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Abstract Circadian clocks orchestrate 24-h oscillations

of essential physiological and behavioral processes in

response to daily environmental changes. These clocks are

remarkably precise under constant conditions yet highly

responsive to resetting signals. With the molecular com-

position of the core oscillator largely established, recent

research has increasingly focused on clock-modifying

mechanisms/molecules. In particular, small molecule

modifiers, intrinsic or extrinsic, are emerging as powerful

tools for understanding basic clock biology as well as

developing putative therapeutic agents for clock-associated

diseases. In this review, we will focus on synthetic com-

pounds capable of modifying the period, phase, or

amplitude of circadian clocks, with particular emphasis on

the mammalian clock. We will discuss the potential of

exploiting these small molecule modifiers in both basic and

translational research.
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Abbreviations

ARNT Aryl hydrocarbon receptor nuclear translocator

bHLH PAS Basic helix–loop–helix PER-ARNT-SIM

BMAL1 Brain and muscle aryl hydrocarbon receptor

nuclear translocator (ARNT)-like

CEM Clock-enhancing molecule

CLOCK Circadian locomotor output cycles kaput

CREB cAMP response element-binding protein

CRY Cryptochrome

FASPS Familial advanced sleep phase syndrome

HIF Hypoxia-inducible factor

NPAS2 Neuronal PAS domain protein 2

PER Period

ROR Retinoid acid receptor-related orphan receptor

SCN Suprachiasmatic nuclei

Introduction

To cope with daily environmental changes due to the earth’s

rotation, virtually all living organisms have evolved an

intrinsic time-keeping mechanism called the circadian

clock [1–8]. The fundamental unit of animal clocks is a cell-

autonomous oscillator consisting of transcriptional-trans-

lational feedback loops [9, 10]. In the primary feedback

loop of the mammalian oscillator, heterodimeric transcrip-

tion factors CLOCK/BMAL1 and NPAS2/BMAL1 activate

expression of the Period1/2 and Cryptochrome1/2 genes.

The resulting protein products, PER1/2 and CRY1/2,

translocate to the nucleus where they inhibit CLOCK/

BMAL1 and NPAS2/BMAL1 and repress their own

expression. Various transcriptional and post-transcriptional

mechanisms impinge on this primary loop to generate the

*24-h rhythms [11–16]. In particular, nuclear hormone
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receptors REV-ERBs and RORs act antagonistically to

regulate transcription of several core clock genes, including

Bmal1, through the shared RORE promoter element [17].

PER and CRY protein turnover is also tightly regulated via

coupled phosphorylation/ubiquitination pathways. For

example, CRYs have been shown to be phosphorylated by

AMP-activated kinase AMPK [18] prior to ubiquitination

by the F-box E3 ligase FBXL3 [19–21]. Likewise,

sequential phosphorylation by NEMO/NEMO-like kinase

and Casein kinase I primes PER proteins for ubiquitination

by SLIMB/b-TRCP E3 ligase and proteosomal degradation

[13, 22–25]. At the organismal level, the molecular oscil-

lators throughout the body that perform tissue-specific

physiological functions are coordinated by the central

pacemaker in the hypothalamic SCN [26–29].

Given their key roles in coordinating cellular and

physiological processes in anticipation of environmental

rhythms, clocks are critical for the well-being and even

survival of organisms. Desynchrony between intrinsic and

environmental rhythms has been found to render growth

disadvantage for cyanobacteria and plants and shortened

lifespan in mice [30–33]. Ablation of the SCN central

clock in chipmunks adversely affected their survival in the

wild, likely attributable to impairments in foraging and

predator avoidance [34]. Whereas genetic disruption of

clock genes does not lead to acute lethality in laboratory

settings, circadian mutant mice show a wide spectrum of

physiological deficits [6], including metabolic syndromes

in ClockD19 mutant mice and premature ageing in Bmal1

knockout mice [35–39]. In humans, epidemiological and

laboratory studies have also demonstrated increased risks

of metabolic and cardiovascular diseases and cancer as a

result of circadian disruption [40–43]. For example, within

10 days of living on an enforced 28-h rhythm, human

subjects were found to suffer impaired glucose tolerance

and hyperinsulinemia [41], similar to that seen with dys-

regulated pyruvate tolerance in a 2-week mouse model of

shift work [44].

It is now well accepted that clocks play a fundamental

role in metabolic regulation [45]. For photosynthetic

organisms, nitrogen fixation is highly sensitive to oxygen

and thus temporally sequestered from daytime photosyn-

thesis. In mammals, hepatic gluconeogenesis takes place in

the resting phase to maintain blood glucose homeostasis

[46]. Concordantly, genomic and metabolomic studies

have found tissue-specific oscillation of mRNA and

metabolite accumulation in metabolically active tissues

[47–53]. On the other hand, the clock is also highly ame-

nable to reciprocal regulation by metabolites [45, 54, 55].

