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Abstract
Visualization of the blood vessels can provide valuable morphological information for diagnosis
and therapy strategies for cardiovascular disease. Intravascular ultrasound (IVUS) is able to
delineate internal structures of vessel wall with fine spatial resolution. However, the developed
IVUS is insufficient to identify the fibrous cap thickness and tissue composition of atherosclerotic
lesions. Novel imaging strategies have been proposed, such as increasing the center frequency of
ultrasound or using a modulated excitation technique to improve the accuracy of diagnosis. Dual-
mode tomography combining IVUS with optical tomography has also been developed to
determine tissue morphology and characteristics. The implementation of these new imaging
methods requires an open system that allows users to customize the system for various studies.
This paper presents the development of an IVUS system that has open structures to support
various imaging strategies. The system design is based on electronic components and printed
circuit board, and provides reconfigurable hardware implementation, programmable image
processing algorithms, flexible imaging control, and raw RF data acquisition. In addition, the
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proposed IVUS system utilized a miniaturized ultrasound transducer constructed using PMN-PT
single crystal for better piezoelectric constant and electromechanical coupling coefficient than
traditional lead zirconate titanate (PZT) ceramics. Testing results showed that the IVUS system
could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain,
with a frequency range from 20 to 80 MHz. Finally, phantom imaging, in vitro IVUS vessel
imaging, and multimodality imaging with photoacoustics were conducted to demonstrate the
performance of the open system.

I. Introduction
Cardiovascular disease is one of the main causes of morbidity and mortality although there
has been increasing utilization of established preventive therapies [1]. Atherosclerosis is a
principal consequence of cardiovascular disease; the narrowing of the arteries can lead to
ischemia of the heart, resulting in infarction [2]. Clinically, plaque is considered the main
determinant of luminal narrowing in atherosclerosis. The risk of atherosclerosis death is
increased significantly by the rupture of vulnerable plaque, which may cause thrombus-
mediated critical events such as myocardial infarction [3], [4]. There are three main factors
to determine plaque vulnerability: thickness of the fibrous cap, size and composition of the
atheromatous lipid core, and inflammation within or adjacent to the fibrous cap [5]. The
plaque is more prone to rupture with the thin fibrous cap in a high circumferential stress at
the luminal border. The risk of plaque rupture also increased if a highly thrombogenic lipid-
rich core is included in the plaque with a large size and a low consistent composition [5].

Angiography is a routine diagnostic technique to determine the location and degree of
atherosclerotic vessel stenosis [6], but it cannot acquire structural information of the stenotic
vessel walls for accurate assessment of atherosclerotic disease burden [7]. Intravascular
ultrasound (IVUS) imaging, which can assess the morphological properties of blood vessels
directly by cannulating a miniature catheter into the arteries [8]-[10], has been increasingly
used for clinical investigations, such as in guiding the placement of stent [11], or evaluation
of the therapy strategies and the follow-up examinations in heart transplant recipients [12],
[13]. Although IVUS has been extensively used clinically in recent years, IVUS imaging is
still insufficient to visualize the thin fibrous cap thickness [14]. The reliability of IVUS is
also challenging, especially for characterization of plaque composition [8], [15]. To address
these issues, the center frequency of IVUS has been increased for higher resolution [16] and
chirp imaging has been used to improve the SNR [17]. Other imaging strategies have been
developed recently to investigate atherosclerosis, such as near-infrared spectroscopy [18],
[19], optical coherence tomography [10], [20], fluorescence spectroscopy [21], and
photoacoustic imaging [22]. These techniques have intrinsic advantages and are sensitive to
either plaque structure (luminal diameter, wall thickness, plaque volume, etc.) or
composition. However, none of these techniques alone can provide complete information
concerning various markers involved in plaque vulnerability and rupture, which may
encompass both structure and composition. Integrated probes combining the IVUS
technique with these novel imaging modalities could provide valuable information to
improve the diagnostic accuracy [23]-[28]. The implementation of these new techniques
requires an IVUS system to have open structures, so that it can easily accommodate other
techniques to provide comprehensive information. Such an open system should have
reconfigurable hardware, programmable processing algorithms, and flexible imaging control
to achieve multimodality capability for accurate diagnosis of the cardiovascular diseases.

