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Abstract
Glioblastoma multiforme (GBM) are aggressive and uniformly fatal primary brain tumors
characterized by their diffuse invasion of the normal appearing parenchyma peripheral to the
clinical imaging abnormality. Hypoxia, a hallmark of aggressive tumor behavior often noted in
GBMs, has been associated with resistance to therapy, poorer survival, and more malignant tumor
phenotypes. Based on the existence of a set of novel imaging techniques and modeling tools, our
objective was to assess a hypothesized quantitative link between tumor growth kinetics (assessed
via mathematical model and routine MR imaging) and the hypoxic burden of the tumor (assessed
via PET imaging). Our bio-mathematical model for glioma kinetics describes the spatial and
temporal evolution of a glioma in terms of concentration of malignant tumor cells. This model has
already been proved usefulas a novel tool to dynamically quantify the net rates of proliferation(ρ)
and invasion (D) of the glioma cells in individual patients. Estimates of these kinetic rates can be
calculated from routinely available pretreatment MR imaging invivo. Eleven adults withGBM
were imaged pre-operatively with FMISO-PET and serial gadolinium-enhanced T1 (T1Gd) and
T2-weighted MRIs to allow estimation of patient-specific net rates of proliferation (ρ) and
invasion (D). Hypoxic volumes (HV) were quantified from each 18F-fluoromisonidazole (FMISO)
PET scan following standard techniques. To control for tumor size variability, two measures of
hypoxic burden were considered: relative hypoxia (RH), defined as the ratio of the HV to the T2-
defined tumor volume, and the mean intensity on FMISO-PET scaled to the blood activity of the
tracer (mean T/B). Pearson correlations between RH and the net rate of cell proliferation ρ reached
significance (p < 0.04). Moreover, highly significant positive correlations were found between
biological aggressiveness ratio ρ/D and both RH (p < 0.00003) and the mean T/B (p < 0.0007).
Overall, biological aggressiveness assessed by serial MRI is linked with hypoxic burden assessed
on FMISO-PET using a novel bio-mathematical model for glioma growth and invasion. This study
suggests that patient-specific modeling of growth kinetics can provide novel and valuable insight
into quantitative connections between disparate information provided by multimodality imaging.
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INTRODUCTION
Gliomas are uniformly fatal lesions of the brain signified by their invasive potential and
their increased capacity for proliferation (1). This is especially true of glioblastoma
multiforme (WHO grade IV, GBM), a highly anaplastic, rapidly proliferating, primary brain
neoplasm characterized by diffuse invasion of the normal-appearing parenchyma peripheral
to the abnormality seen on clinical imaging. As outlined by Stupp et al (2, 3), the current
standard-of-care for newly diagnosed GBMs involves resection followed by adjuvant
radiation and chemotherapy. However, GBMs typically recur within months, with a poor
prognosis of 6 to 14 months (4).

Magnetic resonance imaging (MRI) and positron emission tomography (PET) can offer non-
invasive means to assess individual tumor biology in vivo, thereby assisting diagnosis as
well as patient-specific treatment planning. MRI provides anatomical tumor information by
allowing visualization of the lesion’s structural extent. Gadolinium-enhancement on T1-
weighted MRI (T1Gd MRI), allows the bulk tumor mass to be imaged, with hyperintense-
appearing neoangiogenesis enclosing a hypointense region of central necrosis or dead tissue.
T2-weighted MRI (T2 MRI) detects the surrounding edema associated with invading glioma
cells.

Recent developments in radiopharmaceutical research has produced PET tracers that can
target hypoxia, amongst other characteristic errors of disease (5–8). Imaging with
radiolabeled nitroimidazoles offers a noninvasive means of assessing hypoxia. One of the
earliest and most commonly used agents for hypoxia detection was the PET tracer 18F-
fluoromisonidazole (FMISO), a nitroimidazole derivative (9, 10). Nitroreductases within the
cell metabolize nitroimidazoles, which can act as electron acceptors when oxygen levels are
low. Reduced nitroimidazoles covalently bond to intracellular macromolecules and cannot
exit viable cells, such that FMISO uptake is proportional to the amount of hypoxia (11). This
does not occur in necrotic tissues, due to a lack of enzyme activity required for the metabolic
processing of bioreductive probes.

