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Abstract
Chronic hepatitis C virus (HCV) infection remains a world-wide public health problem. Therapy
with interferon and ribavirin leads to viral elimination in less than 50% of treated patients. New
treatment options aiming at a higher cure rate are focused on direct-acting antiviral agents
(DAAs), which directly interfere with different steps in the HCV life cycle. In this paper, we
describe and analyze a recently developed multiscale model that predicts HCV dynamics under
therapy with DAAs. The model includes both intracellular viral RNA replication and extracellular
viral infection. We calculate the steady states of the model and perform a detailed stability
analysis. With certain assumptions we obtain analytical approximations of the viral load decline
after treatment initiation. One approximation agrees well with the prediction of the model, and can
conveniently be used to fit patient data and estimate parameter values. We also discuss other
possible ways to incorporate intracellular viral dynamics into the multiscale model.

1 Introduction
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, liver cirrhosis
and liver cancer. Approximately 130 to 170 million people are chronically infected with
HCV in the world [1]. A combination of pegylated interferon (PEG-IFN) and ribavirin
(RBV) has been used to treat HCV infection but only led to sustained viral elimination in
less than 50% of treated patients infected with HCV genotype 1, the major genotype
affecting North America and Europe [2]. New treatment options are focused on the
development of direct-acting antiviral agents (DAAs), which directly interfere with different
steps in the HCV life cycle [3, 4]. Several important targets are the HCV-encoded protease,
polymerase, and NS5A protein [5, 6]. A number of protease and polymerase inhibitors have
been developed [7, 8]. Among them, two protease inhibitors, telaprevir and boceprevir, have
been approved by the US Food and Drug Administration (FDA) to treat HCV infection
when used in combination with PEG-IFN/RBV. In addition, daclatasvir has been identified
as an HCV NS5A inhibitor using an innovative screening approach [9]. A second generation
of protease inhibitors, such as danoprevir [10, 11], presenting better safety and resistance
profiles, are also in clinical evaluation [12, 13]. Although the specific mechanisms of action
of some DAAs are not fully understood, they have shown potent antiviral activities in
patients infected with HCV genotype 1 [8].
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Mathematical models have been developed to study HCV dynamics under therapy [14–16].
In most patients, after treatment is initiated with IFN a biphasic decline in HCV RNA is
observed. To understand this decline, a basic viral dynamic model was used to explore the
mechanism of action of IFN against HCV [17]. Using this model, it was shown that IFN acts
mainly to reduce viral production per infected cell. Consequently, the early viral decline in
plasma observed after IFN administration reflects the viral clearance rate, which was
estimated to be approximately 6 day−1 [17]. It was also suggested that the variation in the
estimates of the infected cell death rate from patient to patient might reflect their differences
in cellular immunity [17]. The antiviral mechanisms of action of RBV against HCV have not
been fully elucidated. Several mechanisms have been proposed [18, 19] and mathematical
models have been used to test these mechanisms. In one study [20], Herrmann et al.
developed a model assuming that RBV serves as an immune modulator. In another study
[21], Dixit et al. tested the hypothesis that RBV may act by lowering the infectivity of HCV,
possibly via mutagenesis. The model in [21] showed that RBV does not influence the first
phase viral decline, but increases the slope of the second phase decline in a dose-dependent
manner if the efficacy of IFN is low. When the efficacy of IFN is high, RBV does not
influence the second phase decline either. These predictions are in agreement with
experimental results and can resolve the seemingly conflicting observations that RBV
influences the second phase viral decline in some patients but not in others [19, 20, 22].

Most models in the literature treat the infected cell as a “black box” which produces new
virions after infection, without considering the intracellular viral RNA replication/
degradation within the infected cell [23]. However, these intracellular processes might be
important in studying HCV dynamics under DAA therapy because they are directly targeted
by DAAs. In this paper, we describe and mathematically analyze a recently developed
multiscale model that studies the dynamics of HCV infection under therapy with DAAs [24,
25]. The model includes both intracellular viral RNA replication/degradation and
extracellular viral infection. We calculate the steady states of the model and provide a
detailed stability analysis. With certain assumptions we approximate the viral load decline
after treatment initiation. These approximations have been used to analyze viral load data
from patients treated with DAAs such as the NS5A inhibitor daclatasvir [24] and the
protease inhibitors telaprevir [24] and danoprevir [25]. We perform numerical simulations to
illustrate the effects of DAA's different antiviral actions on the viral load change during
therapy. We also discuss other possible ways to incorporate intracellular viral dynamics into
the multiscale model.

