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Abstract

Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were
collected over a long period of time remains problematic due to systematic variability between LC-MS mea-
surements. Until now, most normalization methods for LC-MS data are model-driven, based on internal stan-
dards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In
the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS
metabolomics experiments, which do not require the use of internal standards. According to variability mea-
sures, each normalization method performs relatively well, showing that the use of any normalization method
will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply
cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic
variability between two measurement blocks over time and maintains the differential metabolites. In conclusion,
normalization allows for pooling datasets from different measurement blocks over time and increases the
statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments.
From our investigation, we recommend data-driven normalization methods over model-driven normalization
methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best
option to normalize datasets from untargeted LC-MS experiments.

Introduction

Large-scale liquid chromatography and mass spec-
trometry-based (LC-MS) metabolomics studies are often

hampered by the fact that samples need to be collected over a
long period of time. For such studies, it is often inevitable to
measure samples in different batches, and to combine them
into one large dataset for data-processing and statistical
analysis. However, pooling these datasets may result in biased
results due to the systematic variation of LC-MS platforms that
occurs over time. Variation in LC-sampling, pH shift of the
mobile phase, unstable ionization and electrospray fluctua-
tions, variations in stationary phase conditions, inter-column
variations, suboptimal calibration of the MS, state of the de-
tectors, noncontinuous gas supply, temperature shifts, and
maintenance events can significantly affect the reproducibility
of retention time, mass accuracy, and ion intensity—factors

important for an accurate identification and quantification of
metabolites (Berg et al., 2012, Sysi-Aho et al., 2007). A quanti-
tative comparison across samples of different LC-MS batches
thus remains controversial at present.

To correct for retention time drift, bioinformatics solutions
such as OBI-Warp (Prince et al., 2006) allow the alignment of
LC-MS signals for both LC-MS proteomics and metabolomics
datasets. To handle drift in mass calibration, internal mass
calibration or alignment of the spectra can be achieved
through the mass deviation present in certain prevalent con-
taminants, since they are shared by all or most spectra in a
dataset (Breitling et al., 2012). Another possibility is to include
replicate measurements of a series of authentic standards
covering the whole mass range of interest, which allows for
recalibration during data-processing (Valkenborg et al., 2009).
However, correcting for the drift in signal intensities pro-
ves more challenging. Procedures to handle drift in signal
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intensities can be divided into method-driven and data-dri-
ven approaches.

Method-driven approaches extrapolate an external model
that is based upon quality control samples or internal stan-
dards to the dataset of interest. Especially the latter are often
used to normalize data, with or without the combination with
pooled calibration samples (Bijlsma et al., 2006; Gullberg et al.,
2004; Redestig et al., 2009; Sysi-Aho et al., 2007; van der Kloet
et al., 2009). However, spiking standard reference material
into the samples of interest is not practical due to several
reasons. First, standard reference materials are either stable
isotopes or structural analogues that do not occur naturally,
so they are very expensive to produce and whose availability
is often very limited. Second, correction of intensity level
fluctuations based on a small set of internal standards is not
recommended because the selected internal standards only
represent a limited number of metabolite classes, and inten-
sity level fluctuations may differ between various classes.
Third, this strategy is not achievable for untargeted metabo-
lomics studies since it is by definition not known beforehand
which metabolites will be of interest, and spiking each sample
with hundreds of internal standards would be too expensive
and labor-intensive (Sysi-Aho et al., 2007; Wang et al., 2003).
The use of ‘housekeeping metabolites’ to normalize data from
different runs, similar to what has proven successful in gene
expression studies (Vandesompele et al., 2002), is also not self-
evident: metabolites in blood, urine, or cell samples are highly
susceptible to environmental changes (Sysi-Aho et al., 2007).
Interestingly, Dunn et al. (2011) included a commercially
available serum sample to allow for quality control-based
local regression (Loess) signal correction of serum and plasma
samples, and thus pooling of data from multiple analytical
batches. Unfortunately, such commercially available quality
control samples are not available for all types of samples that
are analyzed in various metabolomics studies.

Data-driven methods, on the other hand, normalize data by
assuming that a large amount of the metabolites stay constant
without the necessity of knowing the identity of these specific
metabolites. In 2003, Wang and co-authors suggested a nor-
malization approach based on the linearity of signal versus
molecular concentration without using internal standards,
even though serious concerns are expressed regarding the
nonlinearity and ion suppression effects of complex biological
samples, especially in the case of LC-MS (Berg et al., 2012). In
2006, van den Berg et al. tested the effect of six linear scaling
and two heteroscedasticity methods on a gas chromatogra-
phy-mass spectrometry (GC-MS) metabolomics dataset to
reduce the systematic variability. They emphasized that the
choice of a normalization method depends on the biological
question, the properties of the dataset, and the selected data
analysis method.