GBMs are characterized by hypoxia, which results from the rapid depletion of nutrients that
occurs with aberrant tumor cell proliferation (12). Hypoxia has been shown to be associated
with the propagation and progression of malignant tumors (13), as well as a predictor of
resistance to standard radiotherapy and some varieties of concurrent chemotherapy (14).
Accordingly, tumors with significant levels of hypoxia generally demonstrate a lower
probability of remaining asymptomatic, as well as shorter overall survival (11, 15). By
limiting tumor response to and control by therapy, hypoxia is an important adverse
prognostic factor that is indicative of higher rates of recurrence and fatality. Additionally,
the related necrosis is characteristic of GBM diagnoses (16). It has been suggested that the
hypoxia-stimulated expression of genes for oncoproteins, glucose transporters, and
glycolytic enzymes confers a growth advantage for the tumor and allows hypoxic cells to
utilize the energy-saving mechanism of glycolysis (17), which may promote a more
aggressive tumor phenotype.

Quick Guide: Main Model Equations

Equation 1
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This is a reaction-diffusion partial differential equation used to describe the density of
glioma cancer cells (c) in terms of two net rates: motility (D) and proliferation (ρ). The
equation relates the temporal rate of change of glioma cell density at the spatial location
x with the diffuse motility of the cancer cells near that location and the net cell
proliferation of those cells locally. The net motility rate D varies depending on the
location in the brain to allow for an increased velocity of migration through white matter
than though grey. The (maximum) net proliferation rate ρ includes both birth and death
rates and assumes logistic growth with a tissue carrying capacity k. There is a spatial
heterogeneity in the net proliferation term resulting from the effect ofk. At the center of a
densely packed tumor, the netproliferation term becomes 0 with a gradient to a local
maximum rate of ρ for those diffusely invading cells at the periphery. Though local
proliferation rates at the microscopic level will vary depending on genetic and molecular
mechanisms, by consideringnet proliferation ρ the model attempts to capture the
downstream effects of these mechanisms on the tumor cell population as a whole.

Major Assumptions of the Model

This model assumes glioma cell invasion throughout the brain is a diffusion process and
that the coefficient of diffusion (D) can vary in space depending on the grey and white
composition of the brain at that location. The model also assumes logistic growth of the
tumor cell population, so that the net proliferation rate (ρ) is lower in regions of high cell
density (wherec≈k) than in regions of low cell density (where c ≪ k).

Given the high degree of invasiveness and the inability of current medical imaging
technology to capture the full extent of glioma invasion, bio-mathematical modeling has
been used to shed light on the growth patterns of gliomas in vivo. The mathematical model
developed by Swanson et al (18–20) describes growth and invasion in terms of two patient-
specific parameters: the net cell dispersal rate (D) and proliferation rate (ρ). See the Quick
Guide for further details. The model considers the expansion of MRI-detectable edge of the
tumor as resembling a traveling wave that asymptotically approaches a constant velocity

 (21–23). In untreated gliomas, linear radial growth has been observed (24, 25).
Further, Pallud et al (26) established that the model-predicted constant velocity (contributed
to by both D and ρ) of low-grade glioma growth is a prognostic factor. Similarly, kinetic
analyses of tumor growth have shown that untreated gliomas grow continuously at
predictable rates before their inevitable progression to more malignant phenotypes. Growth
velocity has also been seen to predict the conversion to contrast-enhancement on MRI (27).
The model parameters for biological aggressiveness (D and ρ) have prognostic significance
even when controlling for standard clinico-pathologic parameters1. A simulation example
based on patient-specific values for D and ρ is provided in Figure 1, along with a
comparison of representative multimodality patient images from which D ρ and can be
obtained.

Given the successful application of this model to characterizing glioma kinetics in terms of
net rates of proliferation and invasion, it is appropriate to explore how hypoxic burden, a
hallmark of aggressive tumor behavior, relates to the model parameters that can be used as
quantitative measures of biological aggressiveness. Given the model-defined biological
aggressiveness metrics for each patient, this study investigates the link between anatomic
glioma growth kinetics assessed on MRI and hypoxic burden as seen on FMISO-PET.

1Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius K, Wardlaw JM, Cloughesy T, Spence AM, Rockne R, Alvord
EC, Jr., Swanson KR. Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial
imaging with a novel bio-mathematical model. Submitted to Cancer Res; 2008.
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MATERIALS AND METHODS
Patients

Eleven adult patients with newly diagnosed GBM were imaged pre-operatively with
FMISO-PET and T1Gd, T2 MRI. There were 7 males and 4 females, ages ranging from 37
to 73 (median = 55, mean = 57.6). Karnofsky performance scores at diagnosis ranged from
60 to 90 (median = 70, mean = 74). These patients were recruited from the University of
Washington Medical Center. Each patient signed informed consent for inclusion in our
study, with prior approval by the Institutional Review Board and Radiation Safety
committees.

FMISO PET Imaging Protocol
18F-fluoromisonidazole (FMISO) was prepared as outlined by Lim and Berridge (28) and
detailed methods are described elsewhere (29). Briefly, all PET scans were performed on an
Advance Tomograph (G.E. Medical Systems) operating in a three-dimensional, high-
resolution mode with 35 imaging planes covering a 15 cm axial field of view. For each
patient, venous access lines were placed in each arm, one for FMISO injection and the other
for blood sampling. Injections of 3.7 MBq/kg (0.1 mCi/kg) of FMISO were then
administered, for a maximum of 260 MBq or 7 mCi. A single field-of-view emission scan
from 120 to 140 minutes post-injection and an attenuation scan (25 minutes) of the brain
with tumor were obtained. The acquired imaging data were reconstructed to determine the
tumor hypoxic volume (HV) as described in later sections. During emission tomography,
four venous blood samples were obtained at intervals of 5 minutes. Whole blood samples of
1 mL each were counted in a Cobra multichannel gamma well counter (Packard Corp.) that
is calibrated each week in units of cpm/MBq. Blood activity of the 4 samples was averaged
and then expressed as MBq/mL decay corrected to time of injection.

MRI Protocol
MRIs were acquired using a 1.5 Tesla GE system (Horizon LX Echospeed with 9.1
software). The preoperative Stealth navigation studies included axial T1 with contrast (3D
gradient echo, TE/TR minimal, 1.3 mm slice thickness with no skip, FOV 26), axial T2 FSE
(TE 97.3, TR 4000, 1.7 mm slice thickness with no skip, FOV 26). Follow-up scans
including standard gadolinium-enhanced T1-weighted (TE minimal, TR 350), T2-weighted
(TE 102, TR 4300) are obtained in 2D mode with a spin echo sequence and slice thickness
of 5 mm with no inter-slice spacing.

Image Processing and Data Acquisition
The number of days between the FMISO-PET and MR images ranged from 0 to 16 with an
average of 7.2 days. Spatial registration of the T2 MRI and the FMISO images to the T1Gd
MRI was performed using Statistical Parametric Mapping (SPM) software (30) in order to
compare regions of PET activity relative to MRI defined abnormalities. Accuracy of image
co-registration was confirmed by visual inspection in addition to the optimization features
provided by SPM.

Data acquisition from FMISO-PET and MRIs was performed with a semi-automated image-
processing program developed in MATLAB (31), which consisted of three parts: MRI
(T1Gd and T2) thresholding, FMISO-PET thresholding, and computational determination of
different tumor regions of a glioma. Specific details of the techniques used are reported
elsewhere (29).
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The coregistered FMISO-PET images were scaled to the average venous blood
concentration of FMISO activity to produce tumor/blood (T/B) values. This allowed for a
three-dimensional pixel-by-pixel calculation of T/B activity ratios.

The number of pixels in the brain with a T/B ratio ≥ 1.2, indicating hypoxia, was determined
and converted to milliliters to give the hypoxic volume (HV). T/B ratios previously
measured with the tomograph in normal brain and muscle showed that greater than 90% of
the values fell below 1.1 (32), and our cutoff ratio of 1.2 is in accordance with previous
studies(9). Due to the nature of PET imaging, small non-tumorous regions of FMISO
activity are typically scattered in isolated voxels throughout the brain. Designating HV as
FMISO T/B ≥ 1.2 largely excludes this noise, and is also consistent with results from
histological and immunohistochemical definitions of the hypoxic region. To normalize
hypoxia for tumors of different sizes, we defined relative hypoxia (RH) by scaling the HV,
as determined on FMISO-PET, to the T2-weighted MR-defined volume, giving the unitless
hypoxic fraction RH = HV/T2 volume. Since FMISO-PET is not retained in necrotic tissue,
we also considered an alternate measure of relative hypoxia, termed RH*, defined as the HV
normalized to the volume of the non-necrotic T2 region (thus removing the central hypo-
intensity on T1Gd).