In this paper, we present the development of such an open IVUS imaging system that can
support easy fusion of other techniques for multimodality diagnosis of cardiovascular
diseases. This system achieved reconfigurable hardware, programmable processing
algorithms, flexible imaging control, and raw RF data acquisition. A field-programmable
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gate array (FPGA) was employed as a core microprocessor to accomplish flexibility,
diversity, and real-time imaging. Low-noise electronics were used to support large SNR and
high-precision data acquisition [29]-[31]. Two high-speed data transfer schemes, the PCI
Express (PCIe) interface and USB, were implemented in this system for fast data
transmission. The system design was based on electronic components and printed circuit
board (PCB) for a compact and cost-effective implementation.

The catheter probe design for IVUS applications is challenging because the size of
ultrasonic transducer is extremely small and the center frequency is high. Traditionally, lead
zirconate titanate (PZT) is used for IVUS because of its high electromechanical coupling
factor and piezoelectric constant. Recently, lead magnesium niobate–lead titanate (PMN–
PT) single crystal has demonstrated superior piezoelectric properties for high-frequency,
high-performance ultrasonic transducers [32]. PMN–PT single crystal possesses a higher
piezoelectric constant and larger electromechanical coupling coefficient than those of
conventional PZT ceramics. As a result, it is much more suitable for application in broad
bandwidth, high-sensitivity ultrasonic transducers. In this paper, a miniaturized catheter was
fabricated using PMN–0.28PT single crystal and demonstrated high sensitivity and broad
bandwidth. Moreover, a small rotary motor was developed in this paper to drive the catheter
probe to achieve a cross-sectional view of the blood vessels.

This paper is organized as follows: in the Methods section, the open IVUS system
development, the miniaturized catheter fabrication, and construction of rotary motor are
described in detail. Electronic testing, phantom and tissue imaging results are presented in
the Results section, followed by the Conclusions.

II. Methods
The block diagram of the designed open IVUS system is shown in Fig. 1. A miniaturized
ultrasonic transducer was placed at distal end of the catheter to transmit and receive
ultrasound signals. A customized rotary motor was fabricated to drive the catheter to acquire
a cross-sectional view of target vessels. A pulse generator generates high-voltage short pulse
to excite the transducer at desired frequency and spectrum specifications. An FPGA-based
high-speed digital receiver is developed to process the ultrasound echo signal for
programmability and flexibility. The receiver incorporates the front-end electronics such as
amplifier, filter, and analog-to-digital converter (ADC), FPGA microprocessor, and the PCIe
and USB interfaces. The system is designed on electronic components and PCB for a
compact implementation. A personal computer is used for image display and data storage
for further investigations. The high-speed data transfer scheme can be chosen between PCIe
and USB according to the specific applications.

A. Miniaturized Catheter Probe
A 32-MHz single-element side-view ultrasound transducer was fabricated using PMN–
0.28PT single crystal. The transducer was designed using the Piezo CAD simulation
software (Version 3.03 for Windows, Sonic Concepts, Woodinville, WA) based on one-
dimensional Krimholtz–Leedom–Matthae (KLM) model. The transducer included four
components: backing material, active element, matching layer, and metal housing. Parylene
C (Specialty Coating Systems, Indianapolis Inc., IN) is used as the matching layer and
protecting layer to compensate for the acoustic impedance mismatch between the PMN–
0.28PT single crystal and human tissues; it was evaporated onto the transducers by a
parylene deposition system (model PDS 2010, Specialty Coating Systems Inc., Indianapolis,
IN). A conductive epoxy (E-solder 3022, Von Roll Isola, New Haven, CT) was cast on the
single crystal as the backing material of the transducer to enhance the sensitivity. The
transducer probe was wired with a flexible metal drive cable (Asahi Intecc Co. Ltd.,
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Pathumthani, Thailand). The metal drive cable for the catheter is 1.5 m long and 0.7 mm in
diameter.

