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PURPOSE. The goal of this study was to determine if
glaucomatous progression in suspect eyes can be predicted
from baseline confocal scanning laser ophthalmoscope (CSLO)
and standard automated perimetry (SAP) measurements
analyzed with relevance vector machine (RVM) classifiers.

METHODS. Two hundred sixty-four eyes of 193 participants
were included. All eyes had normal SAP results at baseline with
five or more SAP tests over time. Eyes were labeled progressed
(n ¼ 47) or stable (n ¼ 217) during follow-up based on SAP
Guided Progression Analysis or serial stereophotograph assess-
ment. Baseline CSLO-measured topographic parameters (n ¼
117) and baseline total deviation values from the 24-2 SAP test-
grid (n ¼ 52) were selected from each eye. Ten-fold cross-
validation was used to train and test RVMs using the CSLO and
SAP features. Receiver operating characteristic (ROC) curve
areas were calculated using full and optimized feature sets.
ROC curve results from RVM analyses of CSLO, SAP, and CSLO
and SAP combined were compared to CSLO and SAP global

indices (Glaucoma Probability Score, mean deviation and
pattern standard deviation).

RESULTS. The areas under the ROC curves (AUROCs) for RVMs
trained on optimized feature sets of CSLO parameters, SAP
parameters, and CSLO and SAP parameters combined were
0.640, 0.762, and 0.805, respectively. AUROCs for CSLO
Glaucoma Probability Score, SAP mean deviation (MD), and
SAP pattern standard deviation (PSD) were 0.517, 0.513, and
0.620, respectively. No CSLO or SAP global indices discrimi-
nated between baseline measurements from progressed and
stable eyes better than chance.

CONCLUSIONS. In our sample, RVM analyses of baseline CSLO and
SAP measurements could identify eyes that showed future
glaucomatous progression with a higher accuracy than the
CSLO and SAP global indices. (ClinicalTrials.gov numbers,
NCT00221897, NCT00221923.) (Invest Ophthalmol Vis Sci.

2012;53:2382–2389) DOI:10.1167/iovs.11-7951

To successfully manage disease in glaucoma patients, the
ability to identify patients who are at the greatest risk of

progression is desirable. One way to determine this is by
studying baseline measurements and demographics from
patients that have been followed longitudinally and have either
progressed or remained stable over time. This may enable the
identification of factors that are the most significant predictors
of glaucomatous change.

The recent Ocular Hypertension Treatment Study1 and the
European Glaucoma Prevention Study2 have shown that
certain risk factors are predictive of the development of
glaucoma. In addition, several studies have indicated that
optical imaging measurements or visual field measurements are
predictive of the development of glaucoma in glaucoma
suspect eyes or the progression of glaucoma in glaucomatous
eyes.3–11 Therefore, it is likely that baseline imaging and/or
visual field measurements contain information that can
increase the accuracy of predicting glaucomatous progression
in glaucoma suspect eyes. It can be difficult, however, to
combine the large amount of data provided by currently
available glaucoma detection techniques in a meaningful way.
Machine learning classifiers (MLCs) can accomplish this
objectively, without the classification constraints required by
many statistical techniques (e.g., linear or hyperbolic decision
surfaces).

MLCs have equaled or exceeded the performance of
statistical classifiers to discriminate between healthy and
glaucomatous eyes using optical imaging (confocal scanning
laser ophthalmoscopy [CSLO], scanning laser polarimetry
[SLP], optical coherence tomography [OCT])12–20 and psycho-
physical techniques (standard automated perimetry [SAP];
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short-wavelength automated perimetry [SWAP])21–31 (see
Bowd and Goldbaum32 for a review). In two recent studies,
we trained and tested support vector machines (SVMs) and
other MLCs on SAP26 and CSLO13 data individually and
described the ability of the trained MLCs to discriminate
glaucomatous from healthy eyes. In a follow-up study, we
applied SVM-derived cut-offs for discriminating between
healthy and glaucomatous eyes (derived from the prior study)
to baseline CSLO measurements from glaucoma suspect
(ocular hypertensive or glaucomatous appearing disc with
normal SAP results) eyes and determined that when suspect
eyes were classified based on glaucoma/no glaucoma cut-offs,
results were predictive of the future development of repeat-
able glaucomatous SAP defects.4