Although the choice of a T/B cutoff of 1.2 is consistent with previous studies exploring
FMISO-PET (9, 12, 29), we chose to consider a variety of possible T/B cutoffs to assure that
our findings were not as a result of this relatively arbitrary cutoff choice. First, FMISO PET
images for each patient were scaled using a range of T/B ratios (0.9 to 1.6). Values for HV
(associated with each new cutoff choice) and the resultant RH were then obtained.

The analysis focuses on the association between the model parameters and RH, which we
believe is a more accurate and biologically-based quantification of the tissue’s hypoxic
burden, which controls for the overall size of the region in which hypoxia may be imaged. It
would be inappropriate to compare rates (of biological aggressiveness) with volumes (e.g.
HV) since the tumors are imaged at various times during their evolution. Moreover, the
growth rate can be independent of size. Additionally, we considered the average T/B
intensity of pixels at or above the 1.2 threshold as a measure of hypoxic density, denoted as
mean T/B in our analysis. Examining the relationships between the model parameters and
mean T/B allows for a complementary characterization of hypoxic burden.

Calculation of Model Parameters
Following Swanson et al (18–20), for contrast-enhancing gliomas, the bio-mathematical
model allows for the calculation of the ratio of the net proliferation rate ρ to the net dispersal
coefficient D (ρ/D) from a single pair of T1Gd and T2 sequences. A second sequence of MR
images without intervening treatment was available for a subset of the patients included in
this study (N=5), which allowed the explicit definition of the two unknown parameters D
and ρ in individual patients. The velocity of radial expansion v was also determined for
those cases.

Tumor Sphericity
Previous work on cell-based mathematical modeling of tumor invasion has linked more
aggressive cellular phenotypes with formation of masses with finger-like protrusions (33).
Further, these modeling approaches have found that hypoxia can select for these more
aggressive phenotypes. We also examined the degree of sphericity in our 3D analysis of
each tumor to provide an additional spatial metric of growth kinetics and aggression.
Sphericity (Ψ) was calculated relating the surface area (SA, cm2) with the volume (V, cc) of
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each tumor on a scale from 0 to 1: . This 3D geometric index has been applied
to measure a tumor’s similarity to a spherical object (34), where a sphericity value of 1
indicates that the tumor is perfectly spherical, which values less than 1 signify a more
irregular and fingered shape. As the compactness measure of a three-dimensional shape,
sphericity decreases with the amount of surface area. This measure was quantified for both
T1Gd and T2 images. See Table 1.

Statistical Analysis
Pearson correlation was used to assess association between the model parameters and
hypoxic burden, with the p-value for statistical significance determined using Student’s T-
distribution.

RESULTS AND DISCUSSION
All patients had glioblastoma multiforme as designated by WHO criteria (35). The patient
age, sex, KPS at diagnosis, HV, RH, velocity of glioma expansion, the computed values of
the model parameters D and ρ, and the ratio ρ/D are shown in Table 1. Values for v, D, and
ρ are displayed for 5 patients for whom two imaging studies were available over a period of
time prior to any operation or treatment

Correlates of Hypoxic Burden and Net Proliferation/Diffusion
The statistical significance of associations between hypoxic burden and the MRI-defined
anatomical tumor burden quantified by v, D, and ρ are summarized in Table 2. A significant
(Pearson) correlation was found between the net rate of cell proliferation ρ and RH (p <
0.04), as well as RH* (p < 0.04). Correlations with dispersal D did not reach significance.
The mathematical model and our traveling wave approximation of glioma expansion suggest
that both ρ and D contribute to v. The velocity, v, only approached significance when
compared with RH.