In a recent communication by Kohl et al. (2011), an analogy
was made between DNA microarray data normalization and
normalization for nuclear magnetic resonance (NMR) data-
sets showing that the quantile- and cubic spline normalization
methods performed best for NMR metabolomics data. These
conclusions can, however, not be readily extrapolated to LC-
MS metabolomics. In contrast to NMR data, LC-MS data are
two-dimensional, and hence even more prone to systematic
variability. In addition, LC-MS signal intensities do not always
scale linearly with metabolite concentrations as shown by di-
lution series ( Jankevics et al., 2011): this strongly depends on

specific characteristics of the column that is used and the con-
centration of the metabolite (ion suppression occurs more fre-
quently with higher concentrations). A rigorous evaluation of
intensity normalization techniques to complete the data pro-
cessing pipeline in order to unambiguously pinpoint statistical
and biological significant changes is thus currently unavailable
in the context of LC-MS metabolomics data analysis.

Thus, in this study we aim to evaluate the performance of a
series of data-driven normalization methods that are often
used in microarray analysis to allow reliable analysis of
pooled datasets of LC-MS metabolomics experiments (with-
out spiked standards) executed across different time blocks.
Importantly, we do not intend to provide an exhaustive
comparison of the state-of-the-art literature on normalization,
but we chose to compare classical normalization methods that
are embedded in many standard software packages. The
better normalization method was then validated on a previ-
ously published L. donovani dataset (t’Kindt et al., 2010b) to
show that it succeeds in removing systematic difference be-
tween samples but still accurately reproduces fold changes.

Materials and Methods

Data

Background of the datasets. Two different datasets were
included in this study. Set I was used to evaluate the different
normalization methods, and Set II was used to validate the
best performing normalization method (Fig. 1). Set I itself was
composed of two subsets: (i) Subset A was obtained from LC-
MS experiments on a freshly diluted mixture of 38 physio-
logical amino acid standards [Product No. A9906, Sigma;
preparation of this mixture is described elsewhere ( Jankevics
et al., 2012)], which were performed at three different time
points, hereafter called time blocks: four LC-MS runs in time
block 0 (T0), seven runs 2 months later (T2), and 11 runs 3
months later (T3), while (ii) Subset B was obtained from LC-
MS experiments on a single, at -80�C stored, extract of
Leishmania donovani (MHOM/NP/03/BPK282/0cl4), which
was measured at two different time points: seven LC-MS runs
at T0, and five runs at T2. It is important to note that biological
variability is not present in Set I because it involves replicate
measures of (i) a freshly diluted standard (Subset A) and (ii)
one single parasite extract (Subset B). Set II consists of data
acquired from LC-MS experiments on extracts of two clinical
strains of Leishmania donovani with a different drug suscepti-
bility towards antimonials: MHOM/NP/03/BPK282/0cl4
(sensitive) and MHOM/NP/03/BPK275/0cl18 (resistant)
(Fig.1: Set II). Four extracts per strain per time block (T0 and
T2) were prepared from independent cultures and measured
soon after preparation. In this case, biological variability
might be responsible for both intra- and inter-batch variabil-
ity, as the data include biological replicates of the same strain
(intra-batch) and freshly prepared extracts per time block
(inter-batch). Methods for phenotyping and according meta-
bolic differences related to antimonial-resistance for these
strains have been reported elsewhere (t’Kindt et al., 2010b).
Metabolite changes are regarded as biologically and signifi-
cantly different if the average signal intensity differs at least a
two-fold (e.g., fold change BPK275/BPK282 >2 or <0.5) and if
the calculated p value of the t-test is smaller than 0.05. Set II
will serve as a benchmark dataset with negative and positive
controls used in the validation part of the manuscript.
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LC-MS measurements. The analytical samples were
measured on a liquid chromatography instrument (Waters
Acquity UPLC system) using a HILIC column (ZIC-HILIC
3.5 lm 100Å 150 · 2.1 mm from Sequant, Merck) coupled to a
high-accuracy mass spectrometer (LTQ Orbitrap Velos,
Thermo Fisher Scientific Inc.). Specifications on the LC part
can be found in t’Kindt et al. (2010a). The mass spectrometer
was operated in positive ion electrospray mode. ESI source
voltage was optimized to 4.5 kV and capillary voltage was set
to 30 V. The source temperature was set to 380�C and the
sheath gas and auxiliary gas flow rates were set respectively
to 45 and 20 (arbitrary units). The S-lens RF level was set to
59%. Full-scan spectra were obtained over an m/z range of
100–1000 Da, with the mass resolution set to 30,000 at 400 m/z.
FT ions gain was set to 500,000 ions, maximum injection time
was 100 micro seconds, three micro scans were summed. All
spectra were collected in continuous single MS mode. The LC-
MS systems were controlled by Xcalibur version 2.0 (Thermo
Fisher Scientific Inc.). With every fifth analysis, a standard
mixture containing fixed concentration of amino acids (Pro-
duct No. A9906, Sigma) was injected to check the performance
of the instrumental set-up.