A number of metabolites can activate upstream signaling

pathways that feed into the core oscillator, thereby altering

cellular and physiological rhythms [55]. For example,

cAMP levels were found to oscillate in the SCN, and the

cAMP signaling pathway reciprocally resets the clock by

inducing immediate early genes such as Per1 [56–58].

Importantly, certain metabolites can directly modulate

clock protein functions by serving as endogenous ligands,

including adenosine dinucleotides (NAD and FAD), heme

and diatomic gases (NO and CO), and cholesterols [59–69].

For example, NAD levels oscillate in cells, as Nampt, the

gene encoding nicotinamide phosphoribosyltransferase that

catalyzes the rate-limiting step of NAD biosynthesis, is

subject to direct transcriptional control by CLOCK/

BMAL1 via its E-box promoter element [70, 71]. Oscil-

latory NAD levels in turn modulate the activities of NAD-

dependent protein modifying enzymes SIRT1 and PARP1

that respectively deacetylate and poly(ADP-ribosyl)ate

clock proteins [59, 60, 66], closing the NAD-centric

feedback loop imposed on the transcriptional loop.

The revelation that circadian clocks are susceptible to

manipulation by small molecule metabolites ushers in an

exciting era to develop synthetic small molecule clock

modifiers [72, 73]. A number of promising chemical

modifiers have been uncovered in recent years, through

either phenotypic functional screens or targeted ligand

development. In this review, we discuss these small mol-

ecule modifiers of the circadian clock and their potential

therapeutic application in clock-associated diseases.

Overview of synthetic compounds as clock modifiers

Whereas classical genetics produces inherited changes in

the sequence and/or abundance of the target protein, most

synthetic small molecule modifiers allosterically alter the

protein in a reversible, time-controlled and dose-dependent

manner. Small molecules may also bind to a particular

domain and consequently modulate the cognate function of

a multi-domain protein, leaving the other parts of the

protein and associated functions intact. If the binding sur-

face is conserved among multiple paralogous proteins,

small molecules can concurrently regulate their activities to

circumvent functional redundancy commonly observed in

classical genetic studies. Thus, the small molecule-based

chemical genetic approach is a powerful tool to perturb the

system of interest [72, 74, 75].

Two complementary methods have been utilized to

identify small molecule modifiers of the clock. The first

approach, based on phenotypic functional assays, interro-

gates broad chemical space via screening of diverse

chemical libraries. In published studies, the reporter assays

involved stable cell lines expressing either luciferase alone

from an exogenous Bmal1 promoter [76–80] or

PER2::luciferase fusion proteins from the endogenous Per2

promoter [81], corresponding to mRNA or protein rhythm,

respectively. Bioluminescence is monitored over several
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days in the so-called kinetic, as opposed to end-point, assay

to visualize circadian reporter rhythms. Changes in key

clock parameters, including period, phase, and amplitude,

can then be measured to identify small molecule modifiers.

In these screens, small molecule modifiers may act on an

intracellular target in the upstream input pathway, the core

oscillator, or any output pathways with feedback regulatory

functions, such as metabolism (Fig. 1). Furthermore, novel

screening assays targeting additional clock regulatory

pathways will likely lead to an enriched repertoire of clock

modifiers.

Small molecule modifiers can also be identified based on

direct interaction with particular clock proteins or regulatory

factors. For example, IC261 and CKI-7 have been shown to

lengthen the clock period as expected from their known CKI

inhibitory activities [22, 82] (see also Tables 1, 2). On the

other hand, to generate novel and/or improved ligands for a

particular target, it is often necessary to conduct deliberate

chemical derivatization of small molecule analogs based on

prior knowledge of known ligands and/or binding cavity

structures [83]. An interesting example is the development of

a selective inhibitor of casein kinase Ie, PF-4800567 which

confers [20-fold selective inhibition over CKId [84–86].

More recently, this approach has been successfully applied to

the nuclear hormone receptors REV-ERBs and RORs, which

constitute the stabilization loop of the core oscillator [17].

Whereas the endogenous ligands are known for these pro-

teins (heme and cholesterols respectively) [63–65], small

molecule ligands are highly desirable to circumvent intra-

cellular complications that altering metabolites commonly

incurs, including nonspecific actions, cytotoxicity and redox

imbalance [87]. Starting with privileged scaffolds known to

target ligand binding domains of nuclear hormone receptors,

investigators were able to identify tertiary amines with three

lipophilic substituents as agonists of REV-ERBa [87–90].