Recent methodological advances in MLCs suggest that more
accurate prediction of glaucomatous progression likely is
possible. Relevance vector machine33,34 (RVM) is a relatively
new MLC that uses Bayesian strategies to provide a probability
of group membership during training based on the character-
istics of a training set (e.g., of healthy and glaucomatous eyes
or progressed and stable eyes). Studies have shown that RVM is
able to classify glaucoma eyes as well as or better than other
techniques.35–38

In a previous study, we demonstrated that RVM analysis of
structural measurements could predict which glaucoma
suspect eyes would develop glaucomatous visual field defects.
In the current study, we determine whether RVMs trained and
tested on baseline CSLO and/or SAP measurements from
known progressed and stable eyes can identify eyes most likely
to progress. We predicted that RVMs trained and tested on
baseline CSLO and SAP measurements (and combinations of
these measurements) would better separate stable eyes from
eyes that showed future glaucomatous progression than
baseline global indices provided by both technologies.

METHODS

Subjects

Subjects included in the current study were participants in the

University of California, San Diego (UCSD)-based Diagnostic Innova-

tions in Glaucoma Study (DIGS) and African Descent and Glaucoma

Evaluation Study (ADAGES, which also includes participants from

University of Alabama, Birmingham [UAB] and New York Eye and Ear

Infirmary [NYEE]). Two hundred sixty-four eyes from 193 individuals

were studied based on the inclusion criteria that all eyes have five or

more reliable SAP 24-2 Swedish Interactive Threshold Algorithm (SITA)

tests and be glaucoma suspects at the time of the baseline examination.

That is, they were under the care of a glaucoma specialist and had

some combination of a suspicious looking optic nerve/retinal nerve

fiber layer by photography or examination, suspicious or abnormal

visual field (not repeatable and defined as pattern standard deviation or

Glaucoma Hemifield Test outside normal limits), or a history of

elevated intraocular pressure in one or both eyes.

Each study participant underwent a comprehensive ophthalmolog-

ic evaluation including review of medical history, best-corrected visual

acuity testing, slit-lamp biomicroscopy, intraocular pressure measure-

ment with Goldmann applanation tonometry, gonioscopy, dilated

fundus examination with a 78 diopter (D) lens, simultaneous

stereoscopic optic disc photography (TRC-SS, Topcon Instruments

Corp. of America, Paramus, NJ), and SAP using the 24-2 SITA test

strategy (Humphrey Field Analyzer II, Carl Zeiss Meditec, Dublin, CA).

To be included in the study, participants had to have a best-corrected

acuity better than or equal to 20/40, spherical refraction within 65.0

D and cylinder correction within 63.0 D at baseline, and open angles

on gonioscopy. Eyes with nonglaucomatous optic neuropathy, uveitis,

or coexisting retinal disease that could affect visual fields were

excluded.

For labeling eyes during classifier training, eyes were divided into

two groups: progressed and nonprogressed (i.e., stable). Eyes were

defined as progressed (n ¼ 47) if they showed likely visual field

progression in sequential fields based on the SAP Guided Progression

Analysis (GPA) or had progressive GON (PGON) based on assessment

of serial stereoscopic optic disc photographs, during follow-up. GPA

indicates change from baseline by evaluating all test points and

indicates ‘‘likely’’ progression for the full field if change (greater than

the variability observed in two baseline measurements) in three of the

same points, is repeatable in three consecutive exams.39 For our

purposes, PGON was defined as increased neuroretinal rim thinning

or RNFL defect size, or the appearance of a new RNFL defect.

Photographic evidence of PGON was based on masked (patient name,

diagnosis, and temporal order of photographs) comparison between

baseline and follow-up photographs by two UCSD Hamilton

Glaucoma Center-based Imaging Data Evaluation and Analysis (IDEA)

Center certified observers. In the case of a disagreement, a third

observer served as an adjudicator. Of the 47 progressed eyes, 18 had

PGON only, 23 progressed by GPA only, and 6 progressed by both

assessment techniques. This level of agreement between progression

detection techniques is similar to that observed in other studies (e.g.,

Kishor K, et al. IOVS 2009; 50: ARVO E-Abstract 2241). Stable eyes (n

¼ 217) were stable by both assessment methods for a minimum of 4

years.