Data processing. Raw data files acquired from analyzed
samples were converted to mzXML format by the mscon-
vert.exe tool of ProteoWizard (http://proteowizard.source
forge.net). The CentWave (Tautenhahn et al., 2008) feature
detection algorithm from the XCMS package (Smith et al.,
2006) was applied to each individual data file. Further pro-
cessing was handled by the flexible data processing pipeline
mzMatch (Scheltema et al., 2011) integrated in R (http://

www.R-project.org) and involved (i) aligning of the chro-
matographic features between replicates of a specific time
block (i.e., all samples of one time block are combined in one
file); (ii) retention time alignment to correct for drift between
time blocks (inter-batch); (iii) combining all measurements
(i.e., time blocks) in a single file; (iv) filtering on peak shape
and intensity; (v) automatic annotating of derivative signals
(isotopes, adducts, dimers, and fragments) by correlation
analysis on both signal shape and intensity pattern as de-
scribed by Scheltema et al. (2011). Putative identification was
made against an in-house database of amino acids or a
Leishmania database [based on LeishCyc which was further
completed with identifications from Lipid MAPS (Fahy et al.,
2007)]. If a metabolite was detected only once in a time block,
it was discarded from further analysis. If a metabolite was
missing in only one replicate, the average of the other values
was imputed. Feature selection resulted in 28 identified amino
acids and derivatives for the amino acid standard (six stan-
dard amino acids were not detected because they had a mo-
lecular weight lower than 100 Da, four compounds were
undistinguishable isomers, for example, leucine and isoleu-
cine), 189 metabolites for the Leishmania extract (MHOM/
NP/03/BPK282/0cl4) (Fig. 1S; Supplementary material
is available online at www.liebertpub.com/omi), and 135
metabolites for the validation dataset (MHOM/NP/03/
BPK282/0cl4 combined with MHOM/NP/03/BPK275/
0cl18). Table 1S with identifications is provided as supple-
mentary material for this study. The R code is available from
the first author upon request. Statistical analysis and data
visualization were handled in R. Unsupervised hierarchical
clustering analysis (HCA) and principal component analysis

FIG. 1. Experimental design. Description of sample preparation, number of runs and source of possible batch variability for
each experiment (T0, timeblock 0; T2, timeblock 2; T3, timeblock 3).
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(PCA) were used to identify groups of samples that show
similar characteristics. For more background on both HCA
and PCA, refer to t’Kindt et al. (2010b).

Employed normalization methods

Systematic changes in the average intensity levels across
different experimental runs/timeblocks can obscure the
biological information. As a consequence, the conclusions
drawn from the non-normalized data may be incorrect. To
remove the systematic variation across different experi-
mental blocks observed in the original data, we have ap-
plied seven different data-driven normalization methods,
which are commonly used for large-scale microarray da-
tasets: (1) linear baseline normalization, (2) normalization
by sum (analogous to total ion count normalization), (3)
median normalization, (4) cyclic-Loess normalization, (5)
quantile normalization, (6) probabilistic quotient normali-
zation, and (7) cubic-spline normalization. These normali-
zation methods were applied to both Subsets A and B of
dataset I. More information about each of these normali-
zation methods is available in the Supplementary Material.
R scripts allowing applications of the described normali-
zation methods to other data sources are also provided in
the Supplementary Material (Supplementary Material is
available online at www.liebertpub.com/omi).

Evaluation of normalization methods

In order to assess the performance of the different nor-
malization methods, we assume that the majority of the me-
tabolites are approximately similarly expressed across
different experimental runs. As a result, the observed inten-
sity measures for all metabolites are adjusted to satisfy this
assumption. As described by Mar et al. (2009), Schmid et al.
(2010), and Hill et al. (2001), this is a well-known assumption
in gene-expression data normalization. Since the observed
intensities are influenced by different factors, it is hard to
predict the effect of this assumption on the assessment of
normalization methods. By adopting the assumption is sat-
isfied, the performance of the applied normalization methods
was assessed using the variance and coefficient of variation
between replicated measurements or time blocks. Both met-
rics are common statistical measures reflecting the spread
(variation) of measurements across different experimental
runs. Accordingly, the better the normalization method, the
lower the coefficient of variation and the lower the variance
between replicated measurements will be. More details on the
calculation of these variability measures are given below.

Variance between replicated measurements

Let yij be the log intensity value for metabolite i (I = 1,2,3...a)
at run time j (j = 1,2,3,.k), using the replicated observations
due to different experimental runs. Our goal is to derive the
variability measures of yij. It is expected that successful nor-
malization should reduce the between-experimental run
variability for each metabolite, as compared to the original
data. A line plot for the variance was constructed to inspect
visually which normalization method consistently reduces
the variability across all the considered metabolites, as de-
picted in Figure 2 (top panel). The variance for the ith metab-
olite r2

i is computed as:

r2
i ¼

+k
j¼ 1(yij� �yi)

2

n� 1
(1)

where r2
i and �yi are the variance and the mean of the ith me-

tabolite across different experimental runs, respectively; k
represents the number of runs.

Coefficient of variation

The coefficient of variation (CV) is a measure that allows
us to assess the degree of spread in a given data set relative
to its mean value. It represents the ratio of the standard de-
viation to the mean. Since it is a unitless measure of variation,
it is a useful statistic for comparing the degree of variation
from one data series to another, even if the means are dras-
tically different from each other. As a result, we used the CV
(2) as an extra criterion to discriminate between different
normalization methods. The better the normalization method,
the lower the average metabolite specific coefficient of var-
iation. The coefficient of variation for the ith metabolite is
defined as

CVi¼ ri=�yi (2)

where CVi, ri, and �yi are the coefficient of variation, standard
deviation (square root of (1)), and mean for the ith metabolite,
respectively.

