-based normalized cut algorithm. In the first approach
(used by Craddock et al. 2012), which we will label GP1, the correlation matrix is computed
for every subject, a threshold is applied to each of the matrices to eliminate weak and
negative coefficients (the correlation threshold is typically chosen to be between 0.25 and
0.5 for most applications), and the group mean correlation matrix is computed. The multi-
class normalized cut algorithm is then applied to the mean matrix in order to obtain the
group parcellation. The second approach (used by both van den Heuvel et al. 2008 and
Craddock et al. 2012), which we label GP2, first applies the normalized cut to each subject’s
correlation matrix after thresholding. The partitioning results from each individual are then
used to generate a second-level weight matrix as follows. For any entry w(i, j) of the second-
level weight matrix, the number of subjects where voxel i and voxel j have the same
partitioning label is counted, and this number is divided by the total number of subjects, and
this ratio is used as the value for w(i, j). Therefore the second level weight matrix is a
groupwise estimate of the probability that any pair of voxels are classified into a single
region. The normalized cut is applied to this weight matrix to obtain a final groupwise
parcellation. We explicitly compared the performance of these two existing approaches with
our proposed groupwise clustering algorithm using synthetic data in the results section, and
demonstrated that our approach outperformed the other two in both classification accuracy
and spatial continuity.

We were also aware that group ICA would be another option to obtain a groupwise
parcellation using resting-state fMRI data. However substantial data reduction needs to be
performed at both the individual and the group level before the group ICA can be applied.
Because of the issue of model order selection and the fact that not all ICA components are
meaningful (manual selection of components are always needed), we chose not to apply
group ICA for the task of whole-brain parcellation and we did not include the comparison
for the synthetic datasets either.

4. Results
In this section, we first show a comparison between the proposed algorithm and two other
group parcellation approaches based on the synthetic data. The proposed approach
outperformed the other two approaches. The proposed approach was then applied to real
resting-state fMRI data and the whole-brain parcellation results are shown along with
reproducibility maps.

4.1. Results from synthetic data
The multigraph clustering algorithm and the GP1 and GP2 methods were run on the
synthetic data, using a correlation threshold of 0.2 for GP1 and GP2 approaches. Figure 4
shows examples of the parcellation results from the three approaches at different SNRs.
These examples are included for visual inspection purposes. The results of the quantitative
evaluation are summarized in Figure 5. The evaluation was performed separately for each
region, because the parcellation accuracy varied region by region. The spatial variation in
the results arises because the baseline effective SNRs were different for each region, thus
some regions were easier to parcellate than others.

All three approaches performed well when the SNR scale factor was high (α = 0.2). The top
row in Figure 4 shows the group parcellation results from a set of 10 subjects and indicates
that all six regions were well separated. There were only a few voxels that were
misidentified using the GP1 approach. Quantitatively the results of the analysis shown in
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Figure 5 demonstrate that the average Dice’s coefficients for all regions and for all
approaches were above 0.95, indicating a very good match with the ground truth. The
Hausdorff distance and the MMD were also small. As the noise is amplified with α = 0.3,
the three approaches begin to fail, but in different ways. From the middle row in Figure 4 we
see that none of the approaches were able to correctly identify all six regions. However, the
multigraph clustering algorithm performed the best by identifying three of the six correctly,
namely region one, three and five, and each of these correctly identified regions were
spatially contiguous and connected. In Figure 5 the red boxes had Dice’s coefficients above
0.9 for regions 1, 3 and 5, confirming the visual inspection. There were also a few outliers in
regions 2 and 6 that had Dice’s coefficients above 0.9, but in general the statistics at regions
2, 4, and 6 indicated failure of the parcellation for these regions. At α = 0.3, GP1 performed
worse than the multigraph clustering approach but better than the GP2 approach. The middle
image of the second row in Figure 4 shows that the GP1 approach was able to identify
region 1 and 3 with compromised spatial continuity. It can also be seen from Figure 5 that
the GP1 approach was able to identify region 1, 3 and 5, with Dice’s coefficients of
approximately 0.8 for those regions. The GP1 approach was not able to correctly segment
regions 2, 4 and 6. The GP2 approach failed the group parcellation at this SNR level. At the
lowest SNR level (α = 0.4), the multigraph clustering method was still able to parcellate
region 5 with relatively good accuracy–the Dice’s coefficients were between 0.6 and 0.8–
while the other two approaches failed to segment any of the six regions. These results were
for a correlation threshold of 0.2. We also tested different values of correlation thresholds (at
higher noise level α =0.3 and 0.4, we tested the thresholds of 0.3 and 0.4) for the GP1 and
the GP2 approaches, but we found that using higher correlation thresholds did not improve
the parcellation results.