This research followed the tenets of the Declaration of Helsinki,

Health Insurance Portability and Accountability Act guidelines, and the

UCSD, UAB, and NYEE Human Research Protection Programs approved

all methodology.

Confocal Scanning Laser Ophthalmoscopy

Study participants underwent ocular imaging with the commercially

available HRT II (software version 3.0, Heidelberg Engineering,

Heidelberg, Germany). The HRT is a confocal scanning laser

ophthalmoscope that provides software-generated measurements

describing the topography of the surface of the optic disc and adjacent

parapapillary retina. One hundred seventeen software-generated

parameters were used in the current analysis. These included global

and sectoral (superior temporal, temporal, inferior temporal, inferior

nasal, nasal, and superior nasal) measurements of all available

parameters as well as global measurements of Mean Depth of

Reference, Vertical CDR, Horizontal CDR, Linear CDR, and Reference

Height. We decided not to limit this large number of parameters in

order to permit the MLCs to empirically select the most relevant

parameters, rather than to preselect them based on presumptions

regarding independence.

For HRT, good quality images were those with mean pixel height

standard deviation (MPHSD) <50 lm and with even image exposure

and good centering as determined by UCSD IDEA Center personnel.

Seven of 271 (2.6%) images included had a MPHSD between 40 and

50 lm and approximately 75% of images had an image MPHSD

�18 lm.

Standard Automated Perimetry

Reliable SAP (using SITA) total deviation (TD) values at each of the 52

test points (excluding those representing the blind spot) that compose

the 24-2 test pattern were obtained from each participant within 6

months of HRT II imaging. Reliability was defined as false positives,

fixation losses, and false negatives � 25%. Visual fields had no

observable testing artifacts as determined by UCSD Hamilton

Glaucoma Center-based Visual Field Assessment Center (VisFACT)

personnel. TD values were used because pilot analyses suggested

superior performance of TD compared to thresholds and pattern

deviation results.
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Relevance Vector Machine

The RVM learning classifier is a Bayesian model which provides

probabilistic predictions (e.g., probability of future progression based

on the training examples) through Bayesian inference during the

training process.33,34 RVM is considered a sparse classifier because its

decision function depends on fewer input data (i.e., is more sparse)

than SVM classifiers, which minimize the training error under the

constraint of maximum smoothness, requiring more decision points.33

A sparser classifier decreases data-specific over-fitting, permitting the

classifier’s results to be more generalizable to other independent data

sets. Because RVM analysis incorporates probability, its output is the

probability of class membership. This provides a conditional distribu-

tion of input parameters that accounts for uncertainty in the

prediction.40

The RVM was implemented using the SparseBayes V1.0 algorithm

(Microsoft Research, Cambridge, UK) for MATLAB (The Mathworks,

Natick, MA). The kernel width was optimized by a grid search with width

¼
ffiffiffiffiffiffiffiffiffi

2aN
p

, where a¼ 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, and 3.0; N is the

number of input parameters (i.e., variables). The a that yielded the largest

areas under the Receiver operating characteristic (ROC) curve (AUROC)

was chosen for final analysis. We applied feature selection by backward

elimination (see section on data optimization) to rank the parameters by

their contribution to the classification decision and to improve classifier

performance by eliminating the least useful parameters.

Analyses

First, the RVM classifiers were trained and tested separately on the 117-

dimension HRT data and the 52-dimension SAP TD data from

progressed and stable eyes. Next, RVMs were trained and tested on

HRT data and SAP TD data combined, resulting in 169 input

dimensions (117 HRT inputs þ 52 SAP inputs). Performance of the

RVM classifiers trained on HRT data, SAP data, and combined data were

compared to the HRT Glaucoma Probability Score (GPS) and to SAP

mean deviation (MD) and pattern standard deviation (PSD) values, in

order to compare RVM performance to the performance of currently

available (i.e., standard) global indices from HRT and SAP. Finally, these

results were compared to RVM results based on optimized (by

backward elimination) HRT, SAP, and combined data sets.