B. Pulse Generator
The pulse generator designed for this open IVUS system incorporated a bipolar pulse
generation scheme. A programmable FPGA component (Cyclone III, EP3C16F-484C6N,
Altera Corporation, San Jose, CA) was used to control the timing and spectrum
characteristics of the high-voltage short pulse. Therefore, the pulse generator can be easily
adjusted to support transducers with different center frequencies, and to match with the
spectrum of an individual transducer to acquire the optimized performance. Two MOSFET
drivers (EL7158, Intersil Corp., Milpitas, CA) were used to accomplish the voltage level
shift and high current output to excite the high-speed MOSFET pair (TC6320, Supertex Inc.,
Sunnyvale, CA). The MOSFET pair could offer more than 150 Vpp breakdown voltages and
a 2 A output peak current, which made it suitable to produce a high-voltage pulse for IVUS
imaging. Finally, the pulse generator performance was evaluated by a digital oscilloscope
(Wavepro 715Zi, LeCroy Corp., Chestnut Ridge, NY) with a series of attenuators (Mini-
Circuits, Brooklyn, NY).

C. Digital Receiver
A low-noise preamplifier (SMA231, Tyco Electronics Co., Berwyn, PA) was used as the
first stage to achieve a good SNR, followed by a second-stage amplifier (THS4509, Texas
Instruments Inc., Dallas, TX) to achieve adequate amplification gain. A high-speed, 11-bit
ADC (ADS5517, Texas Instruments Inc., Dallas, TX) with a maximum sampling rate of 200
megasamples per second (MSPS) was utilized for signal digitization. After digitization, the
signal was transferred to the FPGA through a low-voltage differential signaling (LVDS) bus.
A high-performance FPGA (Stratix II EP2S60F672C5, Altera Corporation) was employed
for programmable signal/image processing and high-speed data transfer. It could achieve
various programmable algorithms such as band-pass filter (BPF), Hilbert transform,
envelope detection, and digital scan conversion. A 128-Mbit synchronous dynamic random
access memory (SDRAM; MT48LC8M16A2, Micron Technology Inc., Boise, ID) was
configured for temporary data storage for the FPGA. Finally, the processed images or raw
RF data were transferred to a computer through a PCIe interface component (PEX8311,
PLX Technology Inc., Sunnyvale, CA) or USB interface component (CY68013A, Cypress,
San Jose, CA) for display, storage, or postprocessing.

The performance of the open IVUS system electronics was tested with the following
aspects. The linearity and flatness of gain in receiver were tested by a 240-MHz function
generator (AFG 3251, Tektronix Inc., Beaverton, OR), and a digital oscilloscope (Wavepro
715Zi, LeCroy Corp.). The noise level of the system was tested by measuring the minimum
detectable signal level and dynamic range. A five-cycle sinusoidal signal generated by the
function generator was attenuated by a series of attenuators and then sent to the IVUS
receiver. After passing through the front-end electronics, the amplitude of the weak signal
that could just be identified from the background noise determined the minimum detectable
signal level. Given the input range of the high-speed ADC (2 Vpp), the dynamic range can
be derived from the gain and the minimum detectable signal level.