It is important to stress that, when the logarithmized data
contains negative values, the CV is meaningless. Thus, for
logarithmized data, the application of CV should be handled
with caution. Since the log transformed data contains only
positive values larger than 10 before (Fig. 3, lower channel)
and after normalization (Fig. 4), we used equation (2) to
compute CV.

In addition to the numerical variability measures, box-plots
and heat maps were prepared to visualize the effect of the
employed normalization techniques. For the heat maps
(Fig. 5), the intensities of each metabolite were rescaled be-
tween 0 and 100 to improve graphical interpretation. More-
over, an ANOVA model (3) was fitted to the data before and
after normalization in order to test whether the batch effect
was successfully removed from the data after normalization.
ANOVA is a special case of regression model when all the
explanatory variables are categorical/class variables (factors).
The model was formulated as follows:

yij¼ b0þ b1batch2þ b3batch3þ eij (3)

where yij is the log intensity value for metabolite i at run time j,
and batch2 and batch3 are indicator variables for measure-
ment taken from T2 and T3, respectively, for dataset I Subset
A, and for Subset B only batch2 kept in the model.

If the batch effects (time block) are successfully removed,
their effects should become equal (b1 = b2). This ANOVA
model was also used to find differentially abundant metab-
olites for the validation data set.

Results

To find the optimal normalization method, we used two
different datasets that both have been measured at different
time blocks: (i) a commercially available amino acid standard
mixture, and (ii) an extract of the protozoan parasite
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Leishmania donovani. The most optimal normalization method
was selected and validated on a previously published
L. donovani dataset (t’Kindt et al., 2010b) to show that it suc-
ceeds in removing systematic difference between samples but
still accurately reproduces fold changes. A. fortiori, pooling the
normalized data from multiple measurement campaigns lead
to an increased sample size that enables a more powerful
detection of differences in the metabolomics profile.

Observed variation in the original dataset

Both principal component analysis and box-whisker plots
(Fig. 3) distinguish a clear clustering per time block for the
replicate runs of both the amino acid standard (Set I Subset A)
and the Leishmania sample (Set I Subset B). While systematic
variation between time blocks is present in all data (Sub-)sets,
it is important to note that in each (Sub-)set, other plausible
sources of variation inherent to the origin of the extracts or
standards, can be present. As such, Subset A of dataset I likely

also contains variation induced by random errors in sample
dilution, while Subset B of Set I might contain variation in-
duced by storage of the extract at - 80�C between T0 and T2.
Supplementary Figure 2S shows how the experiment-
oriented biases influence the measured intensity for four
randomly selected compounds from dataset I Subset A. Be-
sides systematic LC-MS difference, Set II contains additional
biological and technical components in its total variation in-
duced by the independent cultures at the two different time
blocks and the preparation of the extracts from these cultures
at those time blocks, respectively.

For both subsets, the largest variability (presented by
principal component 1 which shows the greatest variability in
the dataset: PC1> 80%) is observed between samples mea-
sured on T0 and T2 (Fig. 3a). The box-plots in Figure 3b fur-
ther clarify that the signal intensity of the T0 dataset is much
lower compared to the other time blocks (total ion count of T0
dataset is 7-fold lower). The second principal component
presents the second largest variability in the dataset and

FIG. 2. Line plots for the log-intensity variance for different metabolites of the amino acid standard across runs before and
after normalization (a), and box-whisker plots for the coefficients of variation (b).

EJIGU ET AL. 477



shows the separation between T2 and T3 in the amino acid
standard dataset (PC2 = 9.62%). An ‘intra-batch variability’ is
observed for both datasets. For example, PC2 = 12.8% illus-
trates this variability for the Leishmania sample. It is unlikely
that storage of the Leishmania sample at - 80�C is responsible
for the large ‘inter-batch variability’ because a similar vari-
ability (PC2 = 9.62%) is observed for the amino acid standard
replicates that were freshly made for each time block, sug-
gesting that the variability induced by storage is equivalent to
the variability of pipetting out a fresh standard.

Variation after applying normalization techniques

To evaluate the performance of the different normalization
methods, normalized data were presented in a box-plot (Fig. 4
and Supplementary Fig. 3S) and heat map format (Supple-
mentary Figs. 4S and 5S). The variance and the coefficient of
variation were calculated and presented in Table 1 and the
line plot in Figure 2. For the purpose of direct visual com-
parison, only results from the normalization methods which
have the same scale as the original data are presented. Figure 4
presents the box-whisker plots for the log-intensity of amino