For each eye, RVM provided a conditional probability of progres-

sion as output, p(progression j HRT and/or SAP parameters), which

was used for estimating the diagnostic accuracy of the RVM for

identifying future glaucomatous progression. AUROCs for classifying

eyes as progressed or stable from baseline measurements were

determined for each RVM classifier and each global index from HRT

and SAP using a nonparametric technique for clustered data (because

both eyes of some participants were included).41,42 This technique also

was used to identify significant differences in AUROCs. Significant

differences between AUROCs and chance discrimination (i.e., AUROC

¼ 0.50) were indicated when the 95% confidence interval (CI) of an

AUROC did not include 0.50.43

Training and Testing Machine Learning Classifiers

Tenfold cross-validation was used to train and test RVM classifiers to

avoid training and testing on the same data. First, the full complement

of progressed (n¼ 47) and stable (n¼ 217) eyes was randomly divided

into 10 approximately equal, exhaustive, and mutually exclusive

subsets (subsets of 26 or 27 eyes). Next, classifiers were trained on

nine subsets and subsequently tested on the 10th subset. This

sequence was repeated 10 times, with each subset serving as the test

set one time, so that each tested eye was never part of its training set

and was tested only once. The test results from all eyes were then used

to plot the bias-corrected ROC curves. Sensitivities for detecting

progressors from baseline examinations at 75% and 85% specificities,

arbitrarily chosen to represent moderate and high specificity,

respectively, also were reported.

Data Set Optimization

Because the dimensionality of the data sets (number of parameters) is

large relative to the size of the data sets (number of study eyes), we

used backward elimination to reduce the data dimension to minimize

the inclusion of irrelevant parameters in the solution set40 for all RVM

analyses. We have found backward elimination to be a slight but

consistent improvement over forward selection for optimal feature

selection.13,26,35 Backward elimination started with the full-dimension-

al feature set and iteratively deleted the least contributing parameter

until performance peaked and began to decline (i.e., the number of

features that resulted in the maximum AUROC before additional

features resulted in AUROC decline were included).

Similar to using 10-fold cross-validation to minimize bias in the

testing and training of the full-dimension RVM, we used fivefold cross-

validation to minimize bias in the test sets used during the process of

optimizing the RVM feature sets. This technique for optimization has

been discussed in greater detail previously.20

Several optimized feature sets were investigated for RVM using each

data set tested (HRT only, SAP only, and HRTþSAP combined). We

report here results from the optimized feature set for each data set that

resulted in the largest AUROC only, although differences in AUROC

were not always significant among sets.

RESULTS

Demographic descriptors of study participants and baseline
global HRT (i.e., GPS) and SAP (i.e., MD and PSD) indices are
shown in Table 1. Only baseline age and SAP PSD were
significantly different (with a¼ 0.05) between progressed and
stable groups. Reported P values are for two-tailed tests.

TABLE 1. Demographic Data and HRT and SAP Global Indices at
Baseline and Average Follow-Up Duration for Progressed and Stable
Eyes

Progressed

Eyes (SD)

(n ¼ 47)

Stable

Eyes (SD)

(n ¼ 217) P

Age at baseline (y) 60.23 (10.9) 56.2 (13.0) 0.028

Percent female 69 58 0.272*

HRT GPS at baseline 0.508 (0.321) 0.470 (0.304) 0.462

SAP MD at baseline (dB) -0.62 (1.30) -0.58 (1.39) 0.850

SAP PSD at baseline (dB) 1.80 (0.57) 1.61 (0.48) 0.031

Average follow-up duration (y) 5.35 (1.90) 5.10 (1.09) 0.378

* Fisher’s Exact Test.