2 Model description
The basic viral dynamic model used to study HCV dynamics under IFN-based therapy
includes three variables [17]: uninfected target cells (T ), productively infected cells (I), and
free virus (V). The parameters s and d are the production rate and per capita death rate of
target cells, respectively. Viral infection is assumed to occur at a rate βV T. Productively
infected cells are lost, by either natural death or immune attack, at rate δ per cell. Virus is
released from productively infected cells at rate p per cell and is cleared at rate c per virion.
IFN therapy was shown to mainly reduce viral production [17], with efficacy ∊. The model
can be described by the following equations:

(1)
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We extend the model by incorporating another variable, R, which represents the quantity of
intracellular genomic RNA (i.e., positive-strand HCV RNA) within an infected cell. The
dynamics of intracellular viral RNA are determined by RNA production and loss due to
degradation and assembly/secretion as virions into plasma. A simple model of intracellular
viral RNA dynamics in an infected cell is described by the equation

(2)

where a is the age of infection, i.e., the time that has elapsed since an HCV virion, which
contains a single viral RNA genome, has entered the cell. The parameters α, μ and ρ are
assumed to be age-dependent rates of intracellular viral RNA production, degradation, and
assembly/secretion, respectively. We also assume that a cell is infected by a single virion
initially and hence there is only one viral RNA in an infected cell at age 0, i.e., R(0) = 1.

Combining Eqs. (1) and (2), we obtain a multiscale model including both intracellular viral
RNA replication and extracellular viral infection dynamics, described by the following
partial differential equations (PDEs):

(3)

where I0(a) and R0(a) are the initial distributions of infected cells and intracellular viral
RNA, respectively.

Therapy with DAAs may inhibit intracellular viral RNA production, block assembly/
secretion as virus into plasma, and/or enhance RNA degradation. We assume the efficacies
of these actions are ∊α, ∊s, and κ, respectively, where 0 ≤ ∊α, ∊s ≤ 1 and κ ≥ 1. We further
assume the viral infection has reached steady-state at the time therapy is initiated. The
multiscale model under therapy then becomes

(4)

where t = 0 is the time at which treatment is initiated.  and  are the steady-state
distributions of infected cells and intracellular viral RNA, respectively, before therapy.

3 Model analysis
We calculate the steady states of the pre-therapy model (3) and study their stability.

Let
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(5)

where ω(a) and π(a) can be interpreted as the probability of an infected cell and an
intracellular viral RNA surviving to age a (of the infected cell), respectively. At steady state,
the density of infected cells of age a is

(6)

where  and  are the steady-state viral load and target cell density, respectively. The steady
state of the intracellular viral RNA level within an infected cell of age a is given by the
solution of Eq. (2) with R(0) = 1, i.e.,

(7)

When δ(a), α(a), ρ(a), and μ(a) are all assumed to be constant, we have ω(a) = e−δa, π(a) =
e−(ρ+μ)a, and

(8)

Plugging the steady states  and  in (6) and (7) into the V equation in (3), we have

(9)

Let

(10)

Thus, N gives the total number of virions produced by one infected cell during its lifetime.

This number is called the viral burst size [26]. Solving Eq. (9) for  and using N in (10), we
obtain

From the first equation of (3), we obtain the steady-state viral load,

Substituting  and  into Eq. (6), we obtain

Let
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(11)

 is the basic reproductive ratio of model (3), where s/d is the target cell density at the start

of infection [27]. Obviously, the infected steady state ( , , , ) of model (3) is
feasible, i.e., has all variables positive, if and only if . The infection-free steady state is

(s/d, 0, , 0).

Using the method of characteristics, we can obtain a complete solution for R(a, t) and I(a, t).
The characteristic curves are t − a = constant. We assume that they intersect with the age-
axis at (a0, 0) and intersect with the time-axis at (0, t0), where a0 ≥ 0 and t0 ≥ 0.

When a ≥ t, the characteristic curves can be described by the parametric equation t = τ, a = τ
+ a0, where τ is a free parameter. When τ increases from 0 to t, a(τ) increases from a0 to a
and t(τ) increases from 0 to t. Along the characteristic curves, we have

(12)

This is an ordinary differential equation (ODE) with the independent variable τ.

Using the variation of constants formula, we obtain

Note that

thus we have

where π(a) is defined in Eq. (5).