In the context of hypoxia, model-defined biological aggressiveness may also be
quantitatively assessed by the ratio ρ/D based on the observation that a cell population with
increased proliferation (ρ) relative to invasive capability (D) would be more likely to
produce local hypoxia. The ratio ρ/D can be related to the gradient of the leading (invading)
edge of the tumor. That is, a high ρ/D would correspond to a mitotically active (high ρ)
tumor with relative low invasiveness (low D) leading to a relatively well demarcated nodule.
Conversely, a low ρ/D would correspond to a diffusely invasive leading-edge of the tumor
consistent with a tumor that has a relatively lower proliferative capacity compared to its
diffuse invasion. We did note a consistent pattern for which a larger ρ also suggested a
larger D, such that ρ/D also increased. The biological aggressiveness ratio ρ/D showed
strong correlation with RH (p < 0.00003) and RH* (p < 0.00002). In addition, ρ/D was
found to significantly correlate with mean T/B (p < 0.0007).

Correlates of Tumor Sphericity
In response to a number of computational studies suggesting that the tumor
microenvironment (e.g. local hypoxia) can drive the formation of tumors that are less
spherical (33) we explored the tumor sphericity as an alternate candidate measure of tumor
aggressiveness. Correlation analysis was performed between sphericity and all glioma
growth characteristics quantified through anatomical and functional imaging. Sphericity on
T1Gd negatively correlated with RH (p < 0.04), mean T/B (p <0.02) and ρ/D (p < 0.009).
Pearson correlation results for sphericity delineated on T2 also reached significance for
mean T/B (p < 0.05) and ρ/D (p < 0.008).
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Alternative T/B Ratios
Based on the hypothesis that hypoxia would not be expected at large distances from the bulk
tumor mass, for each T/B cutoff an associated HV was calculated and the portion of that HV
residing beyond the tumor region was graphed (data not shown). The results showed that the
HV occupying presumed non-tumorous regions precipitously declined around the 1.2 level,
indicating that the FMISO activity at or above the T/B =1.2 level is largely restricted to
previously defined areas of MRI abnormality. More than 99% of normal appearing brain in
the hemisphere contralateral to the tumor was observed to have a T/B < 1.2. Figure 2 of a
right frontal GBM displays a graphical example of an FMISO PET image subjected to
thresholding at each of the T/B levels considered. These data support the reasonability of
using the 1.2 T/B level as a threshold for hypoxia.

For each patient, plots were generated of RH against various threshold levels ranging from
0.9 to 1.6 in increments of 0.1, yielding the results summarized in Figure 3. RH decreased
somewhat linearly as the ratio increased, as expected. Of special note is our observation that
the value for the ratio ρ/D increases as a function of RH, regardless of the T/B level used.
This suggests that the hypothesized “ideal” T/B = 1.2 is not a confounding factor in
considering hypoxic burden as a marker of a tumor’s biological aggressiveness. The striking
linearity of the scatter of the MRI-defined ρ/D relative to RH is illustrated in Figure 4. The
positive relationship holds regardless of T/B threshold, which further confirms our
conclusion from the results depicted in Figure 3.

CONCLUSIONS
Hypoxia is a clinically important feature of glioblastomas, specifically as it relates to
treatment resistance. The ability of FMISO-PET to visualize and quantify the hypoxic
fraction of the tumor is highly relevant in clinical applications. While the gold standard for
distinguishing hypoxia is often considered to be direct measurement of pO2 levels with
electrodes, this technique is practically and ethically impossible for the routine monitoring
of hypoxia in intracranial tumors, as the procedure must be performed intraoperatively.
Previous literature has established the utility of FMISO-PET in the non-invasive assessment
of hypoxia(36) and has been linked to pO2, where FMISO retention is detectable in the
range of 2 –3 mm Hg and below(10, 37, 38). For cancers of the head and neck, it has been
shown that hypoxia (imaged via FMISO-PET) can affect prognosis independently of other
prognostic variables (39). Though there is evidence that the association between hypoxia
and clinical outcome may not hold across glioma grades (40), recent multivariate analyses of
GBM patient survival revealed significant correlations with the volume of FMISO-PET
imageable hypoxia alone (9).