TABLE 2. RVM Output (i.e., Probability of Progression) Measured at
Baseline between Progressed and Stable Eyes. RVM Classifier Output
Indicates Assigned Probability of Progression

Input Parameters

Progressed

Eyes (SD)

(n ¼ 47)

Stable

Eyes (SD)

(n ¼ 217) P

HRT (117 features) 0.187 (0.078) 0.174 (0.070) 0.157

Optimized HRT

(8 features)

0.214 (0.092) 0.169 (0.083) 0.001

SAP TD (52 features) 0.230 (0.166) 0.150 (0.153) 0.002

Optimized SAP TD

(23 features)

0.328 (0.242) 0.141 (0.164) <0.0001

HRT and SAP TD

(169 features)

0.150 (0.166) 0.244 (0.209) 0.002

Optimized HRT

and SAP TD

(28 features)

0.372 (0.249) 0.130 (0.164) <0.0001
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Baseline RVM outputs for all RVMs investigated are shown in
Table 2. There was a significant difference in output between
progressed and stable eyes for all RVMs (all P � 0.002) except
HRT trained and tested on the full-dimensional (117 features)
data (P ¼ 0.157). Because we expected baseline values to be
higher in progressed eyes, reported P values are for one-tailed
tests.

Classification Results

AUROCs (95% CI) for discriminating between progressed and
stable eyes for baseline HRT GPS, SAP MD, and SAP PSD values
were 0.517 (0.349, 0.685), 0.513 (0.359, 0.668), and 0.620
(0.475, 0.766), respectively. None of these AUROCs were
significantly different from 0.5 (i.e., none of these parameters
discriminated between baseline measurements from pro-
gressed and stable eyes any better than chance).

Because AUROCs for RVMs using optimized HRT/SAP data
tend to be higher than nonoptimized AUROCs (if not always
significantly so),13,20,26,35 nonoptimized results are shown in
Table 3 only, while optimized results are reported both in the
table and in the following text. The AUROC for RVM using
optimized HRT data alone (8 features) was 0.640 (0.524,
0.757). The AUROC for RVMs using optimized SAP TD alone
(23 features) and optimized HRT and SAP TD combined (28
features; 15 HRT features and 13 VF features) were 0.762
(0.646, 0.878) and 0.805 (0.696, 0.913), respectively. Both of
these values were significantly larger than the AUROCs for HRT
GPS and SAP MD. In addition, the AUROC for RVM using
optimized HRT and SAP TD combined was greater than that for
RVM using optimized HRT data alone (all P < 0.05). AUROCs
for all of the RVM results described above were significantly
larger than 0.5 (i.e., were significantly better than chance) and
are shown in Figure 1. Sensitivities at fixed specificities of 0.75
and 0.85 are shown in Table 3 and are somewhat higher when
HRT and SAP data are combined and optimized.

Because the probability of progression in glaucoma is
generally quite low, we also reported and compared the partial
AUROCs (pAUROCs) for moderate to high specificities greater
than 0.75 and 0.85 (i.e., from 0.75 to 1.0 specificity and from
0.85 to 1.0 specificity). It should be noted that the maximum
possible areas for these two curves are 0.25 and 0.15,
respectively. No significant differences among pAUROCs were
observed with a¼ 0.05,44 likely because of the limited range of
AUROC values in these small segments of the curves. However,
pAUROCs for both RVM using optimized SAP TD values and
RVM using optimized HRT and SAP TD parameters combined
performed better than chance when specificity was >0.75
(pAUROC for chance¼ 0.03125, in this case). No SAP or HRT
global indices or RVM models performed better than chance
when specificity was > 0.85 (pAUROC for chance¼ 0.01125).
These results are shown in Table 4.

Probabilistic Results

RVM output is in the form of a probability of an eye belonging
to the progressing group of the training set. The nominally
best-performing (by largest AUROC area) RVM, an optimized
combination of HRT and SAP measurements, provided a mean
probability of progression of 0.369 (SD ¼ 0.251) for progress-
ing eyes and 0.132 (SD ¼ 0.165) for stable eyes (P < 0.001).
Figure 2 shows the number of progressed and stable eyes that
fell into each 10% probability-of-progression bin based on RVM
output. Using a probability-of-progression cut-off of 0.50
(selected arbitrarily), baseline measurements from 14 of 47
progressing eyes were correctly assigned a probability of
progressing (sensitivity ¼ 0.30) and baseline measurements
from 9 of 217 stable eyes were incorrectly assigned a
probability of progressing (specificity ¼ 0.96). Although the
AUROC for this analysis was 0.805, there was a considerable
overlap in RVM output between progressing and stable eyes. In
particular, 70% of progressed eyes were classified as stable at
baseline, when using a cut-off of 0.50. An RVM progression/
stable cut-off of 0.50 is not necessarily ideal because the
criterion for a meaningful cut-off is dependent on the desired
sensitivity and specificity pairing. When we set the specificity
to an acceptable 0.85 in stable eyes (RVM cut-off¼ 0.274) the