acid standard before (Fig. 4a) and after different normaliza-
tion methods (Fig. 4b–4f). The same plots have been con-
structed for the Leishmania sample of Subset B of dataset I and
can be found in the Supplementary Material (Supplementary
Fig. 3S). Supplementary Figure 4S shows the heat map of the
amino acid standard data before and after normalization. In
the plotted heat map, the 22 LC-MS experiments are pre-
sented along the x-axis, and the 28 identified amino acids (and
derivatives) are depicted along the y-axis. The original in-
tensity of each metabolite in the sample set was rescaled to a
range between 0 (blue) and 100 (yellow). A similar heat map
was provided for the Leishmania sample (Subset B of dataset I,
Supplementary Fig. 5S). In addition, Figure 2 (top panel)
shows the variance of the replicated measurements for a given
metabolite across the experimental runs, whereas Figure 2
(lower panel) shows the box-whisker plots for the coefficients
of variation. Normalization by using a reference metabolite
(i.e., an amino acid standard that remained constant across
different runs) does not perform well as compared to the data-
driven methods (Supplementary Fig. 6S). Thus, normalization
on a limited set of internal standards is not easily extrapolated
to the entire set of analytes in the data.

FIG. 3. (a) Principal component analyses (PCA) distinguishes replicate runs between timeblocks (T0, T2, and T3) for both
amino acid standard (left, T0 with runs 1–4, T2 with runs 5–11, and T3 with runs 12–22) and Leishmania sample (right, T0
with runs 1–7 and T2 with runs 8–12). PCA is an unsupervised cluster method based on quantitative measurement of 28
amino acids and derivatives (left) and 189 metabolites (right). (b) Box-whisker plots for both amino acid standard (left) and
Leishmania sample (right) before normalization.
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It becomes clear that all the employed normalization
methods considerably reduce the variability observed in the
original data (Fig. 3, Table 1, Supplementary Fig. 7S). First,
Figure 4 clearly shows that normalization removes the block
effects seen in the original data. After normalization, the mean
intensities are similar across different experimental runs. For
quantile normalization, the distribution of the normalized
intensity is identical across experimental runs as expected for
any type of datasets (Fig. 4f). According to the ANOVA model
results (Supplementary Table 1S), and the box-plot of the CVs,
showed a significant difference between normalized and non-
normalized data [Fig. 2 (lower panel)]. The whiskers of the
box-plots ARE lie on the same interval for the different nor-
malization methods (Fig. 2b). Hence, there is no statistically
significant difference between the different normalization
methods (Fig. 2). These findings are also reflected in the heat
maps of the data shown in Supplementary Figures 4S and 5S.

Nevertheless, the CV shows that the cyclic-Loess and cubic-
spline normalization methods performed slightly better for
the amino acid standards and the Leishmania sample, respec-
tively, (Table 1) in terms of variance reduction. Hence, the
cyclic-Loess normalization method was selected for the vali-
dation section, although, in general, all normalization meth-
ods performed well.

Validation of the selected normalization technique

In this Section, we evaluate the performance of the cyclic-
Loess normalization on an additional dataset (Set II in Fig.1).
In ideal circumstances, this dataset would be the result of a
designed experiment, which contains positive and negative
controls. The positive controls could be spiked-in metabolites
with known differential concentrations, which could show

that a given normalization removes unwanted variation while
retaining the biologically interesting effects. In such a case,
normalization should not attenuate nor amplify the mea-
surements of the spiked-in concentration differences of the
positive controls. The negative controls could be standards
that are present at a constant concentration in all the samples
of the experiment (cfr., Subset I of dataset I). In that case,
normalization should not change the intensity measurements
of the internal standards. For the purpose of the validation, we
used the dataset described in the Material and Methods Sec-
tion (Fig.1, Set II), which does not contain aforementioned
controls. However, it should be pointed out that experiments
similar to the one described above have been conducted in the
past by t’Kindt et al. (2010b). In the experiment, metabolic
differences correlated to antimonial-resistance have been re-
ported and validated through biological assays for the
Leishmania strains under scrutiny. The outcome of the previ-
ous study can serve as the set of positive and negative controls
in order to evaluate to which extent the normalization influ-
ences the reported statistics or fold changes and whether the
findings are reproducible. It should be mentioned that the
dataset of t’Kindt et al. (2010b) was recorded in a different
laboratory by using a different technology.

The distribution of the logarithmically transformed inten-
sities of the 135 identified metabolites is visualized by the box-
plots in Supplementary Figure 8S for the non-normalized and
cyclic-Loess normalized data. The mean intensity level of the
135 metabolites measured on time block T2 are higher as
compared to the measurements of T0 (Fig. 8bS). We can al-
ready state that the cyclic-Loess normalization was able to
remove the systematic effect in a similar fashion as indicated
by previous data sets (Fig. 8cS). Furthermore, it can be noted
that, within a measurement period, the metabolite intensity

FIG. 4. Box-whisker plots for the log-intensity data (a) before and (b—f) after different normalization methods for the
amino acid standard (Subset A). The top and bottom of the box represents the 75th and 25th percentiles of the distribution,
respectively. The line inside the box represents the median value, and the dots indicate data points on the extreme of the
distribution.
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distributions between the sensitive (BPK282) and resistant
(BPK275) parasite isolates are comparable (Supplementary
Fig. 8bS). The absence of such a pronounced systematic effect
within a measurement period makes the data especially sui-
ted to study the impact of normalization on a downstream
statistical analysis. In other words, by conducting the statis-
tical analysis within the time block before and after normali-
zation, we can evaluate if the number of differential findings
and their consistency is influenced, since, in this case, there is
no apparent need for data normalization.