4.2. Resting-state fMRI data
The comparison in the previous section demonstrated that as expected, the proposed
multigraph clustering algorithm is capable of producing more accurate and more spatially
homogeneous parcellation results than the other approaches.

The whole-brain parcellation was performed separately for each hemisphere, and the results
are shown in Figure 6. The number of regions K for each hemisphere was initially set to be
50, 100, and 150 respectively, resulting in whole-brain parcellations of approximately 100,
200 and 300 regions. The results shown in Figure 6 are for the groupwise parcellation Y
obtained from one group of 40 randomly selected subjects. The colormap on the partitioning
shows the reproducibility of each subunit with hotter colors indicating higher
reproducibility.

Figure 7 presents the whole-brain averaged reproducibility for different numbers of initial
target region K’s. The boxplot at each K was generated based on group parcellation results
obtained from 20 pairs of mutually exclusive groups of subjects. The right hemisphere
showed higher reproducibility at K = 100 and K = 150, but the reproducibility at K = 50 was
approximately the same for both hemispheres. The mean reproducibilities for all K’s were
above 0.75. As K increased, the reproducibility decreased, with the exception that at K =
100, the reproducibility of the left hemisphere was lower than the reproducibility at K = 150.
The whole-brain reproducibility dropped below 0.5 when K was set to 400, indicating that
this level of parcellation is too high. Table 1 lists the median number of regions in the left
and right hemisphere for different starting numbers of initial K values. Additionally, Figure
8 shows that at every given K value, the average size of the subunits was approximately the
same in each hemisphere. There is some variation in the size of the subunits, and for
example at K = 50, there is a subunit that contains less than 200 voxels while there are other
subunits that contain approximately 800 voxels. However, there are only a few such cases
and the overall variation is relatively small. We also examined the hemispheric symmetry of
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the parcellations by comparing the centers of mass of the subunits. To do this we computed
the (x,y,z) coordinates of the center of mass for each subunit in the left hemisphere, flipped
each of these to the right hemisphere and measured the Euclidean distance to the nearest
center of mass of the corresponding subunit in the right hemisphere. The mean distance and
standard deviation across all regions were 2.76/1.336 at K = 50, 2.564/0.948 at K = 100 and
2.38/0.891 at K = 150. The calculation was performed in the common space with voxel size
of 3 × 3 × 3mm3. This distance measure provides a quantitative assessment of the
hemispheric symmetry of the parcellations.

4.3. Subunit homogeneity evaluation
The groupwise multigraph clustering algorithm was designed to produce subunits with
homogeneous temporal patterns. In the ideal parcellation the mean timecourse of each
subunit should be a good representative of all of the timecourses within the subunit. In order
to quantitatively evaluate this property, we computed the Euclidean distance between
individual timecourses to the mean timecourse for every subunit in the parcellated brain
(shown in Fig. 6). We used data without the Gaussian spatial smoothing for this
computation. The voxel-wise Euclidean distance is a measure of the variation within each
subunit, such that larger distances indicated less homogeneity within the parcellated
functional subunit. The whole-brain inhomogeneity index was calculated by summing up all
voxel-wise Euclidean distances for all 79 subjects. The same computation was performed for
the AAL atlas which contains 114 regions. Figure 9 shows the curves of the whole-brain
inhomogeneity indices. The x-axis is the subject index, with subjects ordered according to
their whole-brain inhomogeneity indices based on the AAL atlas. The four curves have no
crossover and the AAL atlas has the highest inhomogeneity scores among all four
parcellations. A paired t-test between the AAL curve and the K = 50 parcellation curve (K =
50), which contained 96 regions, indicated significant differences in homogeneity of the two
approaches with p less than 10−10. Even higher homogeneity was achieved with the higher
order parcellations (K = 100 and 150), as could be expected in part because these are smaller
regions.