TABLE 3. AUROCs and Sensitivities at fixed Specificities for Classifying Eyes as Progressed or Stable at Baseline for All Techniques/Parameters

Technique AUROC (95% CI)

Sensitivity at

»0.75 Specificity

Sensitivity at

»0.85 Specificity

HRT GPS 0.517 (0.349–0.685) 0.319 0.213

SAP MD 0.513 (0.359–0.668) 0.213 0.192

SAP PSD 0.620 (0.475–0.766) 0.447 0.340

RVM using all HRT parameters (117 features) 0.544 (0.395–0.694) 0.383 0.255

RVM using optimized set of HRT parameters (8 features) 0.640 (0.524–0.757) 0.447 0.255

RVM using all SAP TD parameters (52 features) 0.669 (0.528–0.808) 0.489 0.277

RVM using optimized set of SAP TD parameters (23 features) 0.762 (0.646–0.878) 0.638 0.468

RVM using all HRT and SAP TD parameters (169 features) 0.644 (0.528–0.761) 0.404 0.362

RVM using optimized set of HRT and SAP TD parameters (28 features) 0.805 (0.696–0.913) 0.723 0.596

FIGURE 1. ROC curves for global HRT and SAP parameters and
optimized RVM results. AUROCs are provided in the Legend.
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sensitivity of RVM output increased to 0.58, resulting in a
positive likelihood ratio of 3.66 (95% CI ¼ 2.45 to 5.73).

DISCUSSION

Results from the current study indicate that RVM analysis of
baseline HRT and SAP measurements from glaucoma suspect
eyes can predict which eyes will and will not show
glaucomatous progression in the future, while baseline global
indices from HRT and SAP cannot. Combining HRT and SAP
measurements improved the discrimination somewhat. These
results indicate that there is valuable information available in
baseline HRT and SAP output that is not apparent to current
algorithms.

A previous study suggested that MLC-based analyses of HRT
data could discriminate between baseline measurements from
progressing and stable eyes.4 This earlier study applied MLC
cut-offs that were most effective at classifying healthy and
glaucoma eyes (i.e., eyes with repeatable SAP defects) to the
baseline measurements from longitudinal series. We believe
the current study provides stronger evidence of the ability of
MLCs to predict progression because cut-offs were derived
from baseline measurements in glaucoma suspect eyes.

In the current study, combining HRT and SAP information
resulted in a general trend of increased performance for
discriminating between progressed and stable eyes. However,
significant improvements over the best results using HRT or
SAP data alone were not always observed. For instance, the
AUROC for optimized RVM for HRT and SAP TD combined was
not significantly greater than the AUROC for optimized RVM for
SAP TD alone (P > 0.10). Accuracy of MLC analyses of HRT and
SAP parameters improved upon standard parameters for each
technique. These results agree with those of studies using
OCT,15 SAP,26 CSLO,13 and SLP35 to discriminate between
healthy and glaucomatous eyes and indicate that RVM analyses
show promise for predicting progression from complex
imaging and visual field data.

RVM techniques provide intuitive probability of group
membership as output. Output from RVMs indicated that the
majority of progressed eyes were assigned a higher probability
of belonging to the progressed training-group. However, the
RVM probabilities derived for progressed and stable eyes were
not maximally different. This likely is because baseline HRT
and SAP measurements from progressed and stable eyes were
not dramatically different (evidenced by similar HRT GPS and
SAP MD between groups, Table 1). We examined the baseline
HRT and SAP printouts from two outlier eyes with a high
probability of progression (‡90%, see Fig. 2) that remained
stable during follow-up. In both cases HRT and SAP measure-
ments were unremarkable. It is possible, if not likely, that the
RVM is detecting complex combinations of parameters that

suggest progression in other eyes (i.e., in the training set of
progressing eyes) that did not apply to these particular test
eyes.