Assessing the spatio-temporal growth of GBM through a bio-mathematical model that is
driven by patient-specific parameters offers a novel means of connecting overall growth
kinetics (visible on MRI) to the hypoxia-guided resistance mechanism (visible on FMISO-
PET). Previous analysis of this model relate the radial velocity of tumor growth to survival
(41),and show that this parameter predicts conversion of non-contrast enhancing low-grade
gliomas to contrast-enhancement on T1Gd MRI (27). These results imply that our bio-
mathematical model accurately predicts growth of untreated tumor over time and can
distinguish between the growth of variably aggressive tumors. Combining these results with
conclusions from other studies that define hypoxic conditions as an important feature of
aggressive tumor microenvironment (33)lead us to investigate the relation between tumor
aggressiveness quantified through our model parameters and aggressive phenotype
associated with hypoxia that can be imaged by FMISO-PET for human GBMs.
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The positive relationship between the model parameters and hypoxic burden is consistent
with our current understanding of the process by which hypoxia arises. That is highly
proliferative tumors (high ρ) are thought to be more like to be hypoxic with some recent
PET imaging to support this in vivo (42). Further, intuitively, those invasive gliomas for
which there is a high net proliferation rate relative to the net invasion rate (ρ/D) would likely
to a form a hypoxic microenviroment based on the relative time rate for depletion of
resources (e.g., oxygen via increasing cell numbers via proliferation) relative to the ability of
the population of glioma cells to migrate away from the potentially hypoxia-forming
environment. Although, this is an intuitive concept in overall population dynamics, the
positive correlation of the ratio of the net proliferation and the net invasion rate (ρ/D), with
the resultant RH, RH* and mean T/B concurs with our hypothesis that hypoxia is a hallmark
of aggressive tumor behavior.

This significant correlation between the model parameters for biological aggressiveness and
the hypoxic burden assessed by RH, RH* and mean T/B persists across a wide range of T/B
threshold values used for defining the HV. When choosing ratios below 1.2, there tends to
be significant overlap of the histogram of T/Bs from contralateral normal brain and tumor
regions, whereas ratios above 1.2 tend to provide for clear delineation between the normal
brain and (hypoxic) tumor tissue. We explored varying the T/B cutoff across all patients to
confirm that the results relating the hypoxic burden assessed at cutoff 1.2 did not
significantly change the results. Since FMISO-PET has been shown to correlate with the
pO2, increasing the hypoxic threshold to levels above 1.2, would correspond to selecting
regions of that tumor that are increasingly hypoxic. Thus, our results suggest that at every
magnitude of hypoxia (T/B >1.2), the biological aggressiveness assessed by the bio-
mathematical model and MRI correlates significantly with hypoxic burden assessed by
FMISO-PET.

Previous cell-based computational models of tumor growth and invasion have shown that
hypoxic environments can select for cells with aggressive phenotypes, which give rise to
fingered-tumor morphologies that have low sphericity in vitro (33). This suggests that when
more aggressive tumor clones are selected the tumor growth pattern is more “bumpy”. To
expand on these computational and experimental studies, we quantitatively investigated the
association of clinically observed sphericity on MRI with hypoxia and the model
parameters. Inverse correlation of tumor sphericity with RH and mean T/B imply that more
fingered or abnormally shaped tumors tend to have greater hypoxic burden. Large ρ/D
correlates with low sphericity, which suggests extensive infiltration and a high grade of
tumor cell dissociation. The observed results are therefore the first to provide clinical-scale
support for existing theoretical cell-based that suggested aggressive cell lines produce
tumors that may be less spherical (33). This is a novel insight that suggests further
investigation as there are many differences between the computational models that were
originally suggestive of this less spherical growth pattern and the models used here to
quantify aggressiveness.

This report suggests a means of quantifying the in vivo biological link between the hypoxic
burden of the tumor and the overall growth characteristics of individual gliomas. The
validated mathematical model we have utilized in this study is a unique tool towards this
end, as it is able to quantitatively connect the overall aggressive behavior (ρ/D) of a tumor
assessed on MRI to that assessed on FMISO-PET as hypoxia, a biological result of its
microenviroment. These results argue that FMISO-PET measurement in untreated GBM are
able to quantify an essential outcome variable and can extend our understanding of an
important pathophysiological process beyond what is shown by conventional anatomic
imaging.
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Further investigation is necessary to clarify these links between anatomical and functional
imaging, due in part to the small sample size employed in this study, as well as the brief
time scale over which pre-operative imaging data is obtained. In light of the present data, it
may be possible that brain tissue heterogeneity and the placement of anatomical structures in
relation to individual tumors may have affected our results. In retrospect, however, the
general scarcity of data available for analysis highlights the bleak clinical reality of
glioblastoma. It follows that a precise, biologically-based method to better understand its
growth kinetics is highly necessary.