A straightforward method to assess the quality of the
normalization can be achieved by a hierarchical clustering
approach (HCA) on the metabolite intensities (constructed
with heat map.2 function from gplots package in R). The
clustering algorithm looks for correlations between the
metabolomics profiles and aims to group similar data to-
gether. The heat map in Figure 5 illustrates this principle.
Clearly, the intensity differences between the measurement
blocks are large, as indicated by the color code. These obvious

differences are captured by the hierarchical clustering. As a
result, metabolomics profiles within a time block are recog-
nized as similar and consequently, are grouped together. The
grouping is illustrated by the tree-like structure at the top of
the figure. On the other hand, after normalization, the heat
map seems more uniform and therefore the clustering algo-
rithm groups the data according to other metabolite features.
In this case, it can be seen that the resistant and sensitive
strains are grouped together. Note that the grouping at the
lower hierarchical levels in the treelike structure still reveals
the time block structure, which can be due to technical dif-
ferences in the preparation of the samples. This preliminary
and simple analysis already indicates that normalization re-
moves the unwanted systematic block effects while retaining
the valuable metabolite information. In the next analysis, we
evaluate the effect of normalization on the results of a statis-
tical analysis.

A simple statistical analysis by means of volcano plots (Cui
et al, 2003) (Fig. 6) is proposed. Metabolites are considered to

Table 1. Summary Statistics for Variance and Coefficient of Variation Based on Replicate Measurements

Before and After Normalization of Amino Acid Standard and Leishmania Sample

Amino acid standard Leishmania sample

Variance Coefficient of variation Variance Coefficient of variation

Normalization method mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

Original data 1.2904 0.3767 0.0456 0.0064 3.4320 2.1241 0.0845 0.0283
Baseline 0.1363 0.1422 0.0133 0.0074 0.3995 0.8494 0.0254 0.0240
Loess 0.1060 0.1101 0.0119 0.0066 0.4364 0.9204 0.0252 0.0232
Cubic 0.2405 0.5187 0.0154 0.0157 0.3954 0.7832 0.0241 0.0216
PQN 0.1344 0.1430 0.01333 0.0077 0.4104 0.9166 0.0251 0.0252
Quantile 0.1302 0.1468 0.01268 0.0074 0.3903 0.7753 0.0255 0.0233

St. Dev, standard deviation.

FIG. 5. Metabolic profiles of the 135 metabolites detected in dataset II in heat map format with hierarchical clustering before
normalization (left) and after cyclic-Loess normalization (right). The samples are presented along the x-axis, the 135 detected
metabolites are presented along the y-axis; the major classes of metabolites are color coded on the right. The intensity of each
metabolite was rescaled between 0 (blue) and 100 (yellow). Before normalization, the clustering algorithm detects the mea-
surement period as group. After normalization, the sensitive and resistant strains are properly separated by the clustering.
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be statistically and biologically significant when they have a p
value below a 5% significance level based on a two-sample t-
test and an average fold change larger than 2.

In a first step, a Volcano plot analysis is conducted for each
time period T0 and T2 separately using aforementioned
thresholds. The number of differential findings, comparing
the analysis before and after normalization, when comparing
parasite isolate BPK275 with BPK282 in time period T0, is
reported in Table 2a. Before normalization, 25 metabolites
were upregulated, 48 metabolites were downregulated, and
62 metabolites were not differentially regulated. This infor-
mation can be read from Table 2a in the row indicated with
the label ‘Total Before’. The column with the label ‘Total After’
in Table 2a, illustrates the results after data normalization (i.e.,
33, 32, and 70 metabolites found to be up-, down, and non-
differentially-regulated, respectively). Because the aim of the
study is to evaluate the effect of data normalization, the re-
sults are split into nine categories to illustrate the consistency
of the differential findings before and after normalization. In
ideal circumstances, when normalization would not influence
the results of a statistical analysis at all, a complete agreement
of the differential findings would be achieved. In such a sit-
uation, only the diagonal cells (highlighted in light gray) that
indicate the number of metabolites which are found to be up-,
not- or downregulated in the analysis before and after nor-
malization, should contain values. However, in this study, 8
metabolites (highlighted in black in Table 2a) that were not
differentially expressed using the data before normalization,
were found to be upregulated after the normalization. Simi-
larly, there are 16 metabolites (highlighted in black in Table
2a) that were downregulated before normalization, and were
not differentially expressed after normalization. The same
trend is also present in Table 2b (highlighted in black). A
possible explanation is the presence of a slight systematic bias
between the parasite isolates BPK275 and BPK282, as can be
observed in Figure 8S. The figure illustrates that the log-
intensity distribution of the BPK282 isolates are slightly
higher than BPK275 when comparing within the time periods.
Nevertheless, it is reassuring that the majority of the findings
for the 135 metabolites are in the diagonal cells, highlighted by
light gray in Table 2 (i.e., are consistently found before and

after normalization). This result indicates indeed that within a
time period, a good reproducibility of the measurements was
achieved with negligible systematic effects. The effect of an
unnecessary normalization does not alter the outcome of a
statistical analysis severely. A similar observation can be
made when looking at the findings in time period T2 dis-
played in Table 2b.