Novel RORa/c ligands, most of them sulfonamide deriva-

tives, have also been shown to modulate hepatic metabolism

[91, 92] or to attenuate expression of downstream cytokines

and alleviate autoimmune disease symptoms [93, 94];

however, the role of the clock in these settings is currently

unknown. In an attempt to correlate bona fide clock effects of

small molecules with physiological consequences, we

describe below known small molecule clock modifiers based

on their activities in modifying the three major clock char-

acteristics, namely period, phase, and amplitude. The

classification is based on their primary, most pronounced

phenotype since many small molecules are able to co-regu-

late more than one clock parameter.

Period-altering modifiers

Circadian period has been a reliable assay parameter tra-

ditionally in rodent genetic studies in rodents and more

recently in high-throughput chemical screens [6, 81]. In

several independent chemical screens, small molecules

showing the most significant period-lengthening activities

were found to be predominantly CKI inhibitors (Table 1)

[76–82, 95]. These compounds show diverse scaffold

structures and are able to prolong the period of luciferase

reporter rhythms to 48 h at 25 lM [77]. Inhibition of CKI

slows down PER protein turnover, thus decelerating clock

progression and lengthening the circadian period [6, 13].

The mechanistic convergence of these potent period-

lengthening molecules highlights the central role of PER

degradation cycles in setting the clock speed.

Kinase inhibitors are known to be promiscuous in target

selectivity, and most CKI inhibitors appear to target para-

logous CKI enzymes [58, 77, 78, 84]. In contrast, the

selective CKIe inhibitor PF-4800567 caused insignificant

period lengthening in cells and mice [84, 86], consistent

with genetic evidence supportive of a predominant role of

CKId in determining circadian speed [96]. Recently, three

period-lengthening compounds (Cmpd-1, -2, -3) were

shown to inhibit CKIe in vitro [81]; given their robust

period-lengthening effects, it is possible that they also

target CKId. Unlike Cmpd-1 and Cmpd-2, Cmpd-3 sig-

nificantly increased the levels of Per2 mRNAs, suggesting

a divergent mechanism for this CKI inhibitor in addition to

PER protein stabilization. In addition to CKId and CKIe,

casein kinase 2 (CK2) has also been shown to directly

phosphorylate PER and regulate its nuclear localization

and turnover in Drosophila and mammalian cells; in

agreement, inhibitors of CK2 were also found to lengthen

the circadian period [25, 97, 98]. Furthermore, a number of

period-lengthening small molecules are known to inhibit

CKIa, ERK, CDKs, p38, or c-JNK [25, 77, 78, 97]

(Table 1). Since most of these kinase inhibitors also acts on

Fig. 1 Small molecule modifiers of circadian clocks. In the mam-

malian circadian clock system, external signals are transmitted via

input pathways to the molecular oscillator consisted of interlocked

feedback loops. The molecular oscillator in turn orchestrates output

functions which may reciprocally regulate the clock via feedback

regulation. Small molecule modifiers of the clocks may target the

input pathways, the core clock, or output pathways with feedback

regulatory functions
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CKId, the exact contribution of inhibiting these other

kinases to period lengthening of these compounds requires

further study.

Apart from the above kinase inhibitors, several carba-

zole derivatives also lengthened the circadian period, but

appeared to function via potentiating the transcriptional

repression by CRY proteins [80]. In this study, purified

CRY proteins were found to directly bind to affinity resins

conjugated with an active derivative KL001; furthermore,

point mutation in the FAD binding pocket of CRY1

strongly attenuated its binding to the conjugated resin.

Previously, hypomorphic mutations in Fbxl3, encoding the

F-box E3 ligase FBXL3 required for CRY degradation,

were found to lengthen the circadian period [19–21]. These

studies thus indicate that activation of the primary repres-

sor CRYs in the mammalian clock, by either binding small

molecule agonists or blocking its turnover, lengthens the

circadian period. Together with the above studies on CKI

inhibitors, identification of CRY agonist molecules high-

lights the importance of the clock proteins in the negative

arm of the feedback loop (PERs and CRYs) in setting the

speed of the clock.