Other classification techniques have successfully found
information in baseline examinations that enables the identi-
fication of eyes that are likely to progress. Recently, Demirel
and colleagues5 used classification and regression tree analysis
(CART, a form of machine learning classification) to determine
if baseline visual fields were predictive of future glaucomatous
progression (defined based on assessment of serial optic disc
stereophotographs) in high-risk ocular hypertensives and early
glaucoma patients. Input to the training and test data sets
included age-corrected SAP thresholds measured at the test
points described in the current study, baseline age, baseline
intraocular pressure, and central corneal thickness. Measure-
ments from the worst eye of 168 individuals was used for CART
modeling (CART cannot control for the correlated data from
both eyes of an individual, inputs must be independent). Of

TABLE 4. pAUROCs for Classifying Eyes as Progressed or Stable at Baseline for All Techniques/Parameters when pAUROC > 0.75 Specificity and
pAUROC > 0.85 Specificity

Technique

pAUROC > 0.75 Specificity

(95% CI)

pAUROC > 0.85 Specificity

(95% CI)

HRT GPS 0.033 (0.000–0.091) 0.014 (0.000–0.045)

SAP MD 0.031 (0.000–0.084) 0.009 (0.000–0.036)

SAP PSD 0.062 (0.001–0.124) 0.025 (0.000–0.064)

RVM using all HRT parameters (117 features) 0.048 (0.001–0.106) 0.013 (0.000–0.049)

RVM using optimized set of HRT parameters (8 features) 0.060 (0.001–0.125) 0.022 (0.000–0.059)

RVM using all SAP TD parameters (52 features) 0.062 (0.000–0.127) 0.020 (0.000–0.060)

RVM using optimized set of SAP TD parameters (23 features) 0.101 (0.033–0.169) 0.044 (0.000–0.091)

RVM using all HRT and SAP TD parameters (169 features) 0.065 (0.003–0.125) 0.026 (0.000–0.062)

RVM using optimized set of HRT and SAP TD parameters (28 features) 0.126 (0.056–0.196) 0.055 (0.003–0.108)

FIGURE 2. Percentage of progressed or stable eyes assigned by
relevance vector machine classifier (RVM) to each 10% probability
bin. Thirty percent of progressed eyes and 4% of stable eyes were
assigned a probability at or over 0.50 (sensitivity was 0.30 and
specificity was 0.96). When the RVM cut-off P value was set to result in
a specificity of 0.85 (RVM P value cut-off¼ 0.274), sensitivity increased
to 0.58.
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these 168 eyes, 67 showed progression and 101 remained
stable. Results from the two groups of eyes indicated that
CART models could be predictive of glaucomatous progression
with a sensitivity of 65% and a specificity of 87%. Only
thresholds at SAP test points were included as branches in the
best models (i.e., other risk factors were not as predictive), and
the model presented had only six branches (indicating
significant optimization of the number of test-points used for
classification). The same models tested on measurements from
100 healthy eyes showed a highest specificity of 69%. Our best
RVM model, using an optimized combination of HRT and SAP
parameters, showed a sensitivity of 51% at a specificity of 87%.
In order to reach a sensitivity of 65%, an additional 6 of 47
progressed eyes would have needed to be identified. Of the six
SAP test points included in the best performing CART models
described by Demirel et al.,5 three were include in both our
optimized SAP TD and optimized HRT and SAP TD feature sets.

In a somewhat related study because it used a machine-
learning classifier-like dimension reduction technique, Essock
and colleagues6 showed that wavelet-Fourier analysis (WFA) of
preconversion, baseline SLP (fixed corneal-compensator GDx)
RNFL thickness measurements in ocular hypertensive eyes can
detect abnormalities that predict conversion to glaucoma.
Briefly, first WFA extracts features that describe the shape of
the RNFL thickness profile in terms of scaled components.
Next, principal component analysis is employed to reduce the
dimensionality of the data by isolating and/or combining
components. Finally, linear discriminant functions are created
that best separate the resulting components into two
categories (in this case, convert and stable eyes from the
measurements obtained before conversion). In the described
study, AUROCS for detecting future conversion from precon-
version data were 0.73 at an average of 2 years prior to
conversion and 0.77 at approximately 6 months prior to
conversion. In the current study, optimized RVM analyses of
combined HRT and SAP TD results obtained at baseline
resulted in an AUROC of 0.805 at an average of 5 years prior
to progression.