As a field-programmable microprocessor, the FPGA can achieve various functionalities
traditionally realized by hardware circuitry. Moreover, the functions can easily be changed
or modified by reprogramming the FPGA without changing the hardware. Thus, the FPGA
technology can significantly improve the system flexibility and diversity by programmable
and reconfigurable algorithms. Fig. 2 shows a representative structure of image processing
algorithms for real-time IVUS imaging. The entire processing algorithms could be easily
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reprogrammed according to different applications. A double data rate LVDS buffer is used
to decode the digitized ultrasound echo data through high-speed ADC. Both the rising and
falling edges of the clock are employed for data transfer to achieve high data throughput. A
BPF based on finite impulse response (FIR) structure is used to remove noise from the
spectrum of interest. The coefficient of the BPF is reconfigurable for individual transducers
with different center frequency and bandwidth. The filtered signal is then sent to the
envelope detector to achieve envelope extraction by the Hilbert transform algorithm. The
acquired envelope data then undergo digital scan conversion and logarithmic compression
for coordinate conversion and data compression, respectively. A flexible scan converter
based on linear interpolation is employed for fast and accurate processing. Finally, image
data are sent to a personal computer through the PCIe or USB interface for display and
storage. An SDRAM controller is employed to buffer data with external SDRAM for
flexible digital scan conversion and logarithmic compression.

D. Rotary Motor
A rotational motor is designed and implemented to acquire cross-sectional views of blood
vessels by rotating the catheter. The detailed structure of the rotary motor is shown in Fig. 3.
The design used a direct current motor, which was installed in a metal box, to rotate a
horizontal bevel gear. The torque transferred from the horizontal bevel gear was passed to a
vertical bevel gear fixed on a hollow shaft. The hollow shaft could be rotated at certain
speed, driven by the gears and motor. A coaxial cable inside the hollow shaft was connected
to an SMA connector to wire the catheter. The other end of the cable was connected to a slip
ring (Sen Ring Electronics Co. Ltd., Shenzhen, China). The slip ring is a rotary coupling
device which is used to transfer ultrasound signal from the stationary IVUS circuitry to a
rotatable catheter. An optical sensor was used to generate a trigger signal for system
synchronization.

E. Graphical User Interface Software
The graphical user interface (GUI) software is programmed in Visual C++ and compiled in
Visual Studio 2005 Professional Edition (Microsoft Corporation, Redmond, WA) to control,
process, and display the real-time images. The GUI software allows the user to operate the
system with great ease and flexibility. It controls the center frequency and the number of
cycles of the excitation pulse, the BPF parameters to match to individual transducer
characteristics, the number of scanlines in each image, and the point length of the scanline.
It can also select sole IVUS mode or multimodality mode. In addition to the images, the raw
RF data can be saved by the flexible GUI software.

III. Results
The photographs of the open IVUS system prototypes are shown in Fig. 4. Fig. 4(a) shows
the entire system. The ultrasound transducer catheter and rotary motor are shown in Fig.
4(b) and Fig. 4(c), respectively. The pulse generator and digital receiver are shown in Fig.
4(d) and Fig. 4(e), respectively, based on an eight-layer PCB design incorporating state-of-
the-art electronics.

A. Catheter
The active element of the transducer in the catheter is a piece of 70-μm-thick PMN–0.28PT
single crystal with a size of about 0.6 × 0.6 mm. Fig. 5 shows the modeled and the measured
pulse–echo waveform and frequency spectrum. The modeled result agreed well with the
measured result. The measurement was acquired by a Panametrics 5900PR pulser/receiver
(Olympus NDT Inc., Waltham, MA) and a digital oscilloscope (Infinium 54810A, Hewlett-
Packard/Agilent Technologies). The receiver gain of 5900PR pulser/receiver is 16 dB. The
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measured center frequency of the catheter is about 32 MHz. The −6-dB bandwidth and the
insertion loss are 62.7% and 25 dB, respectively.

B. Electronics
Table I summarizes the performance of the IVUS system electronics. The highest amplitude
of bipolar pulse was 160 Vpp with adjustable center frequency and bandwidth. Table I also
demonstrates that the maximum gain of the front-end electronics is 47 dB with good
linearity at a maximum fluctuation of less than ±1.2 dB between 10 and 90 MHz. The
minimal detectable signal level of the system receiver is less than 25 μV. Given the input
range of the high-speed ADC (2 Vpp), the system can allow a 51 dB dynamic range at 35
MHz center frequency.

C. FPGA Algorithms and Processing Speed
The software-based BPF was programmed in the FPGA to further remove the noise and
improve the signal SNR. Quantitative analysis showed that approximately 4.8 dB SNR
improvement was achieved after applying the BPF, which increased the system dynamic
range to 55.8 dB.