The target and mechanism of a period-lengthening

benzodiazepine derivative, Cmpd-4, is currently unclear

[81]. In central neurons, it appears to act as a canonical

agonist for GABAA receptors, contributing moderately to

Table 1 Summary of small

molecules capable of altering

the circadian period

Except as otherwise indicated,

the small molecules herein

negatively regulate their

respective targets. For analog

series, representative

compounds are listed. The clock

modifying activities of IC261,

CKI-7, D4476, DMAT, and

Calyculin A were specifically

tested based on their known

enzymatic targets. These small

molecules were not identified

via circadian-based screening or

chemical derivatization

approaches

Name CAS # Molecular targets Period effects References

IC261 186611-52-9 CKId/e Lengthening [22]

CKI-7 1177141-67-1 CKId/e Lengthening [82]

CK01 N/A CKId/e Lengthening [152]

D4476 301836-43-1 CKId/e Lengthening [95]

DMAT 749234-11-5 CK2, CKI? Lengthening [25, 97]

PF-4800567 1188296-52-7 CKIe Lengthening [84]

PF-670462 950912-80-8 CKId/e Lengthening [96]

Roscovitine 186692-46-6 CDK, CKId/e Lengthening [77]

TG003 300801-52-9 CLK, CKId/e Lengthening [77]

SB202190 152121-30-7 P38, CKId/e Lengthening [77]

PD169316 152121-53-4 P38, CKId/e Lengthening [77]

SU5416 204005-46-9 VEGFR PTK, CKId/e Lengthening [77]

DRB 53-85-0 CK2, CKId/e Lengthening [77]

SP600125 129-56-6 JNK, CKId/e Lengthening [77]

CGS-15943 104615-18-1 AR agonist, CKId/e Lengthening [77]

PPT 263717-53-9 ERa agonist, CKId/e Lengthening [77]

Calyculin A 101932-71-2 PP2A Lengthening [22]

17-OHP 68-96-2 Progesterone receptor Lengthening [77]

Vincristine 57-22-7 Tubulin/microtubule Shortening [76]

Etoposide 33419-42-0 DNA topoisomerase II Shortening [76]

Mitoxantrone 65271-80-9 DNA topoisomerase II Shortening [76]

Amsacrine 51264-14-3 DNA topoisomerase II Shortening [77, 103]

PMA 16561-29-8 PKC agonist Shortening [76]

SKF-96365 130495-35-1 Ca channel Shortening [76]

Indirubin-3’-oxime 160807-49-8 CDK, GSK-3b Shortening [76, 83]

Kenpaulone 142273-20-9 CDK, GSK-3b Shortening [76]

SB216763 280744-09-4 GSK-3b Shortening [76, 77]

Longdaysin 1353867-91-0 CKId/a, ERK2, CDK7 Lengthening [76]

LH846 639052-78-1 CKId Lengthening [79]

KL-001 309928-48-1 CRY Lengthening [80]

Cmpd-1 683807-31-0 CKIe, CKId? Lengthening [81]

Cmpd-2 892293-00-4 CKIe, CKId? Lengthening [81]

Cmpd-3 422279-51-4 CKIe, CKId? Lengthening [81]

Cmpd-4 533873-00-6 GABAAR agonist and ? Lengthening [81]

Cmpd-7 416879-98-6 Unknown Shortening [81]
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period lengthening. Its predominant activity, however, is

likely mediated by a novel target, leading to significant

period lengthening in peripheral, non-neuronal cells where

GABAA receptors are not abundantly expressed. This dual

action by Cmpd-4 highlights the complexity of circadian

regulation, and also reveals unexpected versatility of small

molecules.

In comparison, period-shortening small molecules are

less common. In contrast to early studies showing inhibi-

tion of GSK-3b activity by lithium or via genetic

manipulation caused period lengthening [99, 100], several

selective inhibitors of GSK-3b, including Indirubin-30-
oxime, Chir99021, Kenpaullone, and SB216763, were

recently found to shorten the circadian period in reporter

cell assays [72, 77, 83]. GSK-3b has been shown to

phosphorylate both PER2 and CRY2 proteins [101, 102],

modulating their nuclear localization and proteosomal

degradation, respectively. Given the important roles of

PER and CRY proteins in period regulation as mentioned

above, it will be of interest to determine the specific

mechanism by which GSK-3b inhibitors modulate circa-

dian progression.

Three DNA topoisomerase II inhibitors and chemo-

therapeutic agents, namely etoposide, mitoxantrone, and

Amsacrine, have also been shown to cause period short-

ening and phase advance [76, 77, 103]. It has been

proposed that DNA damage constitutes a circadian reset-

ting cue, or zeitgeber, capable of altering circadian

progression [104]. For example, c-irradiation and the

radiomimetic agent methylmethane sulphonate (MMS)

were shown to cause phase advance in mouse and Neu-

rospora, respectively, when administered during the

subjective day [105, 106]. On the other hand, circadian

clock genes have been implicated in mediating the DNA

damage response and cell cycle gating [107–112]. For

example, the clock has been shown to transcriptionally

regulate a key nucleotide excision repair factor XPA,

conferring robust defense against cisplatin-induced DNA

damage in the late afternoon [110]. Likewise, a yeast

metabolic clock also gates cell cycle progression as a

means of minimizing oxidative DNA damage [8, 113, 114].