Second, in a statistical analysis it is good practice to include
all available data because a larger sample size enables a more
powerful test to discern differential metabolites. Instead of
performing an analysis for each time period separately, it is
preferable to pool the collected data. Therefore, the same
statistical test, as described earlier, was applied on the pooled
data set, before and after normalization. Panel a of Table 3
contains the results of the analysis before data normalization
and compares them with our benchmark dataset published by
t’Kindt et al. (2010) and described in Materials and Methods.
The table should be interpreted similarly as the consistency
matrix presented in Table 2. It can be noted that pooling the
data without accounting for systematic variation is undesir-
able, as only 1 out of the 31 upregulated metabolites from
t’Kindt et al., is found to be upregulated in dataset II. Fur-
thermore, 11 out of 19 downregulated metabolites from
t’Kindt et al. are downregulated in dataset II. A possible ex-
planation for this poor agreement is that, in this case, pooling
the data sets increases the variability present in the data and
makes it more difficult to detect statistically significant dif-
ferences regardless the higher number of data points in the
pooled analysis. In fact, there seems also to be a bias towards
finding mostly downregulated metabolites. For these reasons,
it is mandatory to remove the systematic bias from the data
prior to a statistical analysis. Panel b of Table 3 contains the
result of the statistical analysis after applying normalization.
It can be observed that the agreement between the differential
findings of t’Kindt et al. (2010b) and dataset II is improved
(i.e., 16 out of 31 and 15 out of 19 are consistently found up-
and downregulated, respectively). However, the agreement
between both studies is still poor, regardless which normali-
zation strategy is used. The cells highlighted in black from
Panel b of Table 3 illustrate the disagreement. For example, in
dataset II, there are 13 additional upregulated metabolites that

FIG. 6. Volcano plot of the pooled data (a) before and (b) after normalization. The plots indicate that the systematic effect
results in an increased variability, which yields lower - log10 ( p values) ( plot a).
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could not be found by t’Kindt et al. However, it is reassuring
that 9 of the 13 additional metabolites were below the limit of
quantification in the study of t’Kindt et al. and consequentially
were classified as not regulated. A similar conclusion can be
drawn for the 12 downregulated metabolites. Closer inspection
of the results confirm that, although the metabolites are not
found differential according to the volcano plots, the same

trends with respect to up- and downregulation were observed
(Fig. 6). As depicted in Supplementary Figure 9S (Supple-
mentary material are available online at www.liebertpub.com/
omi), two-fold change increases or decreases are indicated by
blue and red dots for each identified analyte. A possible reason
for these inconsistent findings is due to inter-laboratory varia-
tion. It is worth keeping in mind that the results of t’Kindt et al.

Table 2. Result of Statistical Analysis Between BPK275 and BPK282 on 135 Metabolites

with p < 0.05 and Fold Change of >2, Before and After Normalization

a b

The consistency of the findings before (columns) and after (rows) cyclic-Loess normalization are split into over nine categories. The values in
a particular column illustrate how the findings before normalization are distributed over the rows, which represent the cases, up-, not-, or
downregulated after normalization. Panel a) and Panel b) contain the result for time period T0 and T2, respectively.

Table 3. Result of Statistical Analysis Between BPK275 and BPK282 on 135 Metabolites

with p < 0.05 and Fold Change of >2 for Dataset II and Findings of t’Kindt et al.

a b

The table evaluates the consistency of the finding before (Panel a) and after (Panel b) cyclic-Loess normalization, results are split over nine
categories. The rows contain the results of a statistical analysis on dataset II. The columns represent the results of t‘Kindt et al. (2010b).
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were obtained one year earlier (2010) on another LC-MS plat-
form (2.1 mm HILIC column coupled to a Finnigan LTQ-Or-
bitrap XL mass spectrometer) and that the biological samples,
although originating from the same Leishmania clone and pre-
pared by the same protocol in the same laboratory settings,
might be slightly different. A possible conclusion from these
observations could be a more optimal validation data set is
required.

However, when comparing the differential findings on
dataset II before and after normalization across Panels a and b
of Table 3, as highlighted by bold and italic numbers in the
columns indicated by ‘Total’, one can conclude that pooling
without taking into consideration the systematic effects is
unfavorable for a downstream analysis: after normalization,
29 and 27 differential metabolites could be found opposed to
the 17 differential findings before normalization. The num-
bers indicated by bold and italic in Panel b of Table 3 could be
contrasted with the bold and italic numbers of the two panels
in Table 2. Indeed the number of differential metabolites
found when analyzing the separate time blocks before nor-
malization corresponds to the findings presented in Panel b of
Table 3.