Table II lists FPGA resource utilization in the FPGA for IVUS imaging only. There is a
significant amount of resources left to support the combination of other techniques with
IVUS for comprehensive analysis of cardiovascular disease.

The algorithmic scheme implemented in the FPGA can achieve high-speed imaging by pipe-
line signal processing. The data transfer speed was higher than 150 and 20 MB/s for PCIe or
USB interface, respectively. At the image size of 512 × 512 pixels, the frame rate can be
higher than 200 and 20 images per second for PCIe and USB, respectively. The current
frame rate is limited by the rotary motor and it can be significantly improved if a faster
rotary motor is used. With the current utilization of FPGA resources, much more
complicated signal processing may be implemented to acquire more useful information than
vessel morphology, e.g., virtual histology (tissue characterization based on ultrasound raw
RF data).

D. Imaging Experiments
The image quality of the IVUS system was evaluated first by a customized tungsten wire
phantom. The wire phantom consisted of four 20-μm-diameter tungsten wires (California
Fine Wire Co., Grover Beach, CA) located at different depths. The ultrasound image of this
wire phantom is shown in Fig. 6(a) with a dynamic range of 48 dB without noticeable noise.

A tissue-mimicking phantom was fabricated and imaged as shown in Fig. 6(b). The phantom
fabrication procedure followed Madsen’s method [33]. In short, it consisted of a mixture of
deionized water, high-grade agarose, preservative, propylene glycol, filtered bovine milk,
and glass beads. The phantom could generate tissue-mimicking attenuation and
backscattering in the high-frequency range. The experiment shows that the penetration depth
of this IVUS system is more than 4 mm, which is adequate for most IVUS applications.

An in vitro coronary artery specimen was used for system evaluation. The designed catheter
was inserted into the specimen for cross-sectional imaging. The ultrasound image of the in
vitro normal swine coronary artery fixed in a water tank is shown in Fig. 7(a). Different
layers of the artery can be clearly identified in the ultrasound image. The specimen then
underwent a histological process using hematoxylin and eosin (H&E) stain to confirm the
IVUS measurement. The histological image captured by microscope (Eclipse TS100 with
digital camera DXM 1200C, Nikon Instrucments Inc., Tokyo, Japan) is shown in Fig. 7(b),
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demonstrating detailed identification of different layers including intima, media, and
adventitia. The geometric dimension and morphology of vessel correlated well between the
IVUS image and histological measurement which confirms the accuracy of the open IVUS
system.

The result from a multimodality imaging combining IVUS and photoacoustics is shown in
Fig. 8. The specimen was from a post-mortem human coronary artery. The experimental
setup was similar to Sethuraman’s method [22]. An actively Q-switched pulsed laser
(Explorer 532 Laser System, Spectra-Physics, Santa Clara, CA) operating at 532 nm
wavelength generated very short laser pulses with 240 μJ energy, and the laser light excited
the sample from outside. Ultrasound imaging was launched after the acquisition of the
photoacoustic signal. The acquired IVUS and photoacoustic images are shown in Fig. 8(a)
and Fig. 8(b), respectively. The intensity of the IVUS echo slightly increases in the bottom
right corner of the tissue. This difference can be clearly visualized in photoacoustic image,
which may indicate a change of tissue composition. The combined image is shown in Fig.
8(c) to show the complementary nature of IVUS and photoacoustic imaging that could be
useful for the diagnosis of intravascular diseases. These in vitro experiment results clearly
demonstrate the capability of multimodality imaging in this open system.

IV. Discussion
The proposed open system is highly programmable for IVUS-related investigations. The
open strategy and programmable capability make it suitable for a variety of applications.
The imaging characteristics, such as frequency spectrum of the transmitted pulse, parameters
of the receiver filter, sampling rate, number of scanlines, and length of scanlines can be
configured easily. The raw RF data can also be saved by the system.