4.4. Computation
The multigraph clustering algorithm code was written in Matlab. The part of the algorithm
where Eq. 2 was solved iteratively used the Matlab GPU computing utilities. The graphics
card installed was an NVIDIA Quadro 6000 with CUDA version 4.2. The use of Maltab
GPU functions increases the computational efficiency by at least a factor of 10. The running
time for the groupwise clustering is a function of the size of the input data, the number of
clusters, the size of the group and the number of initializations. In the experiments reported
in Table 2, we included 45 randomly selected subjects in a groupwise parcellation.
Additionally we ran the groupwise parcellation 10 times with different initializations and
chose the one parcellation that had the best optimization score. Table 2 lists the mean
running time of one groupwise parcellation using whole-brain data (both hemispheres) at
different numbers of K. The running times reported in Table 2 are total running times of 10
different initializations but they do not include the time for fMRI preprocessing and Eigen
decomposition of the weight matrix for each subject. Eigen decomposition of the weight
matrix W̃s (of size N × N) was performed once for each subject to prepare the input data Xs.
The weight matrices were sparse and we used the Matlab built in function “eigs” for the
Eigen decomposition.
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5. Discussion
5.1. Spatial constraint and spatial smoothing

In our experiments using both the synthetic and the real fMRI data, the weight matrices were
constructed without any spatial constraints. The entries in W were only based on the
Euclidean distance between any pair of timecourses. The computation of the weights and the
selection of parameters was the same as described in (Shen et al., 2010). There are at least
two reasons to avoid adding a spatial constraint. First, the acquisition and preprocessing of
fMRI data, especially the spatial smoothing, has already directly introduced substantial
spatial correlation into the dataset. While adding a spatial constraint could improve the
spatial coherence in the results, it could also serve to make the functional boundaries less
distinct, making the parcellation more difficult. Secondly adding a spatial constraint means
adding additional parameters to the model. It is very hard to estimate to what extent a
particular spatial constraint would affect the parcellation result. Excessive use of spatial
constraints could lead to parcellations that are based more on anatomy rather than functional
connectivity. Admittedly, if appropriate anatomic spatial constraints could be derived then
this could potentially improve the parcellation results. Parcellating the two hemispheres
separately imposes a very clear anatomic constraint, but other anatomic constraints are not
so easily defined.

To further investigate how the groupwise parcellation was affected by the Gaussian kernel
smoothing, we used the unsmoothed data and applied the groupwise parcellation. We
observed that the parcellation results were largely the same in terms of subunit location,
shape, size and spatial continuity comparing to results obtained using the smoothed data. In
other words, the groupwise parcellation is not sensitive to the effect of spatial smoothing
introduced by the Gaussian kernel in addition to the other existing smoothing in the data. In
fact, the resampling from the fMRI resolution of 3.4375 × 3.4375 × 6 to the MNI resolution
of 3 × 3 × 3 indirectly introduces spatial smoothing to the data. Therefore the spatial
continuity of the parcellated subunits we observe is not only a result of the functional
coherence of the brain, but also reflects the smoothness of the data to some extent. With the
unsmoothed data, we did observe one outlier subunit that had spatially disconnected
components, which included a fully connected region of the brain stem, part of the
cerebellum and a few voxels located along the boundaries between the gray and white
matter. This can be explained by the relative small magnitude of the timecourses from these
regions. Because we used the Euclidean distance as the similarity measure to construct the
weight matrix W, these timecourses of small magnitude are close in the functional space,
thus the corresponding voxels were clustered to one subunit in the groupwise parcellation.
There were no spatially disconnected subunits in the parcellation using the smoothed data.