Further investigation of the circadian function of the above

DNA damage and chemotherapy agents may reveal

important insight into the detailed mechanism underlying

the reciprocal relationship between the clock and the DNA

damage response/cell cycle progression.

Phase-altering modifiers

Phase-resetting mechanisms allow the clocks to respond to

environmental changes, conferring crucial adaptability in

physiology and behavior. Whereas period changes can cause

chronic phase delay or advance, acute phase shifts inde-

pendent of sustained period changes play a predominant role

in entrainment of the clock in response to the environment.

Compounds that perturb the input pathways or downstream

processes with feedback functions may transiently alter the

circadian phase of the core oscillator. In mammals, acute

phase resetting, or entrainment, of SCN clocks involves

immediate early induction of Per1, and more weakly Per2,

by the cAMP/CREB signaling pathway [10, 26]. Following

the initial discovery of serum-induced synchronization of

circadian gene oscillation in Rat-1 cells [57], many chemi-

cals, including a number of kinase inhibitors (Table 2), have

been shown to synchronize peripheral clocks and induce

phase shifts in vitro [58, 72, 115–118]. Many such com-

pounds also converge on the cAMP/CREB pathway and

induce Per expression, such as U0126 (ERK inhibitor) and

KN-62 (CamKII inhibitor) [119–123]. In fibroblast cells, two

cAMP-inducing compounds, Cmpd-5 and Cmpd-6, were

found to cause acute induction of Per1 mRNA levels and

PER2::Luc reporter bioluminescence, followed by signifi-

cant phase delay and amplitude damping of reporter rhythms

[81]. These observations are reminiscent of the effects seen

previously in SCN slices treated with the adenylyl cyclase

activator Forskolin [56]. Furthermore, an inhibitor of the

cAMP-catabolizing enzyme phosphodiesterase 4 (PDE4),

Rolipram, also caused acute bioluminescence induction and

subsequent phase delay [81]. In the SCN, the guanine

exchange factors Epac1/2, but not the hyperpolarizing cyclic

nucleotide-gated ion channels (HCN), were previously

found to be involved in mediating cAMP-induced clock

resetting [56]. Elucidation of the direct targets and down-

stream effectors for Cmpd-5 and Cmpd-6 requires further

investigation.

Phase resetting independent of acute Per induction has

also been reported. SB431542, an inhibitor of activin

receptor-like kinase (ALK), was found to attenuate alkaline

shock-induced phase delays via SMAD3-dependent acute

induction (within 20 min to 1 h) of the circadian tran-

scriptional regulator Dec1, but not Per1 [124]. DEC1 and

its paralog DEC2 were initially found to play a role in

suppressing Per1 transcription [125]. On the other hand,

double knockout of Dec1 and Dec2 severely attenuated

photic induction of Per1, also suggesting a potential

positive role of DECs in Per1 transcription [126]. In a

photic phase resetting experiment, a 30-min light pulse

administered at night was able to acutely induce Dec1 in

the SCN [125], mimicking the well-established light

induction of Per1. In contrast, a light pulse showed no

effects on Dec2. These observations together suggest that

different cues may differentially cause acute induction of

Per1 and/or Dec1 to reset the circadian phase. In the case

of SB431542, whether Per1 contributes to its overall phase

resetting effects requires further studies.
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Amplitude-altering compounds

Amplitude represents the robustness of oscillation, clearly

an important characteristic of any rhythmic process. The

amplitude of mouse free-running activity rhythms can be

measured as the relative power of the circadian component

via fast-Fourier transformation (FTT) algorithms [127].

More recently, circadian reporter assays based upon cycling

core clock elements allow convenient measurement of

rhythm amplitude as the difference between the peak and

the trough [10, 128]. In our previous chemical screen, 4

compounds (Cmpd-8, -9, -10, -11; Table 2) were identified

to dose-dependently enhance the amplitude of PER2:lucif-

erase reporter rhythm in fibroblast cells and pituitary

explants [81], hereafter renamed as clock-enhancing small

molecules (CEMs). These CEMs showed only modest

stimulatory effects on Per2 transcript levels, suggesting

post-transcriptional mechanisms required for the induction

of PER2::Luc reporter bioluminescence. In addition, CEMs

showed distinct effects on Bmal1-luc reporter rhythms in

U2OS cells as well as transcript oscillation of Bmal1 target

genes Dbp and Rev-erba. For example, whereas CEM1

appeared to strongly induce Bmal1-luc oscillatory ampli-

tude, CEM4 appeared to increase the magnitude (absolute

value) of both trough and peak reporter expression, leading

to only minor enhancement in amplitude (the difference

between peak and trough). These observations underscore

the complexity of the clock feedback regulatory circuit,

particularly with regard to clock amplitude.