We also have

Thus, when a ≥ t, we obtain
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When a < t, the characteristic curves can be described by t = τ, a = τ − t0. When τ increases
from t0 to t, a(τ) increases from 0 to a and t(τ) increases from t0 to t. Along the characteristic
curves, we have the same ODE given by Eq. (12). Using the variation of constants formula
again, we obtain

Note that

and

Thus, when a < t, we have

Therefore, we have a complete solution for R(a, t), given by

(13)

Similarly, integrating the I(a, t) equation in the pre-therapy model along the characteristic
lines, t − a = constant, we get the solution of I(a, t), given by

(14)

where ω(a) is defined in (5).

Although we will use t = 0 as the time therapy is initiated in the post-therapy model (4), here
in the pre-therapy model if we choose t = 0 to be the time of initial infection then the age of
an infected cell, a, will always be less than or equal to the time the person has been infected,
i.e., t, and R(a, t) will reduce to the solution of the simple ODE for R(a). Thus, for a model
of acute infection without treatment it suffices to use an ODE to describe intracellular viral
RNA dynamics.

When δ(a), α(a), ρ(a), and μ(a) are all constants, R(a, t) and I(a, t) become
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(15)

(16)

Substituting (13) and (14) into model (3) yields

(17)

where

(18)

It is clear that F (t) → 0 as t → ∞.

For mathematical convenience, we let K(t) = βV (t)T (t) and . System
(17) then becomes

(19)

Integration of the above equations leads to

(20)

Changing the order of integration in the V (t) equation of (20), we have

where

(21)

Thus, system (20) can be rewritten as

(22)

where
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Let x(t) = (T (t), V (t))⊺, where ⊺ denotes the transpose of the vector. System (22) then can
be written in the form

(23)

where

This forms a system of Volterra integral equations which is equivalent to the original model
(3). It is clear that the entries of m(t) are locally integrable functions and that the entries of

g(x) and f(t) are continuous functions, i.e., , g ∈ C(R2, 2), and f ∈
C([0, ∞); R2). From Theorem 1.1 in Gripenberg et al. [28], Section 12.1, there is a unique
solution to the system (23) given an initial condition and the solutions depend continuously
on the initial conditions.

To see that all solutions of system (3) remain non-negative for positive initial values, we
study system (19) which is also equivalent to (3). Suppose that there exists a t0 > 0 such that
V (t0) = 0 and T(t), V (t) > 0 for 0 ≤ t < t0. Then K(t) = βV (t)T(t) > 0 for 0 ≤ t < t0, and from

the V equation in (19) we have . Hence, V (t) ≥ 0
for all t ≥ 0. Similarly, we can show that T (t) ≥ 0 for all t ≥ 0 and for all positive initial data.

Next, we show that the infection-free steady state of model (3) is locally asymptotically
stable when  and unstable when , where , and that the infected
steady state is locally asymptotically stable whenever it exists, i.e., . We will perform
the stability analysis of model (3) using its equivalent system (17).

According to Gripenberg et al. [28], Section 15.1, any equilibrium of the system (17), if it
exists, must be a constant solution of the limiting system associated with (17), which is
given by the following set of equations

(24)

where  is the steady-state distribution of intracellular viral RNA, given in (7).

The infection-free and infected steady states of the limiting system (24) are (s/d, 0) and

, respectively, with

(25)

where N is the burst size, given in (10), and  is given in (11).
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Using results from the theory of evolution equations, for example, Corollary 4.3 in Thieme
[29] or Theorem 4.13 in Webb [30], we can study the stability of the equilibrium for the
infinite dimensional system (24) in the same way as for a finite system of ordinary
differential equations. This method has been used to study other age-structured models, for
example, in Thieme and Castillo-Chavez [31], Feng et al. [32], and Rong et al. [33].

Taking the linearization of system (24) at an equilibrium , we have the following
characteristic equation

(26)

where λ is an eigenvalue.

At the infection-free steady state (s/d, 0), the above characteristic equation reduces to

(27)

One eigenvalue is λ = −d and all other eigenvalues are determined by

(28)

which can be rewritten as

(29)

For all complex roots λ with non-negative real parts,

Thus, the modulus of the right hand side of (29) is less than 1 when . Because the
modulus of the left hand side of (29) is always greater than or equal to 1 for λ with non-
negative real parts, we conclude that all roots of the characteristic equation (28) have
negative real parts when . This shows that the infection-free steady state is locally
asymptotically stable when .