The groupwise clustering approach introduced here has a built-in mechanism that enforces
spatial coherence in the parcellation results by examining all the subjects simultaneously.
For any individual subject, a few mislabeled voxels could easily lead to spatial discontinuity
within a certain region. However, it is very unlikely that the same set of voxels would be
mislabeled in the same way across multiple subjects. Therefore the optimization defined in
Eq. 2 is capable of eliminating such errors because it takes into account the clustering of all
individuals. Results from both the synthetic and the in vivo resting-state fMRI data suggest
that the multigraph clustering algorithm produces results with excellent spatial continuity.

5.2. Number of regions
The groupwise parcellation approach requires as input the approximate number of regions to
solve for in advance. For the synthetic data, the number of regions was known exactly and
this number was used when testing the algorithm. However when working with in vivo
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fMRI data, there is little a priori information as to the appropriate K–value to use. In the
brain network analysis and whole-brain parcellation literature, the number of regions varies
from less than 10 to 1000. The Brodmann atlas has 52 regions in each hemisphere covering
the cerebral cortex defined based on the cytoarchitectural organization of the neurons. The
whole-brain atlas of Harvard Medical School has defined approximately 70 anatomical
structures including the ventricular system and the subcortex (www.med.harvard.edu/aanlib/
home.html).

The correct number of regions for a functional atlas at the group level ultimately will depend
on a number of factors including the acquisition resolution, the consistency across subjects
of functional organization within regions, the consistency of network organization between
regions, and the consistency of anatomic organization. An analysis of the inter-individual
variability in cytoarchitecture, for example, has shown significant differences in the location
of even primary sensory cortical areas as well as heteromodal association areas even after
correction for differences in brain size (Ulyings et al., 2005). Analysis of a wide range of
anatomic registration methods has also shown significant spatial mismatch (of the order of
1cm) between subjects in many brain regions (Hellier et al., 2003; Thirion et al., 2007).
Even if anatomical variations could be taken into account, differences in functional
organization are also important (Brett et al., 2002). It is also likely the case that such
functional parcellations will need to be defined for each stage of development and aging as
functional organization is known to change throughout the life span (Hampson et al., 2012;
Power et al., 2010).

It is known that many levels of functional organization exist in the cortex. Above the
neuronal level are cortical columns and other organizational modes, suggesting the need for
multi-scale analysis. In this work, the goal was to obtain a groupwise functional parcellation
at the level of resolution typically encountered in fMRI studies and thus we tested a range of
K values yielding final parcellations of 100, 200 and 300 functional subunits or nodes. Here
our focus was not on a particular number but on the operating scale. It should also be note
that with the groupwise clustering algorithm, the number of regions in the final parcellation
may be less than or equal to the input K (see Table 1). We stopped at K = 150 (300 nodes)
because of the observation that the average whole-brain cross-subject reproducibility
dropped below 0.5 when a parcellation of 400 regions was targeted. The significant decrease
in the reproducibility indicates that subunits obtained at K = 400 are no longer consistent
across subjects. In addition to the aforementioned limits attributed to acquisition resolution,
anatomic and functional organization matching across subjects, it is also possible that at
higher K values, the iterative approach proposed in Section 2 to achieve the optimization
may not be sufficient. We are currently in the process of collecting higher resolution resting-
state data to further investigate the limits of coherent functional organization across subjects.

5.3. Parcellation by hemisphere
The parcellation presented in Figure 6 was obtained by applying the groupwise multigraph
clustering algorithm to each hemisphere separately, directly invoking the constraint that
functional subunits do not span hemispheres. We also parcellated the whole brain without
this constraint and the results were similar in terms of average whole-brain reproducibility.
However, using the latter approach, we observed that there were regions containing
components located in both the left and right hemispheres. Some of these regions were
spatially connected directly across the interhemispheric fissure, e.g. regions along the
cingular cortex, but some included more distal components, for example a region that
contained both left and right insula in a parcellation at K = 50. To eliminate the possibility
of a single parcellated subunit spanning both hemispheres we chose to parcellate each
hemisphere separately. It should be noted that the fact that the multigraph clustering
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approach generates regions with disconnected but spatially symmetric components further
supports the notion that these parcellations are truly based on function rather than anatomy.