Apart from amplitude effects, CEMs also caused period

shortening [81]; for example, at the concentration of 5 lM,

CEMs were able to shorten the circadian period by 1–3 h in

fibroblast cells. Whereas reciprocal regulation between

amplitude and phase shifts has been demonstrated in

rodents and humans [129–131], the relationship between

amplitude and period is not well understood. Previously,

classical mouse genetic studies have shown that overex-

pression of a bacterial artificial chromosome (BAC)

transgene of Clock shortened the circadian period by

approximately 1 h [132]. In flies, attaching a strong tran-

scriptional activator VP-16 to CYCLE, the equivalent of

mammalian BMAL1, or increasing the copy number of

dClock, has been shown to enhance circadian transcription

and reporter oscillatory amplitude [133]. Interestingly,

enhanced transcription under these conditions correlated

with shorter periods, likely attributable to accelerated

dPER accumulation and subsequent transcriptional

repression. These studies suggest that potentiating the

activities or levels of the positive factors can both enhance

the amplitude and shorten the period, primarily by accel-

erating the circadian phase when these factors are active.

On the other hand, in a detailed biochemical study of

mouse embryonic fibroblast (MEF) cells [134], CLOCK

and BMAL1 were found to be enriched relative to PERs

Table 2 Small molecules capable of altering the circadian phase and/or amplitude

Name CAS # Molecular targets Circadian effects References

U0126 109511-58-2 ERK Attenuated phase shift [119–121]

KN-62 127191-97-3 CaMKII Attenuated phase shift [122]

KT5823 126643-37-6 PKG Attenuated phase advance [118]

SB431542 301836-41-9 ALK Attenuated phase delay [124]

Cmpd-5 361469-09-2 cAMP inducer Phase delay [81]

Cmpd-6 443097-13-0 cAMP inducer Phase delay [81]

Rolipram 61413-54-5 PDE Phase delay [81]

GSK4112 1216744-19-2 REV-ERBa Amplitude reduction [87, 89]

SR9011/SR9009 1379686-29-9/1379686-30-2 REV-ERBs Amplitude reduction [90]

T0901317 293754-55-9 RORa/c N/A [93]

SR1001 1335106-03-0 RORa/c N/A [94]

SR1078 1246525-60-9 RORa/c agonist N/A [91]

SR3335 293753-05-6 RORa N/A [92]

CEM1/Cmpd-8 329903-11-9 Unknown Amplitude enhancement, period shortening [81]

CEM2/Cmpd-9 687581-48-2 Unknown Amplitude enhancement, period shortening [81]

CEM3/Cmpd-10 305334-67-2 Unknown Amplitude enhancement, period shortening [81]

CEM4/Cmpd-11 892267-62-8 Unknown Amplitude enhancement, period shortening [81]

Except as otherwise indicated, the small molecules herein negatively regulate their respective targets. For analog series, representative com-

pounds are listed. The clock modifying activities of U0126, KN-62, KT5823, and SB431542 were specifically tested based on their known

enzymatic targets. These small molecules were not identified via circadian-based screening or chemical derivatization approaches
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and CRYs. Ectopic expression of CLOCK and BMAL1 by

adenoviral expression specifically increased the basal lev-

els and thus dampened the overall rhythm of the

PER2::Luc reporter. In contrast, overexpression of the less

abundant PERs in MEFs enhanced the reporter rhythms.

Therefore, maximum circadian amplitude appears to

depend on stoichiometic levels of the positive and negative

factors in the core clock feedback loop [134]. Observations

from these studies can be unified if CLOCK or CYCLE are

limiting in flies. Regardless, future mechanistic studies

using CEMs will reveal key insights into the regulatory

mechanisms of clock amplitude and period.

Elucidation of the direct signaling pathways or proteins

targeted by CEMs is of significant interest. Previously, in

an siRNA functional genomic screen using a U2OS cell

line containing a Bmal1-driven destabilized luciferase

reporter, over 50 genes were identified whose knockdown

increased the circadian amplitude [128]. Examination of

the gene list reveals highly divergent intracellular pro-

cesses, suggesting that clock amplitude regulation is

subjected to broad network control. Furthermore, the cen-

tral SCN clock in the mammalian clock system has been

shown to be particularly robust due to intercellular cou-

pling [135] and resistant to genetic perturbation [136].

Among the identified CEMs showing general efficacy in

peripheral clocks, only CEM3 appeared to enhance the

reporter rhythm in SCN explants. At the cellular level, the

failure of other CEMs to activate SCN clocks could result

from the lack of expression of the protein target in the SCN

(assuming they are not core clock proteins), or the inability

to overcome the strong coupling among the SCN neurons.