When , we let

It is clear that  and f(λ) → ∞ as λ → ∞. Thus, there exists a positive root
for the equation f(λ) = 0. This shows that the characteristic equation (28) has at least one
positive root. Thus, the infection-free steady state is unstable when .
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At the infected steady state , the characteristic equation (26) is

(30)

Using  and , Eq. (30) can be rewritten as

(31)

For all complex roots λ with non-negative real parts, the modulus of the left hand side of
(31) is greater than the modulus of the right hand side. Thus, the characteristic equation (30)
has no roots with non-negative real parts. Therefore, the infected steady state is locally
asymptotically stable whenever it exists.

4 Model approximations under therapy
We assume that the system is at the infected steady state at the onset of therapy at a time we
call t = 0. We also assume that δ(a), α(a), ρ(a), and μ(a) are all constants to obtain explicit
approximations of the viral load decline during therapy. The solutions for R(a, t) and I(a, t)
under therapy are obtained in the same way as the pre-therapy model solutions (15) and
(16), except that α, ρ, and μ are replaced by (1 – ∊α)α, (1 – ∊s)ρ, and κμ, respectively.
Thus, we find

(32)

(33)

where A = (1 – ∊α)α and B = (1 – ∊s)ρ + κμ.  and  are the steady-state
distributions of intracellular viral RNA and infected cells, respectively, before the onset of
therapy, and are given by

Note, for . Thus, cells infected before therapy was
started, i.e., for a > t, maintain their steady state age distribution even after therapy starts.

We first approximate the viral load decline by assuming that after therapy is initiated

infected cells remain at their steady-state distribution, i.e., . This is

equivalent to assuming that new infections (corresponding to a < t) occur at rate  rather
than βV(t – a)T(t–a) after therapy initiation. This assumption is reasonable only for a short
time after therapye initiation because the rate of new infection will decline in the presence of
effective treatment. With this assumption, the virus equation in (4) becomes
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(34)

In consideration of R(a, t) in (32), we split the integral in the above equation into two parts

We calculate the first part and obtain

Similarly, we have the second part

where

Adding the above two integrals and simplifying it, we have

(35)

Plugging (35) into (34) and solving for V (t), we obtain

(36)

where

(37)

and  is the baseline viral load before the onset of therapy. Because the assumption that

new infections occur at rate  is reasonable only for a short time after therapy initiation,
we call Eq. (36) a short-term approximation to the viral decline on therapy.

Alternatively, we can approximate the viral load decline by neglecting all new infections
after the onset of therapy. In this case, I(a, t) = 0 for a < t, and

 for a ≥ t. The virus equation in (4) then becomes
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Plugging R(a, t) and I(a, t) into the above equation and computing the integral, we have

Solving for V (t), we obtain

(38)

where A, B and N are given in (37). In this approximation, we neglect all new infections
during therapy. Since the rate of new infection is proportional to V, it is reasonable to
neglect all new infections after potent therapy that substantially reduces the viral load. As
the viral load decreases with time on therapy, the accuracy of this approximation should
increase. We call Eq. (38) a long-term approximation to the viral decline on therapy.

We provide numerical simulations to compare the solution of the PDE model (4) and
approximations (36) and (38). Similar to the numerical method used in [32] and [33], we
consider an explicit discretization of (4), based on backward Euler finite differences for the
ODEs, a linearized finite difference method of characteristics for the PDE, and Simpson's
rule for the integral. Figure 1 shows that with realistic parameter values the short-term
approximation (36) agrees well with the solution of the PDE model during the early stage of
therapy. However, the short-term approximation approaches a steady state quickly, which is
greater than the solution of the PDE model. The long-term approximation (38) is an
underestimate of the PDE model solution since some infection events are being ignored.
However, with realistic parameters characteristic of potent therapy, the difference between
them is very small (Figure 1). Further, the long-term approximation converges to the PDE
model solution quickly because the level of new infections becomes lower as therapy
continues.