5.4. Reproducibility
As the number of regions increased, we were able to identify functionally homogeneous
regions on finer scales. For network analyses there is a need to delineate functional regions
that represent the minimal functional subunit that can be identified in typical fMRI studies.
In this work, reproducibility was computed and interpreted at both the local and whole-brain
levels. At the local level, regions with high reproducibility were repeatedly parcellated from
different groups of healthy subjects, suggesting that these regions are more likely to be
functionally meaningful and salient in group studies. Some anatomically well-defined
structures such as the caudate and putamen showed very high reproducibility scores and
functional parcellations that coincided with their anatomic boundaries. In general, though,
we did not observe obvious patterns in location-dependent reproducibility. Reproducibility
did vary within brain lobes and from left hemisphere to right hemisphere, with the right
hemisphere generally showing slightly higher reproducibility (Fig. 7). At a whole-brain
level, a satisfactory parcellation must have a relatively high overall reproducibility. Figure 7
shows that the mean overall reproducibility across all K’s was above 0.75. Such high values
of reproducibility not only add confidence to these findings, but the relative consistency of
the reproducibility curve (across the range of K-values) supports the hypothesis that the
brain indeed operates at multiple scales (Gonzalez-Castilloa et al., 2012). Minimal
functional subunits are thus achievable using the proposed clustering approach as long as
good whole-brain reproducibility is maintained and we do not approach the acquisition
resolution limit (as we discussed in the previous section). The minimal functionally
homogeneous subunits we present in this paper were obtained at K = 150 for a total whole-
brain parcellation of approximately 300 functional subunits.

6. Conclusions
We have presented an approach to whole-brain parcellation based on resting-state fMRI data
that yields nodes with coherent internal timecourses, making such nodes optimal for
subsequent network analysis. The cross-subject reproducibility was measured at different
levels of parcellations and, with consideration to acquisition resolution and anatomic
variance across subjects, a whole-brain parcellation of approximately 300 functional
subunits appears reasonable. We demonstrate that this parcellation has more coherent
resting-state timecourses within nodes compared to anatomic atlases such as the AAL atlas.
While future work will investigate whether these nodes rearrange under different conditions
and if so the extent to which this occurs, the parcellations presented here represent the first
attempt at a whole-brain functional subunit atlas of the healthy human brain at the level of
typical fMRI acquisition resolutions. Previous work by Vincent et al. (Vincent et al., 2007)
has shown that the connections measured by resting-state fMRI are intrinsic and present
even under deep levels of anesthesia. However it is likely that just as the high baseline
activity in fMRI can be modulated slightly by task, so too can connections between nodes.
What is unclear at this point is the extent to which the nodes may rearrange with task or the
extent to which it is simply the connection strengths between nodes that change.
Nevertheless these parcellations provide a template for defining nodes for subsequent
network analyses of the brain.

To use such a tool to examine the network level organization of a patient population versus a
control group, one could apply the presented approach to the control group (or use our
online parcellation from 79 healthy control subjects) and then use the resulting parcellation
on both populations in order to contrast network properties for the entire set of nodes. A
wide range of conditions can be contrasted in this manner; for example, in drug studies, the
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parcellation could be applied to the baseline data on the subjects prior to drug administration
and then the network properties on and off the drug could be compared. In patient versus
control studies it may also be interesting to obtain parcellations for each groups and directly
compare them to determine the extent to which diseases or disorders are associated with
differential organization in the brain at the level of these functional subunits.

In summary, a novel approach to parcellate the whole brain into functionally homogeneous
subunits based on resting-state fMRI data is presented. The functional subunits obtained are
from groupwise optimization and each subunit is assigned a reproducibility score, which
shows the extent of agreement between different group selections using data from healthy
control subjects. The proposed approach was validated using synthetic datasets and was
shown to outperform other approaches in terms of the parcellation accuracy and spatial
coherence. The ability to derive a whole-brain delineation of subunits solely based on
function has great importance for fMRI in general and especially for network connectivity
analyses. Using the proposed approach, the homogeneity of temporal signals from a subunit
is assured by the algorithm, such that the mean timecourse from any given node is an
accurate representation of activity from that part of the brain, and this is achieved without
the need for a priori assumptions or hypotheses. Such a data-driven parcellation improves in
the input to network analyses and will prevent the erroneous results that can arise if multiple
timecourses are mixed within the same node. This approach should therefore improve the
reliability and sensitivity of network analyses.
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Highlights