Future studies will investigate the effects of these CEMs on

single-cell bioluminescence [137] to distinguish between

these possibilities. Such studies will also shed new light

onto the effects of CEMs on rhythm damping in cultured

cells, generally considered to be a consequence of loss of

synchrony.

As opposed to CEMs, an inverse agonist of REV-ERBs,

SR9011, was recently found to significantly repress oscil-

lation amplitude without altering the clock period [90],

consistent with the notion that the secondary feedback

loop, consisting of REV-ERBs and RORs, functions to

confer robustness and stability of the clock [138]. SR9011

also disrupted wheel-running activity immediately after

administration. Notably, SR9011 appeared to promote

energy expenditure and reduce weight gain in a diet-

induced obesity model, providing an interesting example of

beneficial effects of repressing the clock amplitude on

energy metabolism. Whether this represents a general

strategy or a specific case involving a derivatized nuclear

receptor ligand remains to be seen. In the above chemical

screen [81], a significant number of small molecules,

estimated to be 1–3 % of the total compounds screened,

strongly reduced the amplitude of reporter rhythms (data

not shown). Visual examination at the end of the experi-

ments revealed widespread cytotoxicity in these samples.

Therefore, identification and utilization of amplitude-

repressing compounds will require careful selection of

secondary screens to eliminate cytotoxic and other com-

plicating factors.

Therapeutic potentials in clock-related diseases

Circadian disruption is well known to contribute to pathol-

ogies with a strong temporal basis such as jetlag, sleep

disorders, and seasonal affective disorders [6]. In recent

years, a host of exciting studies have provided key mecha-

nistic insights into circadian control of other physiological

processes, and thus greatly expanded the spectrum of clock-

related diseases. For example, the dominant negative

ClockD19 mutation or Bmal1 knockout led to impaired

pancreatic insulin secretion and caused diabetic glucose

intolerance in mice [37, 139, 140]. The ClockD19 mutant

mice are also prone to diet-induced obesity [141], perhaps in

part due to the increased intestinal absorption of monosac-

charides and lipids in these mice [142]. In a recent study, the

Krüppel-like transcription factor 15 (KLF15) was found to

be directly activated by CLOCK/BMAL1 via the E-box

promoter element, and KLF15 in turn regulated the tran-

scription of the gene encoding KvCHIP2, an important

component of the cardiac ion channel required for myocar-

dial repolarization [143]. Disruption of this transcriptional

cascade was shown to render increased susceptibility to

ventricular arrhythmias, thus providing a mechanistic

explanation for the high incidence rates of myocardial

infarction in the early morning. Recent studies have also

revealed circadian controls of key regulators of immune

responses in both mice and plants [144, 145]. These advances

in circadian biology lay the foundation for applying clock-

based therapies to a wide variety of diseases.

There are two general strategies in exploiting circadian

rhythms to combat clock-related diseases. Traditional

chronotherapy entails optimizing the circadian timing for

existing therapies, such as cancer chemotherapy, to

improve efficacy and/or reduce toxicity [73, 146]. On the

other hand, small molecule modifiers with desirable phar-

macokinetic and pharmacodynamic characteristics afford a

novel strategy involving direct manipulation of the clock to

improve output pathophysiology intrinsic to disease etiol-

ogy. The small molecule modifiers may be administered by

themselves or in conjunction with complementary thera-

pies. The general rationale is to match the phenotypic or

molecular function of small molecules with corresponding

diseases with known clock dysfunctions. Jetlag is funda-

mentally a phase misalignment and therefore can be
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targeted by phase-resetting molecules. Given the reciprocal

relationship between phase shift and amplitude, an ampli-

tude repressor could be co-administered to augment or

accelerate a phase shift. Another clock-related disorder is

the familial advanced sleep phase syndrome (FASPS),

characterized by short circadian periods, and in one family

linked to a T44A missense mutation in human CK1d
located within the N-terminal ATP-binding motif [147,

148]. Paradoxically, this FASPS mutation repressed CK1d
kinase activity, suggesting distinct effects on PER proteins

and circadian period compared with the aforementioned

CKI inhibitors. It would be interesting to investigate

whether known CKI inhibitors can act on this mutant CK1d
to prolong the period and alleviate the sleep syndrome. One

good candidate is the selective CK1d inhibitor PF-670462.

Previously, daily dosing of PF-670462 has been shown to

induce behavioral rhythms in mice that were arrhythmic

due to either constant light exposure or disruption in the

Vipr2 gene encoding a G protein-coupled receptor required

for SCN pacemaker functions [86], indicating in vivo

activity in a circadian mouse mutant.