5 Other models
In the above model (Eq. 4), we assumed that intracellular viral RNA is produced at a rate
α(a) or constant α in deriving model approximations. This is a very simple assumption
about RNA production within an infected cell. Further, when all new infections are
neglected during therapy the intracellular RNA level is predicted to converge to a non-zero
steady-state solution A/B (see Eq. 32). This may not be realistic under effective therapy
since all viral RNA can be eliminated with long-term treatment in in vitro replicon systems
[34]. We modify the equation of R(a, t) by introducing a new term, e−γt, which represents
the decay of replication templates such as negative strand HCV RNA after treatment
initiation at t = 0. Assuming that all rates are constant, we obtain the R(a, t) equation

(39)

with the initial condition
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We can also obtain the long-term approximation by neglecting all new infections under
therapy. When a ≥ t, the characteristic curves, t−a = constant, can be described by the
parametric equation t = τ, a = τ + a0. Along the characteristic curves, we have

Using A = (1 − ∊α)α and B = (1 − ∊s)ρ + κμ, we have

(40)

Integrating τ from 0 to t, we have

(41)

The virus equation in the model where all new infections under therapy are ignored becomes

(42)

Using R(a, t) in Eq. (41) and  for a ≥ t, we calculate the
integral

Using

we have

Plugging the above integral into the virus equation (42) and solving for V (t), we obtain
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(43)

This is the long-term approximation to the viral load decline after therapy initiation,
predicted by Eq. (4) in which the R(a, t) equation is replaced by (39).

We compare the long-term approximation (Eq. 43) with the solution of the corresponding
PDE model. Numerical result shows that with realistic parameter values characteristic of
potent therapy the approximation agrees very well with the PDE model solution (Figure 2).
This approximation was used to fit the viral load data from eight HCV patients treated with
a protease inhibitor danoprevir [25]. The effectiveness of danoprevir in blocking
intracellular viral production, enhancing viral degradation, and inhibiting viral assembly or
secretion was estimated on the basis of the best fits [25].

There are other possible ways to model intracellular viral dynamics within an infected cell.
Because positive strand HCV RNA is made from a “replication complex” containing both
HCV proteins and negative strand RNA [5], we can assume that the production rate of
positive strand RNA is a function of both the level of negative strand RNA and the level of
HCV proteins, which in turn should be proportional to R as viral RNA acts as the messenger
RNA needed to produce viral proteins. Because negative strand RNA is synthesized from
positive strand RNA [5], the level of negative strand RNA also could be proportional to R.
Thus, another possible model that considers HCV proteins and negative strand RNA can be
described by the following equation

(44)

The boundary condition is R(0, t) = 1 and the initial condition is , where 
is the steady-state age distribution of R(a, t) before therapy, given by

(45)

Note that ρ + μ should be greater than or equal to α in order to avoid the explosion of α.

Using the method of characteristics, we obtain a complete solution for R(a, t)

(46)

where A = (1 − ∊α)α, B = (1 − ∊s)ρ + κμ, and  is given in (45).

In this case, even with the assumption of a constant level of infected cells or no new
infections after treatment initiation, we cannot obtain an analytical approximation to the
viral load decline like Eq. (36), (38), or (43). Numerical simulation in Figure 3 suggests that
the viral load predicted by the model undergoes an initial minor increase, followed by a
rapid decrease. Such transient initial increases in HCV viral load following initiation of
therapy were reported by Hsu et al. [35] but interpreted by Guedj et al. [36] as possibly
arising in patients whose pre-therapy viral load was increasing rather than being at steady
state. This new model provides an alternative explanation.
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6 Effect of therapy on dynamics
Since Eq. (43) provides an excellent approximation to the solution of the multiscale PDE
model, we examine it in more detail to gain insights into the effect of therapy on viral load
decline after treatment initiation. There are three exponential terms in the approximation,
e−ct, e−(B+δ)t, and e−(γ+δ)t, where B = (1 − ∊s)ρ + κμ. The first exponential term represents
the viral clearance. The second term represents the loss of intracellular viral RNA by export
and degradation as well as elimination of infected cells. The third term represents a
combination of the reduction in intracellular viral RNA production and the elimination of
infected cells. Three exponential terms suggest that a triphasic viral decline may be observed
on a logarithmic scale after treatment initiation, compared with the biphasic viral decline
predicted by the basic viral dynamic model [17]. However, this is not always the case.
Whether a triphasic vial load decline can be observed also depends on the coefficients
before the exponential terms. In fact, Eq. (43) can be rewritten as

where

The duration of the first-phase viral decline, denoted by D1, is the time at which two curves
log10(C1e−ct) and log10[C2e−(B+δ)t] intersect. Thus, we have

Similarly, we have the duration of the second-phase viral decline

If ∊s is close to 1, then C1 >> C2 and there is a visible first-phase viral decline with slope c.
If ∊α is close to 1, then A = (1 − ∊α)α is very small. As a consequence, C2 >> C3 and there
is a visible second-phase viral decline with slope B + δ. Numerical simulations in Figure 4
confirm these theoretical predictions. When therapy significantly blocks both intracellular
viral production (∊α = 0.99) and secretion (∊s = 0.99), the viral load decline has three phases