Other recent studies have assessed the ability of baseline
imaging and visual field testing to predict future glaucomatous
change. In general, results indicate that standard imaging
parameters and stereophotograph assessment2,3,10,45,46 and
psychophysical tests8,47 are predictive of the conversion to, or
the progression of, primary open angle glaucoma. The results
of the current study, therefore, are not surprising. However, in
our sample, HRT GPS, SAP MD, and SAP PSD at baseline were
not predictive of progression (but see Alencar et al.3), while
RVM analyses of full-dimensional HRT and SAP measurements
generally were. We believe this is evidence for the usefulness
of MLC analyses as techniques for combining complex data to
predict (and likely identify) glaucomatous change.

The present study has possible limitations. First, AUROC
results from our MLC techniques might be somewhat
overestimated because we used cross-validation instead of
truly independent training and test sets. Although RVMs were
trained and tested on different data, each data set was
generated from the same pool. This fact might exaggerate
somewhat the differences in classification ability between
MLCs and global HRT and SAP indices. In addition, we did not
consider differences in IOP lowering treatments during follow-
up between the progressed and stable groups. This analysis
would be difficult to complete because progressed and stable
groups were eye specific, rather than participant specific.
Because of this, it is likely that in some cases, both a progressed
and a stable eye from the same individual received the same
treatment. Next, studies have suggested limited agreement
between observers when detecting glaucomatous progression
by stereophotograph assessment,48,49 possibly resulting in an

over- or under-estimation of the number of progressors
identified using this technique. Recently we have reported
moderate agreement among our trained observers (j¼0.57),50

and in the current study, stereophotographs that lacked
agreement between the initial two observers required adjudi-
cation by a third, likely decreasing the uncertainty of the
technique. Further, uncertainty is minimized in SAP-defined
progression by using GPA software that requires consecutive
change compared to baseline.

Finally, it is possible that baseline SAP measurements might
provide better predictions of SAP-detected progression, while
baseline HRT measurements might provide better predictions
of stereophotograph-detected progression. To investigate this
possibility, we conducted post hoc analyses in which AUROCs
were calculated independently for eyes progressed by SAP GPA
only (n ¼ 23) and eyes progressed by stereophotograph
assessment only (n ¼ 18). In both cases, the stable group
remained the same. For eyes progressed by SAP only; RVM
trained on optimized SAP TD data resulted in an AUROC of
0.777 (0.649, 0.904), RVM trained on optimized HRT data
resulted in an AUROC of 0.594 (0.462, 0.725), and RVM trained
on optimized HRT and SAP TD data combined resulted in an
AUROC of 0.789 (0.681, 0.897). For eyes progressed by
stereophotograph assessment, these values were 0.701
(0.548, 0.864) for optimized SAP TD, 0.630 (0.470, 0.790) for
optimized HRT and 0.755 (0.608, 0.91) for optimized
combined data. It appears then, that RVM trained on SAP data
is a slightly better predictor of progression defined by SAP GPA
as well as progression defined by stereophotograph assess-
ment, although pairs of AUROCs were not significantly
different in any case (all P ‡ 0.05). An optimized RVM
combining both SAP TD and HRT measurements was slightly
(although not significantly) better at predicting progression
defined using both progression detection criteria. It is
interesting that eyes that progressed by photograph assess-
ment only were somewhat better identified by RVM analysis of
baseline SAP TD values than by RVM analysis of baseline HRT
parameters. It is possible that this represents a greater
variability in baseline HRT measurements compared to SAP
measurements. Alternately, it is possible that the variability of
both measurements was similar, but there was a greater
overlap of HRT measurements between nonprogressing eyes
and eyes progressing by both SAP GPA and/or stereophoto-
graph assessment.

To date, methods for predicting glaucomatous progression
from baseline visual field and optic disc topography generally
have relied on the isolated assessment of individual software
generated-parameters from each technique independently.
Results from the current study suggest that assessing baseline
structural and functional measurements combined, using MLC
analyses, can identify more informative parameters to success-
fully predict future progression. Combining known risk factors
and information from additional tests may improve this
prediction.
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