Several studies have revealed a strong correlation

between clock dampening (reduced amplitude) and various

pathological conditions [37, 129]. In particular, the

ClockD19 mutant mice are known to exhibit damped

amplitude and lengthened period of circadian rhythms,

accompanied by various physiological and behavioral

deficiencies [129, 141, 142, 149–151]. Using this mouse

line as a disease model, a recent study showed that a CKId/

e inhibitor CK01, similar to PF-670462, was able to alle-

viate the manic-like behaviors in these mice [152]. In cell

culture, ClockD19/? heterozygous cells displayed

approximately threefold reduction in reporter rhythm

amplitude relative to wild-type cells [81], and CEM treat-

ment largely restored the normal amplitude in ClockD19/?

cells. Moreover, CEM3 also enhanced reporter amplitude

in ClockD19/? SCN explants. Certain CEMs were able to

acutely induce reporter expression followed by a

descending phase in ClockD19/ClockD19 or even Bmal1-

deficient cells using a daily dosing protocol (Fig. 2).

Detailed circadian gene analysis will help elucidate whe-

ther and how such CEM-induced reporter oscillations

resemble canonical circadian cycles. It is possible that even

slight amplitude enhancement of individual cellular oscil-

lators can combine to elicit significant physiological

improvement in patients with partially impaired clocks.

Future directions

It is useful to expand the ensemble of small molecules

capable of manipulating the clock by chemical screening or

targeted ligand development. For example, new screens

can utilize neuronal (or SCN derived) stable reporter cells

[153], additional clock promoters (e.g., Dec2) [154],

nuclear localization via high content screening [155], or

simply exploring new chemical space. For ligand devel-

opment, one particularly interesting target is the PER-

ARNT-SIM (PAS) domains present in PER proteins and

the bHLH-PAS family of transcription factors including

CLOCK/NPAS2, BMAL1, HIF, and ARNT. In microor-

ganisms and plants, PAS domain proteins are required for

photic and two-component signaling pathways [156, 157].

In mammals, PAS domains mainly function in protein–

protein interaction and recruitment [158, 159]. However,

recent crystal structures of HIF2a-ARNT PAS domains

revealed a buried internal pocket in the PAS-B domain of

HIF2a, and artificial bicyclic ligands were capable of al-

losterically modulating heterodimer formation [160, 161].

More recently, the crystal structure of the full-length

CLOCK/BMAL1 heterodimer also showed highly con-

served structural features in the asymmetrically positioned

CLOCK/BMAL1 PAS-B domains [158]. For example,

Trp427 on the BMAL1 PAS-B domain inserts into a

binding pocket on the CLOCK PAS-B domain that

resembles cofactor-binding motifs in other PAS proteins.

Interestingly, the corresponding Tryptophan residue on the

CLOCK PAS-B domain protrudes away from the

CLOCK:BMAL1 dimer and may interact with the PAS

domains of CRY [158, 162]. These findings suggest a

central role of the binding pockets on PAS-B domains

during dynamic circadian complex formation. It will be of

strong interest to derive ligands capable of binding PAS

domains of clock proteins.

Small molecule modifiers are useful probes to under-

stand basic circadian biology. As mentioned above,

detailed characterization of how the modifiers regulate the

core oscillator will reveal important insight into the regu-

latory mechanism of clock amplitude and its relationship

with circadian period. Ultimately, the holy grail of small

molecule studies is to identify the cellular pathways or

proteins that are directly targeted by small molecules. Both

functional genomic screens (siRNA, shRNA libraries) [74]

as well as chemical proteomics [80] have been successfully

utilized to identify small molecule targets. On the other

hand, we can now envision using circadian mouse mutants

as disease models to investigate whether restoring normal

clock functions by small molecules will improve clock

output physiology. The next step will be to directly

applying small molecule modifiers including CEMs to

canonical disease models, e.g., ob/ob mice in obesity and

diabetes. A rational approach is to characterize the circa-

dian features, at both molecular and physiological levels, of

these disease models [163] in order to select small mole-

cules with the best chance of therapeutic efficacy, either

alone or in combination. Humans display a wide range of
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circadian phenotypes [164, 165]; of note, the period lengths

of fibroblast cells from human subjects have been shown to

correlate well with behavioral chronotypes. Therefore,

application of small molecules in human fibroblast cells

constitutes an in vitro experimental system toward the

ultimate goal of pharmacologically manipulating human

circadian rhythms.

In conclusion, small molecule modifiers have taught us

much about how clocks are intricately constructed and

broadly regulated. Identification of their underlying

mechanisms will continue to unravel key regulatory nodes

in the clock network. As we increasingly appreciate the

importance of timing in biology and disease, the timing is

also opportune to fully exploit small molecule modifiers for

exciting advances in both basic research and therapeutic

development.
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