Rong and Perelson Page 15

Math Biosci. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(blue solid line), with slopes c, (1 − ∊s)ρ + κμ + δ, and γ + δ, respectively. As ∊α decreases,
the duration of the first-phase viral decline with slope c declines and the second phase with
slope (1 − ∊s)ρ + κμ + δ disappears (blue dash-dotted and blue dashed). When ∊s = 0.01, the
first-phase viral decline with slope c is not visible (red dotted). These results may explain
why the estimate of the viral clearance rate c under therapy with DAAs such as the NS5A
inhibitor daclatasvir is significantly higher than the estimate of c under traditional IFN-based
therapy [24].

7 Conclusions
Treatment with direct-acting antiviral agents has greatly increased the cure rate in hepatitis
C patients when used in combination with traditional IFN-based therapy. The dynamics of
HCV under DAA therapy has started to be explored [23–25, 37–43] but much remains to be
done [16, 44–46]. A viral dynamic model that does not consider intracellular viral dynamics
may not be optimal in studying the dynamics in patients treated with DAAs, since these
agents directly interfere with various steps in the HCV life cycle. In this paper, we analyzed
multiscale models that include both intracellular viral RNA replication and extracellular
viral infection dynamics.

We calculated the steady states of one such multiscale model and performed a thorough
local stability analysis of the steady states. Specifically, the infection-free steady state is
locally asymptotically stable when the basic reproductive ratio is less than 1 and the infected
steady state is locally asymptotically stable whenever it exists. Under certain assumptions,
we also obtained analytical approximations to the solution of the multiscale model. One
approximation assuming no new infections during therapy agrees very well with the
prediction of the multiscale model. This approximation has been used to fit patient data
treated with DAAs and estimate parameter values such as the viral clearance rate and the
treatment effectiveness.

Multiscale models allow us to explicitly consider the possible effects of DAAs on
intracellular viral RNA production, degradation, and assembly and secretion as virus into the
circulation. We showed that if therapy can significantly block viral secretion, then the first-
phase viral load decline reflects the rate of viral clearance in plasma. If therapy can also
block intracellular viral production significantly, then there is a visible second-phase viral
decline, which reflects the loss of intracellular viral RNA. A third phase reflects the rate of
loss of HCV replication complexes or negative strand RNA and the rate of infected cell
death. Combined with experimental data, these results can be used to explore the possible
mechanisms of action of DAAs against HCV.
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- We study hepatitis C virus dynamics using a multiscale age-structured model

- The model includes intracellular RNA replication and extracellular viral
infection

- Stability analysis of the steady states is performed

- Approximations of the viral decline are derived and compared with the full
model

- We discuss other ways to incorporate intracellular viral dynamics into the
model
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Figure 1. Comparison of the multiscale model with approximations
The blue solid line represents the numerical solution of the PDE model (Eq. 4). The green
dash-dotted line represents the short-term approximation (Eq. 36). The red dashed line
represents the long-term approximation (Eq. 38). Parameter values are chosen from the
estimates in [25]: s = 1.3 × 105 cells/mL, d = 0.01 day−1, β = 5 × 10−8 mL day−1 virion−1, δ
= 0.14 day−1, ∊α = 0.992, α = 40 day−1, ∊s = 0.56, ρ = 8.18 day−1, k = 4.94, μ = 1 day−1,
and c = 22.3 day−1.
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Figure 2. Comparison of the PDE model including an exponentially decreasing term with its
approximation
The blue solid line represents the numerical solution of Eq. (4) with the R equation replaced
by Eq. (39). The red dashed line represents the long-term approximation (Eq. 43). The
parameter γ is chosen to be γ = 0.28 day−1 [25]. The other parameters are the same as those
in Figure 1.
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Figure 3. Viral load change predicted by the model including a nonlinear RNA production rate
(Eq. 44)
Parameter values are: ∊α = 0.94, ∊s = 0.5, α = 14 day−1 mL RNA−1, ρ = 13 day−1. The other
parameters are the same as those in Figure 1.
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Figure 4. Effect of therapy on viral load change
The long-term approximation (Eq. 43) was plotted with different combinations of drug
efficacies ∊s and ∊α. The other parameter values are the same as those in Figure 1.
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