Third, to put previous results in a better perspective and to
illustrate that the inconsistent findings are not an artifact of
the data normalization, we compared the statistical analysis
on the time blocks T0 and T2 before normalization separately
with the findings of t’Kindt et al. (2010b). Such a comparison is
valid because only a slight systematic bias was present in the
time blocks, as indicated by Table 2. The results of the com-
parison are displayed by the consistency matrix of Supple-
mentary Table 2S (Supplementary Data are available online at
www.liebertpub.com/omi) for time period T0 (Panel a) and T2
(Panel b). The cells highlighted in black indicate inconsistent
findings across the comparison and confirms our hypothesis
that these changes are primarily caused by inter-laboratory
variation. More information on the consistency of findings is
provided in Supplementary Figure 9S (Supplementary
Material is available online at www.liebertpub.com/omi),
which illustrates that in this example downregulated metabo-
lites are consistently found disregarding the normalization.

Another way of illustrating the consequences of not prop-
erly accounting for the systematic effects is provided by the
volcano plot presented in Figure 6. The plots indicate that the
systematic variation results in an increased variability, which
yield lower - log10 ( p values). In addition, there seems to be a
linear trend in the averaged ratios (resistant/sensitive strain)
when compared to the normalized data, where the ratios are
more scattered in the plot.

Discussion

A majority of metabolomics publications address the issue
of normalization by using internal standards (Bijlsma et al.,
2006, Gullberg et al., 2004, Redestig et al., 2009; Sysi-Aho et al.,
2007). However, in the case of metabolomics studies, spiking
of a standard reference material into the sample of interest is
often not practical due to the high cost, the limited availabil-
ity, and the correct choice (in the case of an untargeted ap-
proach the metabolites of interest are not known beforehand).
In order to illustrate the performance of a normalization ap-
proach based on an internal standard, dataset I Subset A was
normalized by using serine as a reference metabolite. The

result shows that this normalization technique does not per-
form as well as data-driven normalization techniques (Fig.
7S). Ridder and coauthors (2002) also showed that the im-
provement in normalization factor increases proportionally to
the square root of the number of internal standards. Hence,
correction of the systematic variability based on only a small
subset of internal standards is not recommended. In this ar-
ticle, we have evaluated the performance of several data-
driven normalization techniques that were developed for
microarray data when applied to LC-MS data without spiked
standards. A comparison between normalization methods
was based on the extent of the removal of the systematic
variability observed between replicate runs of an amino acid
standard and a Leishmania sample (Fig. 1, Set I). Successful
normalization should reduce the inter- and intra-batch vari-
ability, as compared with original (non-normalized) data. The
employed normalization methods significantly reduce the
variability between the measured intensity levels that were
observed in the original (non-normalized) datasets. Accord-
ing to the ANOVA model (Supplementary Table 1S) and
variability measures, significant differences between the var-
iance for the different normalization methods were absent
(Fig. 2 and Supplementary Fig. 7S). Each of the employed
normalization methods performed relatively well. Thus, us-
ing any of the normalization methods will greatly improve
data analysis. Based on the coefficient of variation, cyclic-
Loess normalization performed slightly better than the other
methods, and was used for a validation experiment on a
biologically relevant Leishmania dataset (Fig. 1, Set II). Nor-
malization of this dataset succeeded in the removal of the
systematic variability and maintained the majority of the
differential metabolites. Moreover, it allowed pooling data-
sets from different time blocks and increased the number of
metabolites found to be differentially regulated as compared
to the non-normalized pooled datasets, allowing increase of
the power of the statistical analysis and the scale of the LC-MS
metabolomics experiments.

Different publications including this one, describe nor-
malization as an independent step in the data processing
workflow. However, data normalization cannot be seen as
disconnected from the statistical analysis. However, by dis-
connecting the normalization from the statistical analysis,
information about uncertainty concerning the normalization
factors is lost. As pointed out by Haldermans et al. (2007) and
Hill et al. (2008), following a good statistical practice, we
should think about data analysis and normalization as one
comprehensive model. In addition to the employed normali-
zation methods mentioned in this study, more modern, but
less accessible normalization methods aimed at removing
batch effects in microarray data were mentioned by Johnson
et al. (2007) and Redestig et al. (2009), respectively. An elab-
orate study of these new generation algorithm will be part of
future research.

Conclusion

The employed data-driven normalization methods suc-
ceeded in the removal of systematic variability, and allowed
pooling datasets from different experimental runs to increase
the power of the statistical analysis. It is important to indicate
that data normalization should not be expected to correct for
all sources of variability introduced by different source of
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biases (i.e., extract preparation and sample storage). Nor-
malization should be regarded more as a remedial measure to
combine data obtained from different experimental runs.
From our investigation, we recommend data-driven normal-
ization methods over model-driven normalization methods, if
only a few internal standards were used. Thus, data normal-
ization on a limited set of internal standards is not easily ex-
trapolated to the entire set of analytes in the data. But, even
though it is impractical for untargeted experiments, if every
analyte had its own label, we would prefer an internal stan-
dard-based normalization. In our discovery study, since the
number of analytes of interest is unknown, internal standards
cannot be obtained even if the cost and scarcity did not play
any role. Therefore, data-driven normalization methods are
the only options to normalize the entire dataset collected from
untargeted LC-MS experiments.
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