• Resting-state connectivity data parcellated using graph theory approach

• Yields groupwise whole-brain parcellation of the order of 300 nodes

• Uniform timecourses within nodes

• Ideal for network analysis of functional connectivity

• Functional atlas available online
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Figure 1.
Multigraph (groupwise) K-way Clustering Algorithm
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Figure 2.
Simulated data includes six regions in a single slice. The boundaries between the six regions
are set to change randomly for each virtual subject. The image on the right shows the
maximal probability that a voxel belongs to one of the six regions.
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Figure 3.
Mean timecourses from 10 subjects for the above six regions were used to generate the
synthetic data. These six regions were obtained from a group parcellation using the
groupwise multigraph clustering approach.
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Figure 4.
Examples of parcellation results at different signal to noise level with increasing noise added
as α = 0.2 (top row), α =0.3(middle row) and α =0.4 (bottom row). Our proposed
multigraph clustering algorithm and two other parcellation approaches were applied to
obtain the results. Left: the proposed multigraph clustering parcellation; Middle: GP1;
Right: GP2. By visual inspection, the multigraph clustering parcellation approach shows the
best performance at all three noise levels in term of the classification accuracy and regional
homogeneity.
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Figure 5.
Quantitative evaluation using the Dice’s coefficient, the Hausdorff distance and the median
minimal distance. The colors indicate different approaches: our multigraph clustering
parcellation (red), GP1 (blue), GP2 (green). α = 0.2, 0.3 and 0.4 from top row to bottom row
respectively. The quantitative analysis confirms the visual inspection that the proposed
multigraph clustering approach outperformed both the GP1 and GP2 approaches. At the
lowest noise level α =0.2, all three approaches were successful at identifying the six regions.
At an increased noise level α =0.3, the multigraph approach was still good at identifying
regions 1, 3 and 5 with high accuracy (mean Dice’s coefficients being above 0.9). At this
noise level, GP1 was able to identify regions 1, 3 and 5 with lower accuracy and GP2
basically failed the classification task. At the highest noise level α =0.4, only the proposed
multigraph approach was able to identify region 5 with good accuracy. The other two
approaches both failed.
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Figure 6.
Whole-brain parcellation using the multigraph K-way clustering method. The number of
regions K are 50, 100, 150 for each hemisphere yielding total nodes of 94, 189 and 281 (for
the three parcellations shown in this figure). The cross-subject reproducibility is indicated by
the shading of each subunit in the parcellation. The same heat colormap and reproducibility
scale was used for all levels of parcellation.
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Figure 7.
Whole-brain reproducibility distribution at different number of K’s. Each boxplot was
generated based on parcellations from 20 pairs of mutually exclusive groups of subjects.
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Figure 8.
Sizes of subunits of the groupwise parcellation at different number of K’s. Each boxplot was
generated based on parcellations from 40 groups of randomly selected subjects. The sizes
were measured by the number of voxels of dimension 3 × 3 × 3mm3. The boxplot shows that
the variation of the sizes of the subunits is relative small across the whole brain.
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Figure 9.
Curves of whole-brain inhomogeneity indices for 79 subjects from four parcellations,
namely the AAL atlas (red), groupwise parcellation using the multigraph clustering
algorithm with 50 regions for each hemisphere (blue K = 50), groupwise parcellation using
the multigraph clustering algorithm with 100 regions for each hemisphere (green K = 100),
groupwise parcellation using the multigraph clustering algorithm with 150 regions for each
hemisphere (black K = 150). The x-axis is the subject index. The subjects were ordered
according to their whole-brain inhomogeneity indices based on the AAL atlas. The
calculation of the inhomogeneity indices used data without the Gaussian spatial smoothing.
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Table 1

Median of number of regions in each hemisphere

No of regions (K) Left Hemisphere Right Hemisphere

50 47 47

100 92.5 93

150 139 138
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