The proposed system supports open IVUS imaging with programmable algorithms and easy
implementation of novel algorithm verification and multimodality imaging. The image
processing algorithms shown in Fig. 2 are the novel approaches achieved in a single FPGA
for IVUS imaging. It can be easily replaced with state-of-the-art algorithms. There are still
many resources left for IVUS imaging in the FPGA. Novel image processing algorithms
such as tissue characterization based on ultrasound raw RF data and penetration
improvement based on modulated excitation can be implemented in this open system.
Multimodality imaging combining IVUS and photoacoustics demonstrated the flexible
capability of the open system. The program in the FPGA of the system was updated
accordingly to fulfill the function. The result showed that combining these two imaging
modalities could be easily implemented in this open architecture. The system design is based
on electronic components and PCB for a highly compact implementation, which facilitates
the ultimate integration of a multimodality imaging system. However, some auxiliary parts
may have to be added to the open system in practical applications. An external laser was
used for light excitation for the current implementation. In the future, a hybrid transducer
combining an ultrasound transducer and optical delivery device will be developed for
clinical applications.

V. Conclusions
An open system for IVUS imaging was developed and evaluated in this paper. It provides
reconfigurable hardware, programmable processing algorithms, flexible imaging control,
and raw RF data acquisition for various IVUS applications. We demonstrated that the open
structure may enable IVUS to combine with other techniques to facilitate multimodality
imaging and comprehensive diagnosis of cardiovascular diseases. In addition, a miniaturized
ultrasound catheter probe was designed and fabricated with PMN–PT single crystal to
achieve high sensitivity and broad bandwidth. Such an open system can be a valuable
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platform to combine different imaging modalities to improve diagnosis accuracy and
treatment effectiveness for cardiovascular disease.
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Fig. 1.
The block diagram of the open system for intravascular ultrasound (IVUS) imaging.
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Fig. 2.
The algorithms implemented in the field-programmable gate array (FPGA) for real-time
intravascular ultrasound (IVUS) imaging.
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Fig. 3.
The detailed structure of the rotary motor.
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Fig. 4.
Photographs of (a) the entire open intravascular ultrasound (IVUS) system, (b) IVUS
catheter, (c) small rotary motor, (d) highvoltage pulse generator, and (e) high-speed digital
receiver.
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Fig. 5.
The (dash line) modeled and (solid line) measured (a) pulse-echo waveform and (b)
frequency spectrum of the intravascular ultrasound (IVUS) catheter (measured results: 32
MHz center frequency, 62.7% bandwidth, and 25 dB insertion loss).
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Fig. 6.
Phantom evaluation of the designed intravascular ultrasound (IVUS) system: (a) tungsten
wire phantom image and (b) image of tissue-mimicking phantom.
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Fig. 7.
In vitro imaging of swine coronary artery by intravascular ultrasound (IVUS) and histology:
(a) ultrasound image and (b) histological section.
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Fig. 8.
In vitro imaging of human coronary artery: (a) intravascular ultrasound (IVUS) image, (b)
photoacoustic image, and (c) combined IVUS and photoacoustic image.
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TABLE I

Electronics Performance of the Open System.

Article Performance

Frequency range 20 to 80 MHz

High-voltage tunable pulse Up to 160 V Vpp

Gain 47 dB

Gain fluctuation ±1.2 dB

Analog-to-digital converter (ADC) 11 bits, 200 MSPS

Minimum detectable signal 25 μV

Dynamic range 51 dB

Software improved dynamic range 55.8 dB

Data transferring speed 150 MB/s (PCIe)

20 MB/s (USB)
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TABLE II

Resource Utilization of the Field-Programmable Gate Array (FPGA).

Article Resource utilization

Adaptive look-up tables (ALUTs) 4855 (10%)

Pins 216 (44%)

DSP block 9-bit elements 64 (22%)

Memory bits 53152 (2%)

PLLs 2 (33%)

DSP = digital signal processing; PLL = phase-locked loop.
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