It is important to note that cancer modeling is dictated by biology, not the mathematics. As
noted previously, the bio-mathematical model used in this study attempts to capture the
downstream effects of the tumor microenvironment. Variables can be considered
individually or together to assess their biological significance and testability. A striking
advantage of this patient-specific model is that its predictions are readily personalized
through the determination of only two key parameters; this parsimonious approach is
reflected throughout much of current modeling research (43). However, we realize that there
are limitations to such a mathematical formulation for aggressiveness. Although the
parameters consider tumor growth as an expansion of its traveling wave front, other factors
can combine to determine the patient’s overall clinical outcome, notably prognostic factors
include age and Karnofsky performance score (KPS), which are of a more stochastic
phenomena lacking a sufficiently understood underlying mechanism that can be
incorporated into the model. But developing a mathematical model is an iterative process;
upon comparison to clinical results, the model can be modified and extended to more
accurately emulate observed phenomena and make more realistic predictions. The future of
the modeling effort will continue to develop and refine predictions regarding glioma
prognosis, progression, and therapeutic efficacy.

However, these preliminary data do suggest that these bio-mathematical modeling
techniques provide for a novel tool for linking data from disparate sources. In the case of
this manuscript, the disparate sources are multi-modality imaging observations of individual
GBM patients. At first glance, these images may appear relatively distinct and separated by
technical (imaging) and biological (modeling) mechanism, however, the techniques
discussed in this manuscript provide a forum for communicating across this multimodality
divide.It is clear that such a multimodality analysis can provide valuable insight into
quantitative understanding of the kinetics and pathophysiology of each glioma that could
uniquely be used in guiding and assessing the impact of treatment in individual patients.
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Figure 1.
A 55-yr-old woman with a temporal glioblastoma multiforme imaged pre-operatively on
T1Gd MRI (A), T2 MRI (B), and FMISO-PET (C). MRI showed a contrast-enhancing
tumor with a large necrotic center. A simulation of tumor expansion shown in (D) was
generated by applying D and ρ measured from the serial MRI of a ring-shaped temporal
glioblastoma, revealing a diffuse extent of disease peripheral to the imaging abnormality.
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Figure 2.
An illustration of the results of applying a range of T/B ratios to the FMISO PET image of a
right frontal GBM (Patient #3) to generate visualizations of the HV regions suggesting T/B
= 1.2 is a reasonable threshold to define a HV separate from imaging noise.
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Figure 3.
Plot of RH as measured at various T/B thresholds. Curves represent individual patients (N =
11), with the direction of the superimposed arrow denoting a general increase in ρ/D values.
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Figure 4.
Scatter plots of RH vs. ρ/D for all patients in this study (N = 11). RH was determined over a
variety of T/B levels, ranging from 1.1 to 1.6 in increments of 0.1. A strong linear
relationship between the variables is shown for all thresholds; correlations were statistically
significant for all T/B levels considered.
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Table 2

P-values and R2 for the correlations of FMISO-determined measures of hypoxic burden (RH and mean T/B)
and MR-defined growth characteristics (v, D and ρ). Asterisks indicate associations reaching statistical
significance (p < 0.05).

p-value R2

RH vs.

velocity v (mm/yr) 0.057 0.75

D (mm2) 0.12 0.6

ρ (1/yr) 0.034* 0.82*

ρ/D (yr/ mm2) 0.000021* 0.88*

RH* vs.

velocity v (mm/yr) 0.055 0.76

D (mm2) 0.12 0.6

ρ (1/yr) 0.03* 0.83*

ρ/D (yr/ mm2) 0.000018* 0.88*

Mean T/B vs.

velocity v (mm/yr) 0.18 0.5

D (mm2) 0.31 0.33

ρ (1/yr) 0.11 0.62

ρ/D (yr/ mm2) 0.00069* 0.74*
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